用户名: 密码: 验证码:
“浊毒”立论组方经相关信号通路抑制DMN致肝纤维化及HSC活化的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化(liver fibrosis/hepatic fibrosis)是各种慢性肝病向肝硬化发展所共有的病理改变和必经途径,虽是可逆的病理过程,但治疗上仍缺乏有效、副作用小的药物。导师李佃贵教授首创了中医“浊毒”理论,他经多年临证认为,浊毒内蕴是肝纤维化的主要病机之一。以化浊解毒法为指导,选用中药组成化浊解毒方治疗肝纤维化取得了满意的疗效,但其治疗机制尚未明确。肝星状细胞(hepatic stellate cell,HSC)作为成纤维细胞/肌成纤维细胞的主要来源,是肝纤维化发生发展的中心环节,细胞外基质(extracellular matrix, ECM)的合成与降解失衡是肝纤维化的主要病理改变。多种细胞因子、生长因子、趋化因子是肝纤维化的关键因子,多条信号通路参与了肝纤维化的调控过程,它们被确认为肝纤维化形成的重要靶点。本论文分三个部分,从体内、体外不同水平上选取部分关键靶点,观察了化浊解毒方抗肝纤维化的作用和机制,为化浊解毒法和“浊毒”理论治疗肝纤维化提供了依据。
     第一部分化浊解毒方经JAK/STAT通路抑制DMN致大鼠肝纤维化的作用研究
     目的:通过观察化浊解毒法组方对二甲基亚硝胺(DMN)致大鼠肝纤维化模型中肝组织Ⅰ型胶原蛋白(ColⅠ)、Ⅲ型胶原蛋白(ColⅢ) mRNA以及JAK2/STAT3蛋白的表达情况,评价化浊解毒方对大鼠肝纤维化的调节作用,探讨其可能的作用机制。
     方法:清洁级SD雄性大鼠70只,分为4组,即:正常对照组(A组)、模型对照组(B组)、复方鳖甲软肝片组(C组)、化浊解毒方组(分为等效、二倍、四倍剂量组,即D1、D2、D3组)、,除A组外,各组均予1%DMN10mg/kg腹腔内注射,实验第1周连续造模3天,第2到6周,每周连续造模2天,第5到8周,每天等体积灌胃给与不同药物。第8周末处死大鼠并取新鲜肝组织,用Masson染色观察肝组织病理情况;运用RT-PCR法检测肝组织中ColⅠ、ColⅢmRNA的表达;用Western-blot法检测JAK2/STAT3蛋白表达情况。
     结果:
     1肝组织及病理学情况观察:肉眼观察A组大鼠肝脏表面光滑、质韧,色鲜红;B组大鼠肝脏表面有颗粒状结节,质硬;D2组受试大鼠肝脏表面散在细砂粒样结节,质稍硬,色暗红。Masson染色情况显示:A组大鼠肝小叶结构完整,肝索排列整齐;B组纤维纵膈较多,纤维组织增粗、包绕肝小叶;D1、D2和C组纤维纵膈均较B组减轻,纤维条索变细;D3组纤维条索较粗。
     2化浊解毒方对大鼠肝组织中ColⅠ、Col ⅢmRNA表达的影响:与A组相比,B组ColⅠ、Col Ⅲ表达均明显增多(P <0.01)。与B组相比, C及D1组ColⅠ、Col Ⅲ表达均降低(P <0.05);D2组ColⅠ、Col Ⅲ表达显著降低(P <0.01);D3组ColⅠ、Col Ⅲ表达降低不明显(P>0.05)。
     3化浊解毒方对大鼠肝组织中JAK2、STAT3蛋白表达的影响:与A组相比,B组JAK2、STAT3蛋白表达均明显增多(P <0.01)。与B组相比,D1组JAK2蛋白表达降低(P <0.05);C、D2组JAK2蛋白表达显著降低(P <0.01);除C组外,各给药组STAT3蛋白表达较B组差异均无统计学意义(P>0.05)。
     结论:化浊解毒方能够改善DMN致大鼠肝纤维化的程度,可以不同程度的改善肝纤维化大鼠肝组织ColⅠ、ColⅢ的情况,以二倍剂量效果最为明显。通过降低JAK2蛋白表达,从而调节JAK2/STAT3通路,可能是其发挥抗肝纤维化的作用机制之一。
     第二部分化浊解毒方调节PDGF、CTGF、MCP-1和IL-13抑制DMN致大鼠肝纤维化的作用研究
     目的:通过观察以化浊解毒法组方对DMN致大鼠肝纤维化模型中肝组织血管内皮生长因子-BB(PDGF-BB)、血清中转化生长因子-β1(TGF-β1)、结缔组织生长因子(CTGF)、单核细胞趋化蛋白-1(MCP-1)和白细胞介素-13(IL-13)含量的影响,探讨化浊解毒方经细胞因子抗肝纤维化的作用和机制。
     方法:运用RT-PCR法检测肝组织中PDGF-BB mRNA的表达,运用ELISA法检测大鼠血清中CTGF、MCP-1、IL-13的含量。
     结果:
     1化浊解毒方对大鼠肝组织PDGF-BB mRNA表达的影响:与A组比较,B组PDGF-BB mRNA的表达显著增加(P <0.01);与B组比较,C、D1组PDGF-BB mRNA表达均降低(P <0.05);D2组的PDGF-BB mRNA降低更为显著(P <0.01);D3组与B组PDGF-BB mRNA的表达差异无统计学意义(P>0.05);D3组PDGF-BB mRNA的表达较D2组显著升高(P <0.01)。
     2化浊解毒方对大鼠血清中CTGF含量的影响:与A组相比,B组CTGF含量增多(P <0.05);与B组相比,各给药组大鼠血清CTGF含量均降低(P <0.05);与C组相比,D3组含量有增多趋势,但无统计学意义(P=0.063>0.05);D2组CTGF含量较C组、D1、D3组均降低(P <0.05)。
     3化浊解毒方对大鼠血清中MCP-1含量的影响:与A组相比,B组MCP-1表达明显增多(P <0.01);与B相比,除D3组外(P>0.05),各治疗组MCP-1含量均明显降低(P <0.01);C组MCP-1含量较D1、D3组降低(P <0.01,P <0.05)。
     4化浊解毒方对大鼠血清中IL-13含量的影响:与A组相比,B组IL-13含量明显增多(P <0.01);与B组相比,各给药组大鼠血清IL-13含量均明显降低(P <0.01);C组IL-13含量较D3组显著降低(P <0.01);D2组IL-13含量与D1、D3组相比显著降低(P <0.01,P <0.05)。
     结论:化浊解毒方可减少DMN致肝纤维化大鼠肝组织中PDGF-BB的表达及血清中CTGF、MCP-1、IL-13的含量,推测上述细胞因子是化浊解毒方抗肝纤维化的作用靶点之一。
     第三部分化浊解毒方含药血清经MAPK及PI3K/AKT通路抑制大鼠HSC活化的作用研究
     目的:运用血清药理学方法观察大鼠HSC中p-p38、p-JNK、PI3K及p-AKT蛋白的表达,评价化浊解毒方大鼠含药血清对MAPK、PI3K/AKT信号转导通路的作用,探讨化浊解毒方抗肝纤维化可能的分子水平作用机制。
     方法:选取健康成年雄性SD大鼠,按分组要求灌胃给予相应药物10天后制备含药血清,分为:正常对照组(A组)、模型对照组(B组)、阳性对照组(C组)、化浊解毒方含药血清等效剂量(D1)和二倍剂量(D2)组,B、C、D1、D2组均先行加入TGF-β1干预。各组加入相应血清培养48h后,利用Western-blot法检测p-p38、p-JNK、PI3K及p-AKT蛋白的表达。
     结果:
     1p-p38蛋白的表达:与A组比较,B组p-p38蛋白的表达明显增强(P <0.05);与B组比较,各给药组p-p38蛋白表达显著降低(P <0.05);与C组比较,D1组p-p38蛋白表达有增高趋势,但差异无统计学意义(P=0.051>0.05),D2组较C组及D1组p-p38蛋白表达均降低(P <0.05)。
     2p-JNK蛋白的表达:与A组比较,B组p-JNK蛋白的表达增强(P <0.05);与B组比较,各给药组p-JNK蛋白的表达降低(P <0.05)。与C组比较,D1、D2组p-JNK蛋白的表达均降低(P <0.05);D2组p-JNK蛋白的表达低于D1组(P <0.05)。
     3PI3K蛋白的表达:与A组比较,各受试组PI3K蛋白表达均升高(P<0.05);与B组比较,D2组PI3K蛋白表达显著降低(P <0.01);D2组PI3K蛋白表达低于C组和D1组(P <0.05)。
     4p-AKT蛋白的表达:与A组比较,各受试组p-AKT蛋白的表达升高(P <0.05);各给药组p-AKT蛋白表达均较B组降低,差异有统计学意义(P <0.05),其中D2组差异有显著性(P <0.01);D2与D1组比较,p-AKT蛋白表达降低,(P <0.05)。
     结论:化浊解毒方含药血清能够降低p-p38、p-JNK、PI3K、p-AKT蛋白在TGF-β1诱导的HSC中的表达,从而调控p38、JNK及PI3K/AKT信号通路的传导,推测化浊解毒方发挥抗肝纤维化的分子水平作用机制与调节MAPK及PI3K/AKT信号通路有关。
Hepatic fibrosis is the final common pathway and pathological changefor a multitude of chronic liver injuries to cirrhosis. Though the pathologicalprocess is reversible, there is a lack of effective drugs with low side effectclinically. Professor Li Diangui who initiated the Traditional ChineseMedicin(eTCM)“Turbidity toxin” theory deems that internal turbidity toxin isone of the main pathogenesis of hepatic fibrosis, according to his clinicalexperience for many years. Guided by the theory of resolving turbidity andtoxin, the prescription composed of Chinese herbs has showed satisfactoryeffects on treating hepatic fibrosis, while the mechanism of action is stillunclear. Hepatic stellate cells(HSC) are the main source of fibroblasts/myofibroblast, and the transformation between the two kinds of cells are thekey link in the process of hepatic fibrosis. The imbalance between synthesisand degradation of extracellular matrix (ECM) is the main pathologicalchange of hepatic fibrosis. The process of hepatic fibrosis is mediated bymultiple signaling pathways and many key factors including multiplecytokines, growth factors and chemotactic factors, all of which are deemed tobe the important targets of hepatic fibrosis. In this study, selecting several keytargets and dividing into three parts, we observed the effect of Huazhuojieduprescription on inhibiting fibrogenesis and its mechanism from different levels,which provides theoretical foundation for the “resolving turbidity and toxin”and “Turbidity toxin” theory in treating hepatic fibrosis.
     Part1Study on the Effect of Huazhuojiedu Prescription on InhibitingDMN-induced Hepatic Fibrosis via JAK/STAT Signaling Pathway in Rats
     Objective: To assess the effect of Huazhuojiedu prescription on hepatic fibrosis and discuss the possible action mechanism, we observed theexpression of ColⅠ and ColⅢ mRNA and JAK2/STAT3protein in hepatictissue of rats with DMN-induced hepatic fibrosis.
     Methods:70male SD rats were divided into4groups, namely normalgroup (Group A), model group (Group B), positive group treated with FufangBiejia Ruangan Pian (Group C), group treated with Huazhuojiedu prescription(subdivided into Sub-group D1, Sub-group D2and Sub-group D3respectivelytreated with equivalent, double and quadrupl dosages). Except Group A, allother groups were intraperitoneally injected with10mg/kg1%DMN. DuringW1of the study, models were made for consecutive3days; during each weekfrom W2to W6, models were made for consecutive2days; during each dayfrom W5to W8, models were administered with different drugsintragastrically in equal volumes. At the end of W8, rats were killed forextracting fresh hepatic tissues, we observed the pathological changes afterMasson staining, and tested the expression of ColⅠ and ColⅢmRNA byRT-PCR and expression of JAK2/STAT3protein in hepatic tissues byWestern-blot.
     Results:
     1Hepatic tissue and pathological observations: it was visually observedthat the surface of liver in the rats of Group A was smooth, tenacious andbright red, the surface of liver in rats of Group B contained granular nodes andis hard in texture, the surface of liver in tested rats of Sub-group D2wasinterspersed with fine grain shaped nodes, slightly hard in texture and dark red.Masson staining showed that the hepatic lobule in rats of Group A wasstructurally complete, hepatic cord was arranged in an orderly manner, hepaticlobule in rats of Group B was obviously structurally damaged with fibroustexture thickening and encompassing the hepatic lobule and the hepatic lobulein rats of Sub-group D2was significantly less structurally damaged withfibrous strips thinning.
     2Effect of Huazhuojiedu prescription on expression levels of ColⅠ andCol Ⅲ mRNA in rat hepatic tissues: Compared to Group A, both Col Ⅰand Col ⅢmRNA in Group B were significantly more expressed (P <0.01).Compared to Group B, both Col Ⅰ and ColⅢmRNA in Sub-group D2weresignificantly less expressed (P <0.01), both Col Ⅰ and ColⅢmRNA in GroupC and Sub-group D1were less expressed(P<0.05), both ColⅠ and ColⅢmRNA in Sub-group D3were insignificantly less expressed and thedifference was statistically not significant (P>0.05).
     3Effect of Huazhuojiedu prescription on expression of JAK2and STAT3protein: Compared to Group A, both JAK2and STAT3protein in Group Bwere significantly more expressed (P <0.01). Compared to Group B, JAK2protein in Sub-group D1were significantly less expressed (P <0.05), JAK2protein in both Group C and Sub-group D2were less expressed and thedifference was statistically significant (P <0.01), STAT3protein in grouptreated with Huazhuojiedu prescription were insignificantly less expressed andthe difference was statistically not significant (P>0.05).
     Conclusions: The Huazhuojiedu prescription can improve theDMN-caused hepatic fibrosis in rats and the expression of ColⅠand Col ⅢmRNA from hepatic tissues in rats with hepatic fibrosis to different extents,and the most obvious effect was observed in double dosage. Decreasing theexpression of JAK2protein to medication the JAK2/STAT3signaling pathwaymay be one of the mechanisms of anti-hepatic fibrosis action of thisprescription.
     Part2Study on the Effect of Huazhuojiedu Prescription on InhibitingDMN-induced Hepatic Fibrosis in Rats by PDGF,CTGF,MCP-1andIL-13
     Objective: To discuss the anti-hepatic fibrosis action and mechanism ofthe Huazhuojiedu prescription by observing its effects on PDGF-BB in hepatictissues and CTGF, MCP-1, IL-13in serum from models of DMN-inducedhepatic fibrosis in rats.
     Methods: the expression of PDGF-BB in the hepatic tissues was testedby RT-PCR method and the concentrations of CTGF, MCP-1and IL-13in rat serum were measured by ELISA method.
     Results:
     1Effect of Huazhuojiedu prescription on expression of PDGF-BB mRNAin hepatic tissues from rats with hepatic fibrosis: Compared to Group A,PDGF-BB mRNA in Group B was significantly more expressed (P <0.01).Compared to Group B, levels of PDGF-BB mRNA in both Group C andSub-group D1decreased (P <0.05). The level of PDGF-BB mRNA inSub-group D1significantly decreased (P <0.01). The difference betweenSub-group D3and Group B in expression of PDGF-BB mRNA wasstatistically not significant (P>0.05). PDGF-BB mRNA in Sub-group D3wasmore expressed than that in Sub-group D2(P <0.01).
     2Effect of Huazhuojiedu prescription on level of CTGF in rat serum:Compared to Group A, CTGF in Group B was significantly more expressed (P<0.05). Compared to Group B, CTGF in serum of rats of all of Group C andSub-groups D1, D2and D3was significantly less expressed (P <0.05). Thedifference between Group C and Sub-group D3in expression of CTGF wasstatistically not significant(P=0.063>0.05). CTGF in Sub-group D2wassignificantly less expressed than those in Sub-groups D1and D3(P <0.05).
     3Effect of Huazhuojiedu prescription on the level of MCP-1in rat serum:Compared to Group A, MCP-1in Group B was significantly more expressed(P <0.01). Compared to Group B, MCP-1in all other sub-groups undertreatment except Sub-group D3was significantly less expressed (P <0.01).MCP-1in Group C was less expressed than that in Sub-groups D1and D3(P<0.01, P <0.05).
     4Effect of Huazhuojiedu prescription on level of IL-13in rat serum:Compared to Group A, IL-13in Group B was significantly more expressed (P<0.01). Compared to Group B, IL-13in serum of rats of Group C andSub-groups D1, D2and D3was significantly less expressed (P <0.01), IL-13in Group C was significantly less expressed than that in Sub-group D3(P <0.01), IL-13in Sub-group D2is significantly less expressed than those inSub-groups D1and D3(P <0.01, P <0.05).
     Conclusions: The Huazhuojiedu prescription can decrease the expressionof PDGF-BB in hepatic tissues and the level of CTGF,MCP-1and IL-13inserum with DMN-induced hepatic fibrosis in rats, so we deemed that theabove cell factors were the targets of anti-hepatic fibrosis action of thisprescription.
     Part3Study on the Effects of Huazhuojiedu Prescription on Suppressionof HSC Activation in Rats via MAPK and PI3K/AKT Pathways
     Objective: To assess the effect of Huazhuojiedu prescription containedrat serum on the MAPK and PI3K/AKT signaling pathways and discuss thepossible anti-hepatic fibrosis action mechanism of the Huazhuojieduprescription at molecular level by observing the expressions of p-p38, p-JNK,PI3K and p-AKT in rat HSCs using the serum pharmacological method.
     Methods: Healthy adult male SD rats were selected and administeredwith different drugs intragastrically according to the following groups, and thecontaining-drug serum was prepared after10Days: normal group (Group A),model group (Group B), positive group (Group C), sub-group (D1) withequivalent dosage of Huazhuojiedu prescription in serum and sub-group (D2)with twice dosage in serum. TGF-β1was firstly added into the serums inGroup B and C and Sub-groups D1and D2. Afterwards, the unactivated ratHSCs were cultivated in vitro with the serums of all the groups.Throughcultivation in vitro for48h after adding with the corresponding serum in eachgroup, the expressions of p-p38, p-JNK, PI3K and p-AKT protein were testedby Western-blot method.
     Results:
     1Expression of p-p38: Compared to Group A, p-p38in Group B wassignificantly more expressed (P <0.05). Compared to Group B, p-p38in all ofGroup C and Sub-groups D1and D2was significantly less expressed (P <0.05). Compared to Group C, p-p38in Sub-group D1tended to be moreexpressed but the difference was statistically not significant (P=0.051>0.05).Compared to Sub-group D1and Group C, p-p38in Sub-group D2was less expressed (P <0.05).
     2Expression of p-JNK: Compared to Group A, p-JNK in Group B wassignificantly more expressed (P <0.05). Compared to Group B, p-JNK in allof Group C and Sub-groups D1and D2was significantly less expressed (P <0.05). Compared to Group C, p-JNK in Sub-group D1and D2was lessexpressed (P <0.05). Compared to Sub-group D1, p-JNK in Sub-group D2was less expressed (P <0.05).
     3Expression of PI3K: Compared to Group A, PI3K in each group(sub-group) was significantly more expressed (P <0.05). Compared to GroupB, PI3K in Sub-group D2was significantly less expressed (P <0.01).Compared to Group C and Sub-group D1, PI3K in Sub-group D2wassignificantly less expressed (P <0.05).
     4Expression of p-AKT: Compared with Group A, p-AKT proteinexpression in each group was obviously increased (P <0.05). Compared withGroup B, p-AKT protein expression in Group C and Sub-group D1and D2were obviously decreased (P <0.05), especially the decrease in Sub-group D2was significant (P<0.01). Compared with Sub-group D1, p-AKT proteinexpression in Sub-group D2was obviously decreased (P <0.05).
     Conclusions: The Huazhuojiedu prescription can decrease theexpressions of p-p38, p-JNK, PI3K and p-AKT in TGF-β1-induced HSC, andmedication the p38, JNK and PI3K/AKT signal transmit pathways, so weconcluded that the mechanism of anti-hepatic fibrosis action of thisprescription at molecular level may lie in the medicating of the MAPK andPI3K/AKT signal transmit pathways.
引文
1Aumaillery M,Gayraud B.Structure and biological activity of theextracellular matrix.J Mol Med,1998,76(3-4):253-265
    2Pinzani M,Marra F. Cytokine receptors and signaling in hepatic stellatecells. Semin Liver Dis,2001,21(3):397-416
    3Martínez-Chantar ML, Vázquez-Chantada M, Ariz U,et al. Loss of theglycine N-methyltransferase gene leads to steatosis and hepatocellularcarcinoma in mice. Hepatology,2008,47(4):1191-1199
    4李佃贵,杜艳茹,郭敏,等.化浊解毒方治疗胃癌前病变临床疗效及对微量元素的影响.中药材,2011,34(1):158-160
    5柴天川,李佃贵.浅议浊、毒与浊毒理论.新中医,2009,41(12):102-103
    6李佃贵,李刚,刘金里,等.李佃贵以“浊毒”立论治疗肝硬化经验.陕西中医,2006,27(11):1394-1395
    7杜艳茹,张纨,王延峰,等.李佃贵从浊毒论治溃疡性结肠炎.上海中医药杂志,2009,43(2):7-8
    8常红,李佃贵,张纨,等.肝复健方对慢性乙型肝炎肝纤维化患者血清转化生长因子β1的影响.中药材,2009,32(10):1643-1645
    9唐国凤.茵陈蒿对实验性肝纤维化大鼠肝细胞的保护作用.中药材,2005,28(3):218-219
    10张瑞芬,苏和.黄连的药理研究进展.内蒙古中医药,2010,3:114-117
    11李沛波,王永刚,吴钉红,等.田基黄中三个黄酮类化合物保肝退黄作用的实验研究.中山大学学报,2007,28(1):40-43
    12蔡永江,刘春红,刘旺根,等.鳖甲煎丸抗肝纤维化作用的实验研究.中医研究,2007,20(11):21-23
    13赖文芳,吴符火,陈兴明.丹参抗肝纤维化作用机制的研究进展.中国民族民间医药,2010,3:30-32
    14洪照友,高毅,詹兴海.中药虎杖对大鼠肝脏缺血性损伤保护的形态学观察.世界华人消化杂志,2000,8(2):162-164
    15Ming-Ho Chen, Qwa-Fun Wang, Linh-Geeng Chen, et al.The inhibitoryeffect of Gynostemma pentaphyllum on MCP-1and type I procollagen inrat hepatic stellate cells.Journal of Ethnopharmacology,2009,126(1):42-49
    16李瑞麟,马勇,魏伟,等.白芍总苷治疗四氯化碳致大鼠肝纤维化的作用与其影响肝星状细胞功能的关系.中国新药杂志,2007,16(9):685-688
    17裘柱婷,单长民,姜学连,等.三棱、莪术抗大鼠免疫性肝纤维化研究.中国中药杂志,2002,27(12):929-932
    18王晓东,刘永刚,苏薇薇.红景天苷对小鼠实验性肝损伤的保护作用.中药材,2004,27(3):198-199
    19田力,陈奎生,蔡庆春.大鼠肝纤维化模型肝组织及血清中基质金属蛋白酶抑制因子-1的动态变化.药品评价,2007,4(5):355-357
    20高建蓉,邵志华,陶君,等.鳖甲对防治肝纤维化实验研究.中华中医药学刊.2008,26(11):2462-2471
    21Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev,2000,11(3):199-207
    1Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymaltransitions. J Clin Invest,2009,119:1429-1437
    2Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, et al. Pro-fibrogenicpotential of PDGF-D in liver fibrosis. Hepatol,2007,46(6):1046-1074
    3Chen YX, Lu CH, Xie WF, et al. Effects of ribozyme targeting platelet-derived growth factor receptor beta subunit gene on the proliferation andapoptosis of hepatic stellate cells in vitro. Chin Med J (Engl),2005,118(12):982-988
    4Gressner OA, Gressner AM. Connective tissue growth factor:a fibrogenicmaster switch in fibrotic liver diseases. Liver Int,2008,28(8):1065-1079
    5Shi-Wen X, Leask A, Abraham D. Regulation and function of connectivetissue growth factor/CCN2in tissue repair, scarring and fibrosis. Cytokine&Growth Factor Rev,2008,19(2):133-144
    6Riewald M, Pet rov an RJ, Donner A, et al. Activation of endothelial cellprotease activated receptor1by the protein C pathway. Science,2002,296(5574):1880-1882
    7Jaco b C, Yang PC, Da rmoul D, et al. Mast cell tryptase controlsparacellular permeability of the intestine. Role of protease-activatedreceptor2and beta-arrestins. J Biol Chem,2005,280(36):31936-31948
    8顾小红,张云东.酶活化受体1诱导大鼠肝星状细胞分泌MCP-1,胃肠病学和肝病学杂志,2008,(8):677-679
    9Wynn TA. IL-13effector functions. Annu Rev Immunol,2003,21:425-456
    10熊丽霞,IL-13对成纤维细胞胶原蛋白合成的影响及其分子调控机制,南昌大学基础医学院,2007-6
    1Rincón M, Davis RJ. Regulation of the immune response bystress-activated protein kinases.Immunol Rev,2009,228(1):212-224
    2Wymann M P, Marone R. Phosphoinositide3-kinase in disease:timing,location, and scaffolding.Curr Opin Cell Biol,2005,17(2):141-9
    3Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions andalterations in human cancer.Apoptosis,2004,9(6):667
    4张纨,李佃贵,郭敏,等.化浊解毒调肝方对肝纤维化大鼠Smads表达的影响.中成药,2010,32(3):382-385
    5Ono K, Han J. The p38signal transduction pathway: activation andfunction. Cell Signal,2000,12(1):1-13
    6Weston CR,Davis RJ.The JNK signal transduction pathway.Curr OpinCell Biol,2007,19(2):142-149
    7Coelho R P,Yuelling L M,Fuss B,et al. Neurotrophin-3targets thetranslati onal initiation machinery in oligodendrocytes.Glia,2009,57(16):1754-64
    8Friedman SL. Liver fibrosis: from bench to beside.Hepatol,2003,38(Suppl):S38-53
    9Chen YX, Lu CH, Xie WF, et al. Effects of ribozyme targeting platelet-derived growth factor receptor beta subunit gene on the proliferation andapoptosis of hepatic stellate cells in vitro. Chin Med J (Engl),2005,118(12):982-988
    10王洪武,倪青,林兰.中药含药血清的研究进展及其在中医学中的应用.北京中医药,2008,27(9):698-701
    11李静,殷飞,姚树坤.血清药理学研究进展.中国中医基础医学杂志,2009,15(3):234-236
    12牛国庆,武果桃.中药血清药理学研究进展.兽医医学杂志,2011,(1):24-25
    13刘成海,刘平,刘成,等.抗肝细胞纤维化有效中药复方血清药理学方法探讨.中国实验方剂学杂志,1998,4(2):16-18
    14Bolarin DM, Azinge EC. Biochemical markers, extracellular componentsin liver fibrosis and cirrhosis. Nig Q J Hosp Med,2007,17:42-52
    15孔德松,郑仕中,陆茵,等.肝内肌成纤维细胞的来源及其在肝纤维化中作用的研究.中国药理学通报,2011,27(3):297-300
    16Duffied JS,Forbes SJ, Constandinou CM, et al. Selective depletion ofmacrophages reveals distinct, opposing roles during liver injury and repair.J Clin Invest,2005,115(1):56-65
    17陈奕,缪泽鸿,丁健. p38MAPKs在细胞周期调控中的作用.生理科学进展,2004,35(4):315-320
    18Wu W J,Yang M F,Xu X B,et a1.Expression and its location ofp38MAPK in CCl4-induced hepatic fibrosis in rats.World Clin J Digestol,2008,16(34):3822-3827
    19Tsukada S, Westwick JK, Ikejima K, et al. SMAD and p38MAPK signal-ing pathways independently regulate alpha1(I)collagen gene expression inunstimulated and transforming growth factor-beta-stimulated hepaticstellate cells. J Biol Chem,2005,280(11):10055-10064
    20Lv Z, Song Y, Xue D, et al. Effect of salvianlic-acid B on inhibiting MAPKsignaling induced by transforming growth factor-β1in activated rat hepaticstellate cells. Journal of Ethnopharmacology,2010,132(2):384-392
    21唐文,周德江.c-Jun氨基端激酶信号传导通路及其在肝纤维化中的作用研究进展.西南军医,2008,10(4):121-122
    22Yoshida K, Matsuzaki K, Mori S, et al. Transforming growth factor-betaand platelet-derived growth factor signal via c-Jun N-terminalkinase-dependent Smad2/3phosphorylation in rat hepatic stellate cells afteractue liver injury. Am J Pathol,2005,166(4):1029-1039
    23童巧霞,周柏华,喻佛定.和络舒肝胶囊对大鼠肝星状细胞丝裂原活化蛋白激酶的影响.中西医结合肝病杂志,2010,20(2):98-100
    24Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositolkinase makes a novel inositol phospholipid, phospha-tidylinositol-3-phosphate. Nature,1988,332(6165):644-646
    25呙琳琳,戴立里,唐静.丹参素对PDGF-BB刺激下肝星状细胞的抑制作用.第三军医大学学报,2011,33(15):1610-1614
    26管洪庚,徐永峰,兰晶.血小板源生长因子通过PI3K/AKT途径促肝星状细胞增殖与Ⅰ型胶原合成.中华实验外科杂志,2007,11
    27熊振芳,朱清静,杨玲,张赤志.莪术提取物对PDGF诱导的肝星状细胞内Ca2+和PI3-K的影响.中西医结合肝病杂志,2007,17(6):358-360
    1王正品,李佃贵,杜艳茹,等.浊毒致病论与现代中医病因学.中医杂志,2010,51(1):11-13
    2夏征农,罗竹风,马飞海等.辞海.北京商务印书馆,2000:1124
    3曹东义.浊毒化与化浊毒.中国中医药报(学术与临床版),2010,3.8
    4赵进喜,庞博.中医学“浊”的涵义及其临床意义.中医杂志,2009,50(7):581-584
    5蔡春江,裴林,李佃贵.伏邪理论在慢性乙型肝炎治疗中的应用.浙江中医杂志,2002,2:51-52
    6裴林,李佃贵,曹东义,等.浊毒浅识.河北中医,2010,32(1):24-25
    7许筱颖,郭霞珍.浊毒致病理论初探.辽宁中医杂志,2007,34(1):28
    8蔡春江,李佃贵,裴林.从“浊”“毒”论治慢性萎缩性胃炎.中国中西医结合消化杂志,2002,10(1):40-41.
    9李佃贵,张金丽,石海亮,等.以浊毒立论防治胃癌癌前期病变.中国全科医学,2008,11(6B):1096-1097
    10李佃贵,李刚,刘金里,等.以浊毒立论治疗肝硬化.四川中医,2006,24(2):35-36
    11陶兴,孙伟.慢性肾脏病浊毒病机与治法探讨.江苏中医药,2008,40(9):15-16
    12吴深涛.糖尿病病机的启变要素-浊毒.上海中医药大学学报,2004,18(1):24-26
    13李佃贵,王彦刚.浊毒理论临床研究进展.中华中医药学会脾胃病分会第十九次全国脾胃病学术交流会论文汇编,2007,580-584
    14孟宪鑫,史淑红,李刚,等.李佃贵治疗慢性肝病经验.中医杂志,2007,48(9):780-781
    15俞芹,李佃贵.李佃贵教授化浊解毒法治疗肝硬化.第二十次全国中西医结合消化系统疾病学术会议暨消化疾病诊治进展学习班论文汇编,2008,183-184
    16李佃贵,张红磊,张红霞,等.化浊解毒调肝方对肝纤维化大鼠肝组织TIMP-1表达的影响.河北中医,2010,32(4):507-509
    17张纨,李佃贵,郭敏,等.化浊解毒调肝法对肝纤维化大鼠Smads表达的影响.中成药,2010,32(3):382-385
    18王丽,李佃贵,孟宪鑫,等.化浊解毒益气方对肝纤维化大鼠细胞因子的影响.中国老年学杂志,2009,29(7):838-840
    19李晓荟,姜树军,李佃贵.化浊软坚汤对免疫性肝纤维化大鼠血清学指标的影响.中国中西医结合消化杂志,2009,17(6):364-366
    20李佃贵,顾洁,李刚,等.解毒软肝汤对免疫性肝纤维化大鼠整合素α6的影响.陕西中医,2007,28(8):1093-1095
    21李佃贵,张纨,郭敏,等.肝复健方对肝纤维化大鼠TGF-β/Smad信号通路的影响.北京中医药大学学报,2009,32(11):755-758
    22扈荣,傅旭春,沈丽美,等.百令疏肝胶囊治疗免疫损伤性肝纤维化的实验研究.浙江大学学报(理学版),2012,39(5):571-575
    23袁兰,叶军.益气活血法治疗肝纤维化临床进展.实用中医内科杂志,2012,(08):100-103
    24邵志祥,汤伟.抗纤胶囊对实验性大鼠肝纤维化的治疗作用.中国实验方剂学杂志,2012,18(11):212-215
    25梁健,周小潇,邓鑫.肝肾同源理论在肝纤维化治疗中的指导作用.湖南中医杂志,2012,28(3):104-106
    26姜方伟,梁存.活血化瘀用于肝硬化.光明中医,2004.19(4):23-24
    27中国中西医结合学会肝病专业委员会.肝纤维化中西医结合诊疗指南.中西医结合肝病杂志,2006,16(5):316-320
    28任小巧,卢跃卿,陈永旭,等.仲景三方对大鼠肝纤维化不同时期血清Ⅰ型前胶原、透明质酸及层粘蛋白作用的观察.北京中医药大学学报,2001,24(3):31
    29胡爱荣,丁一生,程明亮.丹芍化纤胶囊对大鼠肝纤维化的预防作用及对HSCs增殖和活化的影响.中医药学刊,2006,24(11):2113-2114
    30过建春,陈素莲,李冰如,等.小剂量干扰素穴位注射联合中药治疗慢性肝炎肝纤维化临床研究.中国针灸,2000(1):10
    31Wu J, Zern MA. Hepatic stellate cells: a target for the treatment of liverfibrosis. J Gastroenterology,2000,35(9):665-672
    32Friedman SL. Hepatic Fibrosis-Overview. Toxicology,2008,254(3):120-129
    33Li JT, Liao ZX, Ping J, et al. Molecular mechanism of hepatic stellate cellactivation and antifibrotic therapeutic strategies.J gastroenterol,2008,43(6):419-428
    34Pinzani M,Marra F. Cytokine receptors and signaling in hepatic stellatecells. Semin Liver Dis,2001,21(3):397-416
    35Han YP, Zhou L, Wang J, et al. Essential role of matrix metalloproteinasesin interleukine-1-induced myofibroblastic activation of hepatic stellate cellin collagen. J Biol Chem,2004,279(6):4820-4828
    36Breitkopf K, Roeyen C, Sawitza I, et al. Expression patterns of PDGF-A,-B,-C and-D and the PDGF-receptors alpha and beta in activated rathepatic stellate cells(HSC). Cytokine,2005,31(5):349-357
    37Chen YX, Lu CH, Xie WF, et al. Effects of ribozyme targeting platelet-derived growth factor receptor beta subunit gene on the proliferation andapoptosis of hepatic stellate cells in vitro. Chin Med J (Engl),2005,118(12):982-988
    38Yang L, Zhang CZ, Zhu QJ. Kangxian ruangan keli inhibits hepatic stellatecell proliferation mediated by PDGF. World J Gastroenterol,2003,9(9):2050-2053
    39王爱民,王宝恩,江龙安,等.血小板源生长因子对大鼠肝星状细胞增殖和胶原及血小板源生长因子基因表达的影响.中华实验外科杂志,2000,17(3):241-242
    40Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis [J]. ClinChim Acta,2006,364:33-60
    41Shek FW, Benyon RC. How can transforming growth factor beta betargeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol,2004,16:123-126
    42Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, et al. Pro-fibrogenicpotential of PDGF-D in liver fibrosis. Hepatol,2007,46(6):1046-1074
    43Breitkopf K, Godoy P, Ciucla L, et al. TGF-beta/Smad signaling in theinjured liver. Z Gastroenterol,2006,44(1):57-66
    44Gressner OA, Gressner AM. Connective tissue growth factor:a fibrogenicmaster switch in fibrotic liver diseases. Liver Int,2008,28(8):1065-1079
    45Gressner OA, Lahme B, Siluschek M, et al. Connective tissue growthfactor is a Smad2regulated amplifier of transforming growth factor betaactions in hepatocytes-but without modulating bone morphogeneticProtein7signaling. Hepatology,2009,49(6):2021-2030
    46Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver.Hepatology,2009,50(6):20072013
    47Shi-Wen X, Leask A, Abraham D. Regulation and function of connectivetissue growth factor/CCN2in tissue repair, scarring and fibrosis. Cytokine&Growth Factor Rev,2008,19(2):133-144
    48Poynard T, Yuen MF, Ratziu V. Viral hepatitis C. Lancet,2003,362(9401):2095-2100
    49Saarialho-Kere u,Kerkel E, Jahkola T, et al. Epilysin(MMP-28)expression is associated with cell Proliferation during epithelial repair. JInvest Dermatol,2002,119(1):14-21
    50Visse R, Nagase H. Matrix metallopmteinases and tissue inhibitors ofmetalloproteinases: structure, function, and biochemistry. Cite Res,2003,92(8):827-839
    51Anders HJ, Vielhauer V, Frink M, et al. A chemokine receptor CCR-1antagonist reduces renal fibrosis after unilateral reter ligation. J ClinInvest,2002,109(2):251-259
    52Keane MP, Gomperts BN, Weigt S, et al. IL-13is pivotal in thefibroobliterative process of bronchiolitis obliterans syndrome. J Immunol,2007,178(1):511-519
    53Stopa M, Benes V, Ansorge W, et al. Genomic locus and promoter regionof rat Smad7, an important antagonist of TGF-beta signaling. MammGenome,2000,11(2):169-176
    54Feng XH, Derynck R.A kinase subdomain of transforming growthfactor-beta(TGF-beta) type I receptor determines the TGF-beta intrace-llular signaling specificity. EMBO J,1997;16:3912-3923
    55Liu C, Gaca MD, Swenson ES, et al. Smads2and3are differentiallyactivated by transforming growth factor-beta(TGF-beta)in quiescent andactivated hepatic stellate cells: Constitutive nuclear localization of Smadsin activated cells is TGF-beta-independent. J Biol Chem,2003,278(13):11721-11728
    56Ghosh AK, Yuan W, Mori Y, et al. Smad-dependent stimulation of type Icollagen gene expression in human skin fibroblasts by TGF-beta involvesfunctional cooperation with P300/CBP transcriptional coactivators.Oncogene,2000,19(31):3546-3555
    57Ghosh AK, Yuan W, Mori Y,et al. Antagonistic regulation of type Icollagen gene expression by interferon-gamma and transforming growthfactor-beta.Integration at the level of P300/CBP transcriptional coactive-ators. J Biol Chem,2001;276(14):11041-11048
    58He J, Tegen SB, Krawitz AR, et al. The transforming activity of Ski andSnon is dependent on their ability to repress the activity of Smad proteins.J Biol Chem2003;278(33):30540-30547
    59Kitamura Y, Ninomiya H. Smad expression of hepatic stellate cells in livercirrhosis in vivo and hepatic stellate cell line in vitro. Pathol Int,2003,53(1):18-26
    60Svegliati-Baroni G, Ridolfi F, Di Sario A,et al. Intracellular signalingpathways involved in acetaldehyde-induced collagen and fibronectin geneexpression in human hepatic stellate cells. Hepatology,2001,33(5):1130-1140
    61Zhang XL, Liu JM, Yang CC, et al. Dynamic expression of extracellularsignal-regulated kinase in rat liver tissue during hepatic fibrogenesis.World J Gastroenterol,2006,12:6376-6381
    62Seger R, Krebs E G. The MAPK signaling cascade. FASEB J1995;9(9):726-735
    63Yosh ida K, M atsuzak i K, M ori S, et al. Transforming growth factor-betaand platelet-derived growth factor signal via c-Jun N-terminalkinase-dependent Smad2/3phosphorylation in rat hepatic stellate cellsafter acute liver injury. Am J Pathol,2005,166(4):1029-1039
    64Pinzani M.PDGF and signal transduction in hepatic stellate cells. FrontBiosci,2002,7:1720-1726
    65Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines ashypoxia-dependent factors stimulating migration of human hepatic stellatecells. Am J Pathol2007;170(6):1942-1953
    66Martínez-Chantar ML, Vázquez-Chantada M, Ariz U,et al. Loss of theglycine N-methyltransferase gene leads to steatosis and hepatocellularcarcinoma in mice. Hepatology,2008,47(4):1191-1199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700