用户名: 密码: 验证码:
基于EMD的线状要素自动综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地理信息系统(GIS)在现代社会中的地位日益提高,人们对地理信息的需求不断扩大,需求层次不断提高,越来越多地需要在不同分辨率、不同空间尺度上对地理现象进行观察、理解和描述,对变比例尺的空间数据进行分析、处理和表达。随着网络与移动服务的普及,这也促进变比例尺特征GIS的出现和发展,使得制图学领域中最古老、最经典的领域——制图综合又焕发新的活力、面临新的挑战,成为GIS研究领域内的热点和前沿问题。
     如何基于计算机利用地图数据库快速地进行地图在多个尺度下的表达,对地图在新的数字环境下进行承载和传输信息将是非常有意义的,也是传统制图综合在制图领域顺应时代发展的新要求。GIS中的图形数据信息主要通过线状图形要素来表达,开展线状要素的自动综合是进行地理信息多尺度表达的重要方面。滤波方法逐渐成为空间信息综合的新方法,其中经验模式分解(EMD)方法具有数据自适应的特点,在信号处理等领域取得了成功的应用。目前,采用空间几何约束进行线状要素综合的理论和方法已经得到了广泛的应用,而滤波方法中经验模式分解方法应用到地理信息综合却较少受到关注。经验模式分解方法的基于数据的自适应特性,能够很好地对线状要素综合进行简化和压缩。而基于曲率等空间几何方法在线状要素综合过程中能够很好地保持曲线的形状特征。因此,本文采用滤波与空间几何约束相结合的方法,用于线状要素的自动综合研究,主要研究内容包括以下几个部分:
     1)分析了数字环境下地图制图特点以及线状要素综合中存在问题,探讨了引入频率域过滤方法在线状要素简化中的必要性。通过分析总结曲线化简方法中存在的主要问题,本文提出了采用二维空间中曲线经验模式分解用于曲线综合的技术路线,用于线状要素的压缩和化简。
     2)研究了滤波理论用于空间信息综合的多种方法,在总结分析小波理论、傅里叶变换和经验模式分解理论的基础上,提出了曲线的经验模式分解方法。通过曲线在二维空间的经验模式分解和重构,采用贝塞尔和BSpline曲线拟合方法,建立了基于二维经验模式分解的线要素多尺度表达方法。
     3)引入了可视化曲率的概念,探讨了曲率方法在曲线特征点提取中的优缺点,在分析总结以往曲率计算方法的基础上,提出了基于高度角计算的可视化曲率方法。通过开展可视化曲率在多边形形状提取上的示范,建立基于可视化曲率的线要素简化方法。
     4)综合经验模式分解与可视化曲率方法,设计了二维空间经验模式分解算法和特征约束的曲线重构算法,采用空间语义关系等约束,提出了线状要素化简后的形状特征保持方法,实现了滤波和空间几何相结合的线状要素多尺度表达技术。
     5)开展了线状要素综合结果的分析和评价,提出一种经过改进的Hausdorff曲线相似度评价方法,检验曲线综合后形状特征的保持;并提出采用几何特征评估和位置精度评估方法对线状要素综合结果进行了分析、评价,指出基于EMD线要素简化方法的特点,指出了曲线二维经验模式分解在线要素综合中的适用性。
As the status of geographic information system (GIS) continuously improves in modern society, the needs of geographical information are increasingly expanded and demand levels become higher and higher. Furthermore, more and more geographic phenomena are observed, understood and descripted in different resolution, different spatial scales according to a variety of requirements. Also, the variable-scale spatial data are analyzed, processed and expressed. The Internet and the popularity of mobile services have promoted the emergence and development of variable scale characteristic GIS. Therefore, the oldest and classical cartography field——the cartographic generalization is energetic again as well as faces new challenges, making cartographic generalization a hot area of research and cutting-edge issues in GIS area.
     The research on how to use computer-based map database so as to express map quickly and in multiple-scale is not only very significant and meaningful to maps for their information carriage and transmission in the new digital environment, but also makes the traditional cartographic generalization conform to the new requirements in the field of mapping. The data and information in GIS is expressed mainly through linear graphic elements, thus automatically linear features generalization is an important aspect of multi-scale expression of the geographic information. At present, the theory and methods that use spatial geometric constraints to linear features generalization have been widely used. However, not much attention has been paid to the geographic information generalization by filtering method, especially through empirical mode decomposition, which is an adaptive and natural approach for signal analysis. Empirical Mode Decomposition Method can well simplify and compress the linear elements. In addition, spatial geometric methods based on curvature have strong ability to maintain the shape of the characteristics curve in linear features generalization process. Therefore, the combination of spatial geometric constraints and filtering method is used for the automatic linear features generalization, and the main contents of this research include the following aspects:
     1) The existing problems of cartographic characteristics as well as the linear features generalization in digital environment has been analyzed, and the necessity of using frequency domain filtering method in linear features generalization is discussed. By analyzing and summarizing the main problems in line generalization methods, the technical route, which uses curve empirical mode decomposition in two-dimensional space, is proposed to compress and simplify the linear elements.
     2) A variety of spatial information generalization methods using filtering theory are studied. The empirical mode decomposition method is put forward based on summarizing and analyzing the theory of wavelet, Fourier transform and empirical mode decomposition theory. Through the empirical mode decomposition of lines in the two-dimensional space, multi-scale representation of linear features method is brought forward by using Bessel and BSpline curve approximation method.
     3) The concept of visual curvature has been introduced, what is more, the advantages and disadvantages of curvature method in curve feature point detection are probed. Secondly, by summarizing the previous methods of curvature calculation, visual curvature computation based on elevating angular height calculation is proposed. Through experiments of polygon shape extraction based on visual curvature, curvature-based visualization method for curve simplifying is adopted.
     4) The empirical mode decomposition algorithm for two-dimensional space and the curve reconstruction algorithm based on constraint features have been designed by combining empirical mode decomposition and curvature visualization method. By adopting the constraints such as spatial semantic relationship, the method for preserving the shape characteristics of linear features after generalization is establised.
     5) The analysis and evaluation on results of linear features generalization is carried out, and an improved Hausdorff similarity curve evaluation method is proposed to examine the shape of curve characteristics after generalization. At the same time, both geometric characteristics assessment method and location accuracy evaluation method are used to analyze, evaluate the linear features generalization outcome. At last, the characteristics of simplifying linear features based on EMD have been pointed out. Also, the applicability of two-dimensional curves empirical mode decomposition in linear features generalization is indicated.
引文
[1]艾廷华.适宜空间认知结果表达的地图形式[J],遥感学报,2008,(12)2:347-354.
    [2]艾廷华.《城市地图数据库综合的支撑数据模型与方法的研究》,博士论文,2000,武汉测绘科技大学。
    [3]陈毓芬.地图空间认知理论的研究[D],河南郑州:中国人民解放军信息工程大学,2000,46-80.
    [4]董卫华,郭庆胜,刘纪平,吕秀琴.道路网示意性地图的渐进式综合研究[J],武汉大学学报(信息科学版),2007,32(9):829-832.
    [5]董卫华.《面向需求的示意性道路网地图渐进式综合研究》,博士论文,2008,武汉大学。
    [6]高俊.地图的空间认知与认知地图学[J],中国地图学年鉴,地图出版社,1991,35-46.
    [7]高俊.地图学四面体-数字化时代地图学的诠释[J].测绘学报,2004,(33)1:6-11.
    [8]郭仁忠, 《空间分析》,武汉测绘科技大学出版社,1997。
    [9]郭庆胜.线状要素图形综合的渐进式方法研究[J].武汉测绘科技大学学报,1999,24(3):255-258.
    [10]郭庆胜,点状要素与线状要素、面状要素的关系处理,武汉测绘科技大学学报,1993,第18卷。
    [11]郭庆胜.地图自动综合理论与方法[M].北京:测绘出版社,2002.
    [12]郭庆胜,黄远林,郑春燕,蔡永香.空间推理与渐进式地图综合[M].武汉:武汉大学出版社,2007.
    [13]孟丽秋.地图学技术发展中的几点理论思考[J].测绘科学技术学报,2006,(23)2:89-96
    [14]武芳,邓红艳.基于遗传算法的线要素自动化简模型[J].测绘学报,2003,32(4):349-355.
    [15]毋河海.机助制图综合原理[M].武汉:武汉测绘科技大学出版社.1999.
    [16]毋河海.《地图数据库系统》,测绘出版社,1991。
    [17]毋河海,地图综合基础理论与技术方法研究[M].北京:测绘出版社.2004.
    [18]毋河海.基于多叉树结构的曲线综合算法[J].武汉大学学报(信息科学版),2004,29(6):479-483.
    [19]王家耀等, 《普通地图制图综合原理》,1992,测绘出版社。
    [20]王家耀,武芳.数字地图自动综合原理与方法[M].北京:解放军出版社,1998.
    [21]王家耀,陈毓芬.理论地图学[M].北京:解放军出版社,1999,46-52.
    [22]王家耀, 《空间信息系统原理》,科学出版社,2001.
    [23]应启街,冯一云,窦维蓓。离散时间信号分析和处理[M]。清华大学出版社,2001.
    [24]应申,郭仁忠,闫浩文,林亨贵,制图综合中等高线的自相交的判断与消除,《测绘科学》,2001,4.
    [25]应申, 《曲线的一致性化简及曲线相交的研究》,硕士论文,2000,武汉测绘科技大学.
    [26]祝国瑞,尹贡白.普通地图编制[M].北京:测绘出版社,1982.
    [27]祝国瑞,郭礼珍,尹贡白,徐永利.地图设计与编绘[M].武汉:武汉大学出版社,1999.
    [28]李沛川,线性要素移位的研究, 《武汉测绘科技大学学报》,1993增刊。
    [29]任智生,水系和地貌综合中的选取指标和运用, 《武汉测绘科技大学学报》,1995(增刊)。
    [30]徐庆荣,杜道生,黄伟,费立凡, 《计算机地图制图原理》,武汉测绘科技大学出版社,1992。
    [31]周培德, 《计算几何——算法分析与设计》,清华大学出版社、广西科学技术出版社,2000。
    [32]Akman,V., Franklin, W.R., Kankanhalli, M. and Narayanaswami, C. Geometric Computing and the Uniform Grid Data Structure. Comput. Aided Design,1989,21(7), p410-420.
    [33]Attneave, F. Some Informational Aspects of Visual Perception. Psychological Review, 1954.61, p183-193.
    [34]Bader M (2001) Energy minimization methods for feature displacement in map generalization. PhD thesis, Department of Geography, University of Zurich, Switzerland
    [35]Ballard, D. Strip Trees:a Hierarchical Representation for Curves. Comm. ACM, 1981.24(5):310—321.
    [36]Balboam, J. and Lopez, F.2000. "Frequency filtering of linear features by means of wavelets:A method and an example", Cartographic Journal, Vol.37(1):39-49.
    [37]Barber, C., Cromley, R. and Andrle, R., Evaluating Alternative Line Simplification Strategies for Multiple Representations of Cartographic Lines. Cartography and Geographic Information Systems.1995,22(4):276-291.
    [38]Beard, K. Theory of the Cartographic Line Revisited:Implications for Automated Generalization. Cartographica 1991.28(4):32-58.
    [39]Bentley J.L. and Ottmann, T.A., Algorithm for Reporting and Counting Geometric Intersections. IEEE Trans. On Computer,1979.28:643-647.
    [40]Brophy, D.M. An Automated Methodology for Linear Generalization in Thematic Cartography. Proceedings, ACSM 33rd Annual Meeting,1973.pp.300-14.
    [41]Burghardt D (2005) Controlled line smoothing by snakes. GeoInformatica,9(3), pp.237-252
    [42]Buttenfield, B. P. Treatment of the Cartographic Line. Cartographica.1985.22(2):1-26.
    [43]Buttenfield, B. P. Scale Dependence and Self-Similarity in Cartographic Lines. Cartographica.1989.26(1):79-100.
    [44]Buttenfield, B. P. a Rule for Describing Line Feature Geometry. In Map generalization: Making Rules for Knowledge Representation, B. P. B. a. R. B. McMaster, (ed) Essex: Longman Scientific & Technical,1991. pp.150-171.
    [45]Buttenfield, B.P. Line Structure in Graphic and Geographic Space. Unpublished Ph.D. Thesis, department of Geography, University of Washington, Seattle.1984.
    [46]Buttenfield, B.P. Digital Definitions of Scale-Dependent Structure. Proceedings, Auto-Carto London,1986.1,497-506.
    [47]Buttenfield, B.P. Scale-Dependence and Self-Similarity in Cartographic Lines. Cartographica,1989.26(1),79-100.
    [48]Buttenfield, B.P., Automating the Identification of Cartographic Lines, The American Cartographer,1987.14(1):7-20.
    [49]Burghardt, D.2005, Controlled Line Smoothing by Snakes. GeoInformatica,9:237-252.
    [50]Carstensen Jr., L.W., "A Fractal Analysis of Cartographic Generalization," The American Cartographer,1989.16(3):181-189.
    [51]Cboutoura, Line Generalization Using Spectral Techniques, Cartographic,1989.Vol 26, No,3,p:33-48.
    [52]Chan, W. S. and Chin, F. Approximation of Polygonal Curves with Minimum Number of Line Segments or Minimum Error. International Journal of Computational Geometry and Applications.1996.6(1):59-77.
    [53]Cromley, R. G. A Vertex Substitution Approach to Numerical Line Simplification. In Proceedings of the Third International Symposium on Spatial Data Handling,1988.57-64.
    [54]Cromley, R. G. Hierarchical Methods of Line Simplification. Cartography and Geographic Information Systems.1991.18(2):125-131.
    [55]Cromley, R. G., and Campbell, G.M. Noninferior Bandwidth Line Simplification: Algorithm and Structural Analysis. Geographical Analysis.1991.23 (1):25-38.
    [56]Cromley, R.G. and Campbell, G.M. A Geometrically Efficient Bandwidth Line Simplification Algorithm. In Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich, August 1990,1,77-84.
    [57]Cromley, R. G. and Campbell, G. M. Integrating Quantitative and Qualitative Aspects of Digital Line Simplification. The Cartographic Journal.1992.29(1):25-30.
    [58]Cromley, R.G. and S.J. Morse, Some Comments on Numerical Line Generalization, Geographical Analysis,1988.20(3):263-269.
    [59]Clarke, K.C., Cippoletti, P. and Olsen, G.1993. "Empirical comparison of two line enhancement methods". In Proceedings of AUTO-CARTO 11.
    [60]David Heitzinger, Helmut Kager, High Quality DTMs from Contour lines by knowledge-based classification of problem regions, http://www.ipf.tuwien.ac.at/veroeffentlichungen/dh_p_isprs98/dh_p_isprs98.html.1998.
    [61]Deveau, T. J. Reducing the Number of Points in a Plane Curve Representation. AutoCarto.1985.7,152-160.
    [62]Dobkin, D., Guibas, L., Hershbergeri J., and Snoeyink, J. An Efficient Algorithm for Finding the CSG Representation of a Simple Polygon. Computer Graphics.1988.22(4):31-40.
    [63]Douglas, D.H. and Peucker, T.K.1973, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10,112-122.
    [64]Douglas, D. H. and Peucker, T. K. Algorithms for the Reduction of the Number of Points Required to Represent a Line or its Caricature. The Canadian Cartographer.1973.10(2): 112-122.
    [65]Dutton, G. A Hierarchical Coordinate System for Geoprocessing and Cartography. Lecture Notes in Earth Science. Berlin, Germany:Springer-Verlag.1998.
    [66]Dutton, G. Scale, Sinuosity, and Point Selection in Digital Line Generalization. Cartography and Geographic Information Science,1999.26(1),33-53.
    [67]Daubechies, I. The wavelet transform, time-frequency localization and signal analysis, IEEE trans,1990,36(5):961-1005.
    [68]Elber G and Gotsman C (1995) Multi-resolution control for non uniform b-spline curve editing, In The Third Pacific Graphics Conference on Computer Graph-ics and Applications, pp.267-278
    [69]Farin G (2001) Curves and Surfaces for CAGD,5th edition, San Francisco, CA:Morgan-Kaufmann
    [70]Fritsch E and Lagrange JP (1995) Spectral representation of linear features for generalisation. In Proceedings of COSIT'95, pp.157-171, Austria, Springer Verlag
    [71]Fortune, S. A Sweepline Algorithm for Voronoi Diagrams. Algorithms.1987.2:153-174
    [72]Freeman, H., Shape Description via the Use of Critical Points, Pattern Recognition, 1978.vol.10, pp.159-166.
    [73]Flandrin, P., Empirical Mode Decomposition, http://perso.ens-lyon.fr/patrick.flandrin/emd.html
    [74]Forsey, D. R. and Bartels, R. H.1988. Hierarchical B-Spline Refinement, Computer Graphics,22(4),205-212.
    [75]Goodchild, M.F. and D.M. Mark, "The Fractal Nature of Geographic Phenomena," Annals of the Association of American Geographers,1987.77(2):265-278.
    [76]Guilbert, E. and Lin, H.2007. Isobathymetric Line Simplification with Conflict Removal Based on a B-spline Snake Model. Marine Geodesy, volume 30 no.1-2, pp.169-195.
    [77]Guilbert E and Saux E (2008) Cartographic generalisation of lines based on a B-spline snake model. International Journal of Geographical Information Sci-ence,22(8), pp.847-870
    [78]Harrie L (1999) The constraint method for solving spatial conflicts in cartographic generalization. Cartography and Geographic Information Science,26(1), pp.55-69
    [79]Harrie, L.,1999, The constraint method for solving spatial conflicts in cartographic generalization. Cartography and Geographic Information Science,26,55-69.
    [80]Huang, N. E., Shen, Z., Long, S. R., Wu, M. L., Shih, H. H., Q. Zheng, N. C. Yen, C. C. Tung and Liu, H. H.1998. The Empirical Mode Decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc. London A, vol.454, pp. 903-995.
    [81]Hakanson, L., The Length of Closed Geomorphic Lines, Mathematical Geology,1978. 10:141-167.
    [82]Harrie, L., the Constraint Method for Solving Spatial Conflicts in Cartographic Generalization. Cartography and Geographic Information Science.1999,26(1), pp.55-69.
    [83]Herkommer, Mark A. "Data-Volume Reduction of Data Gathered Along Lines Using the Correlation Coefficient to Determine Break points" Computers & Geosciences, 1985.11(2):103-110.
    [84]Hershberger, J. and Snoeyink, J. Speeding Up the Douglas-Peucker Line-Simplification Algorithm. In Proceedings of the Fifth International Symposium on Spatial Data Handling, 1992.1:134-143.
    [85]Jasinski, M.J. The Comparison of Complexity Measures for Cartographic Lines. NCGIA Technical Paper 90-1, Santa Barbara California.1990.
    [86]Jenks, G.F., Identification of Characteristic Points along naturally Occurring Lines:An Empirical Study. The Canadian Cartographer.1979.16/1:70-80.
    [87]Jenks, G. F. Lines, Computers and Human Frailties. In Annals of the Association of American Geographers.1981.71(1):1-10.
    [88]Jenks, G. F. Geographic Logic in Line Generalization. Cartographica.1989.26(1):27-42.
    [89]Ji. Minghe, Evaluation of Douglas-Peucker Simplification Algorithm in Retaining Spatial Variation of Cartographic Lines:A Non-Euclidean Approach,1992.
    [90]Jones, C.B., and Mark Ware, J., Map Generalization with a Triangulation Data Structure. Cartography and Geographic Information Systems.1995.22(4):317-331.
    [91]Kelley, P.S. Information and Generalization in Cartographic Communication. Unpublished Ph.D. Thesis, Department of Geography, University of Washington, Seattle.1977.
    [92]Lamy, S. et al., the Application of Agents in Automated Map Generalization. Conference Proceedings ICA, Ottawa, Canada,1999, pp.1225-1234.
    [93]Lawford GJ (2006) Fourier series and the cartographic line. International Journal of Geographical Information Science,20(1), pp.31-52
    [94]Lecordix F, Plazanet C, Lagrange JP (1997) A platform for research in generaliza-tion: application to caricature, Geoinformatica,1(2), pp.161-182
    [95]Li, Z. and Openshaw, S.,1993, A natural principle for the objective generalisation of digital maps. Cartography and Geographic Information Systems,20:19-29.
    [96]Li, Z. and Openshaw, S., Algorithms for Automated Line Generalization Based on a natural Principle of Objective Generalization. International Journal of Computational Geometry,1992.6(5):373-390.
    [97]Li, Z., Khoshelham, K., Ding, X. and D. Zheng,2004, Empirical Mode Decomposition (EMD) Transform for Spatial Analysis. In Proceedings of the Advances in Spatial Analysis and Decision Making, pp.19-29.
    [98]Li, Zhilin & Openshaw, S., A Natural Principle for the Objective Generalization of Digital Maps, Cartography and geographic information systems",1993, Vol, No.1, pp.19-29.
    [99]Li Z, Khoshelham K, Ding X and Zheng D (2004) Empirical mode decomposition (EMD) transform for spatial analysis. In Advances in Spatial Analysis and Decision Making, Z. Li, Q. Zhou and W. Kainz (Eds), pp.19-29 (Lisse, Neth-erlands, Balkema)
    [100]Liu H, Latecki LJ, Liu W (2008) A unified curvature definition for regular, po-lygonal and digital planar curves, International Journal of Computer Vision,80, pp.104-124
    [101]Little, J.J. and Peucker, T.K. "A Recursive Procedure for Finding the Intersection of two Digital Curves," Computer Graphics and Image Processing,1979.10:159-71.
    [102]Longley, P.A. and M. Batty, "Fractal Measurement and Line Generalization," Computers & Geosciences,1989.15(2):167-183.
    [103]Mackaness, W. A. An Algorithm for Conflict Identification and Feature Displacement in Automated Map Generalization. Cartography and Geographic Information Systems, 1994.vol.21, no.4, pp.219-232.
    [104]Mackaness, W. A. and G. Mackechnie. Detection and Simplification of Road Junctions in Automated Map Generalization. Geolnformatica,1998.
    [105]Mackaness,W. Analysis of Urban Road Network to Support Cartographic Generalization. Cartography and Geographic Information Systems.1995.22(4):306-316.
    [106]Mandelbrot, B., How Long is the Coast of Britain? Statistical self-similarity and fractional dimension. Science,1967. vol.156, pp.636-638.
    [107]Marino, J. S. Identification of Characteristic Points Along Naturally Occurring Lines:An Empirical Study. The Canadian Cartographer.1979.16:70-80.
    [108]Mark de Berg、 Marc van Kreveld  Mark Overmars、Otfried Schwarzkopf, ((Computational Geometry:Algorithm and Applications)), Springer.1993.
    [109]Mark de Berg, Marc ban Kreveld, Stefan Schirra, Topologically Correct Subdivision Simplification Using the Bandwidth Criterion. CGIS,1998.vol.25, no.4, pp.243-257.
    [110]Mark, D.M. and Aronson, P.B. "Scale-Dependent Fractal Dimensions of Topographic Surfaces:An Empirical Investigation, with Applications in Geomorphology and Computer Mapping," International Association for Mathematical Geology Journal, 1984.16(7):671-683.
    [111]McMaster, R. B. A Statistical Analysis of Mathematical Measures for Linear Simplification. American Cartographer.1986.13:103-116.
    [112]McMaster, R. B. Automated Line Generalization. Cartographica.1987.24(2):74-111.
    [113]McMaster, R. B. The Integration of Simplification and Smoothing Algorithms in Line Generalization. Cartographica 1989.26(1):101-121.
    [114]McMaster, R. B. and Shea, K. S. Generalization in Digital Cartography. Association of American Geographers.1992.
    [115]McMaster, R.B., A Statistical Analysis of Mathematical Measures for Linear Simplification. The American Cartographer.1986.13(2):103-116.
    [116]McMaster, R.B., A Reply to R.G. Cromley and S.J. Morse's 'Some Comments on Numerical Line Generalization', Geographical Analysis,1988.20(4):340-342.
    [117]Mokhtarian, K. and Mackworth, A. Scale-based Description and Recognition of Planar Curves and two-Dimensional Shapes. IEEE Transaction on patter analysis and machines intelligence.1986.8(1).
    [118]Mower, J. Developing Parallel Procedures for Line Simplification. International Journal of Geographical Information Science,1996.10 (6):699-712.
    [119]Muller, J. C. Optimum Point Density and Compaction Rates for the Representation of Geographic Lines. In Proceedings of AutoCarto.1987.8,221-230.
    [120]Muller, J. C. The Removal of Spatial Conflicts in Line Generalization. Cartography and Geographic Information Systems,1990.17 (2):141-149.
    [121]Muller, J.C. Building Knowledge Tanks for Rule-Based Generalization. Proceedings of the 15th International Cartographic Association Conference, ICA Bournemouth, UK, August 1991,257-266.
    [122]Muller, J.C., Fractal and Automated Line Generalization, The Cartographic Journal, 1987.24:27-34.
    [123]Narayanaswami, C. and Franklin, W.R., Edge Intersection on the Hypercube Computer, Information Processing Letters 41.1992.
    [124]Nickerson, B. G. Automated Cartographic Generalization for Linear Features. Cartographica,1988.25 (3):15-66.
    [125]Nievergelt, J., Preparata, F. P. Plane-Sweep Algorithms for Intersecting Geometric Figures. Communications of the ACM,1982.25(10):739-747.
    [126]Oosterom,P. van and Vincent Schenkelaars, the Development of an Interactive Multi-scale GIS, INT. J. Geographical Information Systems,1995.Vol.9, NO.5, pp489-507.
    [127]Oosterom, P. Reactive Data Structures for Geographic Information Systems, Oxford University Press.1993.
    [128]Openshaw, S., Brundson, C.F., Simulating the Effect of Error in GIS, in Mather, P. (Ed.). Geographic Information Handling. John Wiley and Sons.1993.
    [129]Opheim, H. Smoothing a Digitized Curve by Data Reduction Methods. In Encarnacao, J. L. (editor) Proceedings of Eurographics'1981.81,127-135,North-Holland.
    [130]Peng, w. and Muller J.c. a Dynamic Decision Tree Structure Supporting Urban Road Network Automated Generalization Cartographic journal,1996.33(l):5-10.
    [131]Perkal, J. An Attempt at Objective Line Generalization. (Trans. R. Jackowski). Michigan Inter-University Consortium of Mathematical Geographers, Discussion Paper #10, University of Michigan, Ann Arbor.1966.
    [132]Plazanet, C. Measurements, Characterization and Classification for Automated Line Feature Generalization. In Proceedings of AutoCarto 1995.12,59-68.
    [133]Plazanet, G., Affholder, J.G. and Frissch, E. The Importance of Geometric Modeling in Linear Feature Generalization. Cartography and Geographic Information Systems. 1995.22(4):291-305
    [134]Plazanet C, Bigolin N, Ruas A (1998) Experiments with learning techniques for spatial model enrichment and line generalization, Geoinformatica,2(4), pp..315-333
    [135]Poorten, P. and Jones,J.G., Customizable line Generalization using Delaunay Triangulation, CD-Rom Proceeding of 19th ICC, Ottawa, Section 8.1999.
    [136]Ramer, U, An Iterative Procedure for the Polygonal Approximation of Plane Curves, Computer Graphics and Image Processing,1972.vol.l, pp.244-256.
    [137]Roberge, J. A Data Reduction Algorithm for Planar Curves. Computer Vision, Graphics, and Image Processing 1985.1(3):244-256.
    [138]Robinson, A. H., Sale, R. D. and Morrison, J. L. Elements of Cartography,4th Edition, John Wiley & Sons.1978.
    [139]Rilling, G., Flandrin, P., Goncalves P. and Lilly, J.2007. Bivariate Empirical Mode Decomposition, IEEE Sig. Proc. Letters, Vol.14, No.12, pp.936-939.
    [140]Ruas, A., Lagrange, J. P., Data knowledge modeling. In Muller, J.C., Lagrange, J. P., Weibel, R. Eds. GIS and generalization:Methodology and Practice. London, Taylor and Francis, pp.73-90.1995.
    [141]Saalfeld, A, "It doesn't make me nearly as CROSS," International Journal of Geographical Information Systems1987.1(4), pp 379-386
    [142]Saalfeld, A. Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm. Cartography and Geographic Information Science,1999.26(1),7-18.
    [143]Saux, E.1998, B-spline Curve Fitting:Application to Cartographic Generalization of Maritime Lines. In Proceedings of the 8th International Conference on Computer Graphics and Visualization (GraphiCon'98), pp.196-203.
    [144]Saux, E.2003, B-spline Functions and Wavelets for Cartographic Line Generalization. Cartography and Geographic Information Science,30,33-50.
    [145]Shelberg, M.C., H. Moellering, and N. Lam, "Measuring the Fractal Dimensions of Empirical Cartographic Curves," Proceedings AUTO-CARTO 5,1982:481-490.
    [146]Skopeliti, A. and Tsoulos, L., Parametric description of the shape of cartographic line, Tech.Chron.Sci.J.TCG,I,1999. No 1-2.
    [147]Tanaka, T. and Mandic, D. P.2007. Complex Empirical Mode Decomposition, IEEE Sig. Proc. Letters, Vol.14, No.2, pp.101-104.
    [148]Thapa, K. Automatic Line Generalization using Zero Crossings. Photogrammetric Engineering and Remote Sensing.1988.54(4),511-517.
    [149]Thapa, K., "A Review of Critical Points Detection and Line Generalization Algorithms," Surveying and Mapping,1988.48(3):185-205.
    [150]Topfer, F. and Pillewizer, W. The Principles of Selection. Cartographic Journal 1966.3 (10-16).
    [151]Visvalingam, M. and Whyatt, J.,1990, The Douglas-Peucker algorithm for line simplification:reevaluation through visualization. Computer Graphic Forum,9,213-228.
    [152]Visvalingam, M. and Whyatt, J. D. Line Generalization by Repeated Elimination of Points. Cartographic Journal 1993.30 (1):46-51.
    [153]Visvalingham, M., and Williamson, P J., Simplification and generalization of large scale data for roads:a comparison of two filtering algorithms. Cartography and Geographic Information Systems,1995.22(4):264-276.
    [154]Wang, Z and Muller, J-C,Line Generalization Based on Analysis of Shape Characteristics. Cartography and Geographic information Systems,1998.Vol.25, No.1, pp.3-15.
    [155]Weibel, R. Map Generalization in the Context of Digital Systems.Cartography and Geographic Information Systems, Guest Editorial to Special Issue on Automated Map Generalization,22(4):3-10,1995.
    [156]Weibel R and Dutton G, (1999) Generalising spatial data and dealing with multi-ple representations. In Geographical Information Systems, P.A. Longley, M.F. Goodchild, D.J. Maguire and D.W. Rhind (Eds), pp.125-155 (New York:Wiley).
    [157]White, E. R. Assessment of Line-Generalization Algorithms Using Characteristic Points. The American Cartographer,1985.12(1):17-28.
    [158]Williams, C. M. An Efficient Algorithm for the Piecewise Linear Approximation of a Polygonal Curve in the Plane. Computer Vision, Graphics, and Image Processing 1978.8:286-293.
    [159]Zhan, F.B. and Buttenfield, B.P., Multi-scale Representation of a Digital Line. Cartography and Geographic Information Systems.1996.23(4):206-228.
    [160]Zhan, F. and Mark, D.M. Conflict Resolution in Map Generalization:a Cognitive Study. Proc.Auto-Carto.1993.13, pp.406-413.
    [161]Zhao, Z. and Saalfeld, A. Linear-Time Sleeve-Fitting Polyline Simplification Algorithms. In Proceedings of AutoCarto,1997.13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700