用户名: 密码: 验证码:
Al基Mg基和Ti基合金相稳定性与弹性性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算材料学的发展以及高性能计算机的出现,采用理论计算方法开发和设计新型材料已成为材料研发的重要手段之一。基于量子理论的第一性原理方法由于不依赖于经验参数,而越来越广泛的应用于材料性质的探索和新材料的设计。作为轻质合金的重要成员,镁、铝和钛合金因其优异的力学性质和化学性质在汽车、航空航天以及医疗器械等领域得到了广泛的应用。为了探索合金元素对镁、铝和钛的稳定性和力学性质影响机制,本文采用第一性原理方法分析合金体系的稳定性、弹性性质以及电子结构,为通过微合金化改善这三类轻质金属的相稳定性和力学性质提供理论依据和指导,为扩大这三类轻质合金的应用范围提供参考。
     本文分析了金属单质的弹性性能、结合能与电子结构间的关系。建立了体积、结合能、金属结构参数、弹性模量与金属的键合临界点处的电荷分布之间的关系。结果显示,计算值与实验值非常吻合,金属的体弹性模量与键合临界点处的电荷之间存在抛物线性关系。以键合临界点上的电荷这个参数为媒介,可以很方便地推导和构建金属的体积、结合能、结构参数以及体弹性模量间的关系。这些关系式的提出可以很方便地应用于考察金属的物理性质。
     对Al和Mg-金属,本文从电子结构角度详细分析了元素X(作为合金元素X=Al,Mg,Ti,V,Cr,Fe,Ni,Cu,Zr,Nb,Mo,Sn,Ta,W;作为杂质元素X=H,C,N和O)对Mg和Al相稳定性和弹性性质的影响机制。计算发现,Sn元素对Mg和Al的相稳定性的影响完全不同,Sn能提高Mg的稳定性却会降低Al的稳定性。此外,杂质元素在Mg和Al中的占位行为也不尽相同,在Mg中,H和O倾向于占据四面体间隙位置,而C和N则倾向于占据八面体间隙位置;在Al中H,N和O将占据四面体间隙位置,而C则倾向于占据八面体间隙位置。本文详细研究了合金元素和杂质元素对Mg和Al弹性性质的影响并考察了力学稳定性。所有Mg-X和Al-X合金体系都符合力学稳定性条件,Mg-X的(C11-C12)值对合金元素非常敏感,Al-Zr合金有非常小的C44从而该合金体系非常容易发生剪切变形。电子结构分析显示合金及杂质原子与基体中近邻原子间的相互作用影响了基体的稳定性和弹性性质。本文进一步研究了合金元素和杂质元素对Mg17Al12合金影响。Ca,Zr和La对Mg17Al12合金的性质影响较大,Ni,Cu和Zn则相对较弱,杂质原子氧倾向于占据在四个Mg原子的中间。就弹性性质而言,合金元素显著地降低Mg17Al12的泊松比值。
     对金属Ti,本文从电子结构角度分析了合金元素Al,Cr,Cu,Fe,Mo,Nb,Ni,Sn,Ta,V,W,和Zr对相稳定性和弹性性质的影响机制,考察了合金元素对其马氏体相变的影响机制,讨论了杂质元素H,C,N和O对钛的相稳定性和弹性性能的影响机制。分析显示,上述所有合金元素都能稳定β相,对α和α相有相似的影响,只有Al和Sn元素能够增加ω相的稳定性。合金元素的浓度对Ti的各个相的稳定性的影响作用则几乎一致。对二元及多元合金,计算结果表明,Nb可极大地改善β-Ti合金的稳定性,同时Nb与其它合金元素的联合作用亦可增强β-Ti的稳定性。此外,四种杂质元素在Ti的各个相中都具有负的占位能,且占位倾向与杂质浓度关联较弱(除6.25at.%的O占据α相体系外)。电子结构分析显示α-Ti合金体系的态密度与纯α-Ti非常相似,体系稳定系与Ti d电子在费米能级处的分布有一定关联,合金元素加入改变Ti d电子在费米能级处的分布,从而影响相稳定性。α-Ti合金体系都满足力学稳定性条件,而α相则不满足力学稳定性条件。四元合金Ti2448(Ti-24Nb-4Zr-7.9Sn合金)同时符合力学稳定性和能量稳定性条件,而且计算得到的Ti2448的杨氏模量与实验值非常接近。
     本文还研究了低维体系γ-TiAl表面和Mg/TiAl界面的稳定性及氧、氢吸附对体系稳定性的影响机制。计算结果显示,O原子的吸附能与O、Ti及Al间的态密度重叠积分呈线性关系,O在γ-TiAl低指数面上吸附时存在O-Al和O-Ti键的竞争,O-Ti键略强于O-Al键使得O原子倾向于吸附在富Ti的环境,因此γ-TiAl氧化时更易于生成TiO2。对Mg/TiAl界面体系,界面处的Mg和Ti或Al原子处于未饱和键状态,可与H反应并稳定界面体系,本研究表明Mg/TiAl界面体系可作为吸氢载体而存储大量氢气,这也与实验发现一致。
With the development of computing science and especially the outcome of highperformence computer, computation materials science has become one of the mostactive areas in materials science. First-principles method, which based on the quantumtheory, does not rely on any empirical parameters to predict the physical and chemicalproperties of materials and has been widely used in designing new materials, owing tothe low cost and high efficiency.
     Magnesium, aluminum, titanium, and their alloys are widely using in automobile,aerospace, medicine care, and so on, due to their light weight and special physical andchemical properties. This thesis uses first-principles method to study the mechanismsof alloying element and impurity influence on the phase stability and elastic propertiesof such kind alloys. Results presented here provide us a deep understanding on themicromechnisms of light metal alloys and a guidline for to the design of newmaterials.
     For the pure metals, relationships between the electronic structure and the essentialproperties, i.e., the cohesive energy, the structural parameters, and elastic moduli havebeen established. All the calculated values are consistent with experimental results. Aparabolic relationship between an electronic structural parameter, the charge density atthe bond critical point and bulk modulus of metals is fitted. It is found that the chargeat bond critical point could act as an medium to make the connection between theelectronic structure and physical properties, such as lattice volume, cohesive energy,and elastic modulus, of metals.
     Three special metals, Mg, Al, and Ti are selected to study in detail in this thesis. ForMg and Al metals, mechanisms of the alloying elements X (X=Al, Mg, Ti, V, Cr, Fe,Ni, Cu, Zr, Nb, Mo, Sn, Ta, and W) and the impurities X (X=H, C, N, and O) influenceon the phase stability and elastic properties were studied. Results show that Sn is aspecial element, it increases the stability in Mg but shows an opposite effect in Al. InMg, impurities H and O prefer to occupy the tetrahedral site, while C and N prefer tooccupy the octahedral site. The occupation behavior of C in Al is same with that in Mg.It prefers the octahedral site, while other three impurities prefer the tetrahedral site. Interm of the mechanical stability, all Mg-X and Al-X alloys satisfy the mechanicallystable criteria. The value of (C11-C12) of Mg-X is very sensitive to the alloyingelements, and a very small C44was obtained in the Al-Zr alloy implying that theobstacle for shear deformation is weak in this alloy. The analysis of electronicstructures shows that the bonding interaction beween alloying elements and theirneighboring atoms of host is the key factor that governs above behaviours. Further studies for the binary Mg17Al12alloy were also performed. It shows that alloyingelements Ca, Zr and La strongly affect the phase stability of Mg17Al12, but Ni, Cu andZn show weak influence on the phase stability. O prefers to occupy the tetrahedral sitesurrounded by four Mg atoms.
     For Ti, mechanisms of alloying elements (Al, Cr, Cu, Fe, Mo, Nb, Ni, Sn, Ta, V, W,and Zr) and impurities (H, C, N, and O) influence on the phase stability and elasticproperties and on the martensite transformation of Ti were investigated. Resultsillustrate that all alloying elements stabilize the β phase and show similar influence onthe stabilization of α and α phases, but only Al and Sn increase the stability of ωphase, and the effect of alloying elements on the phase stability is relativelyindependent on the concentrations of alloying element in Ti. It is also shown that theNb significantly enhances the stability of β phase, and the effect is enhanced if otheralloying elements associate with Nb. Results also show that all impurities gainnegative occupation energy in Ti regardless the phases, and their occupation behaviorsdo not depend on the concentrations of impurity except the case that6.25at.%O in theα phase. The impurity changes the distribution of Ti d orbitals at the Fermi energylevel stabilizing the stability of the α and α phases over the β phase. The influence ofalloying elements on the martensite transformation of Ti is originated from affecting ofalloying elements on the mechanical stability. It is worth to note that the mechanicallystable criteria are satisfied for the α phase with impurity but not for the α phase withimpurity. Ti2448(Ti-24Nb-4Zr-7.9Sn) alloy shows good stability and low Young’smodulus, which are consistent with experimental results.
     Fially, the adsorption of O atom on γ-TiAl surface and of H in Mg/TiAl sanwdishedsystem is studied. Results show that there is a linear relationship between theadsorption energy of O atom on γ-TiAl surface and integrals of overlaps between thePDOSs of O, Ti and Al. The O-Al and O-Ti bonding interactions compete each otherwhen oxygen is adsorbed. In general, the O-Ti bonding is stronger than the O-Albonding. This means oxygen is usually found in a Ti-rich environment where it islikely to generate TiO2. For the Mg/TiAl sanwdished system, the unsaturated bonds ofMg, Ti or Al atoms in the interface zones offer capturing centers to bond H atom tostabilize the system. Therefore the Mg/TiAl sanwdished system can act as hydrogenstorage media, which is consistent with experimental result.
引文
[1]黄晓锋,梁艳,谢锐,王韬,曹喜娟,朱凯,田载友.新型镁合金研究进展[J].热处理技术与装备,2009,30(3):3-8.
    [2]陈志国,杨文玲,王诗勇.微合金化铝合金的研究进展[J].稀有金属材料与工程,2010,39(8):1499-1504.
    [3]商国强,朱知寿,常辉,王新南,寇宏超,李金山.超高强度钛合金研究进展[J].稀有金属,2011,35(2):286-291.
    [4]黄张洪,曲恒磊,邓超,杨建朝.航空用钛及钛合金的发展及应用[J].材料导报A,2011,25(1):102-107.
    [5]杨义,李阁平,吴松全,李玉兰,杨柯. Gum Metal钛合金研究进展[J].材料研究学报,2011,25(1):1-6.
    [6]张丹,徐磊,王瑞. TiNi形状记忆合金的性能及其在纺织上的应用[J].纺织科技进展,2011,(3):36-38.
    [7] Tengvall P, Lundstrom I. Physico-chemical Considerations of Titanium as aBiomaterial[J]. Clin Mater,1992,9(2):115-134.
    [8] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K, Saito T. First-principlesCalculations for Development of Low Elastic Modulus Ti Alloys[J]. Phys Rev B,2004,70(17)174113-8.
    [9] Souvatzis P, Katsnelson M, Simak S, Ahuja R, Eriksson O, Mohn P. First-principlesPrediction of Superplastic Transition-metal Alloys[J]. Phys Rev B,2004,70(1)012201-3.
    [10] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, YamadaA, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y,Sakuma T. Multifunctional Alloys Obtained via a Dislocation-Free PlasticDeformation Mechanism[J]. Science,2003,300(5618):464-467.
    [11] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, YamadaA, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y,Sakuma T. Multi-functional Titanium Alloy "GUM METAL"[J]. Mater Sci Forum,2003,426-432:681-688.
    [12] Furuta T, Kuramoto S, Rong C, Hwang J, Nishino K, Saito T, Ikeda M. Effect ofOxygen on Phase Stability and Elastic Deformation Behavior in Gum Metal[J]. JJpn I Met,2006,70(7):579-585.
    [13] Furuta T, Kuramoto S, Hwang J, Nishino K, Saito T. Niinomi M. MechanicalProperties and Phase Stability of Ti-Nb-Ta-Zr-O Alloys[J]. Materials Transactions,2007,48(5):1124-1130.
    [14] Kuramoto S, Furuta T, Hwang J, Satio T. Plastic Deformation in a MultifunctionalTi-Nb-Ta-Zr-O alloy[J]. Metall Mater Trans A,2006,37(3):657-662.
    [15] Gutkin M Y, Ishizaki T, Kuramoto S, Ovid’ko I A. Nanodisturbances in DeformedGum Metal[J]. Acta Materialia,2006,54(9):2489-2499.
    [16] Kuramoto S, Furuta T, Hwang J, Nishino K, Saito T. Elastic Properties of GumMetal[J]. Mater Sci Eng A,2006,442(1-2):454-457.
    [17]杨锐,郝玉琳.高强度低模量医用钛合金Ti2448的研制与应用[J].新材料产业,2009,6:10-13.
    [18] Hao Y L, Li S J, Sun B, Sui M, Yang R. Ductile Titanium Alloy with LowPoisson’s Ratio[J]. Phys Rev Lett,2007,98(21)216405-4.
    [19] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Super-elastic TitaniumAlloy with Unstable Plastic Deformation[J]. Appl Phy. Lett,2005,87(9):091906-4.
    [20] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Elastic Deformation Behaviour ofTi-24Nb-4Zr-7.9Sn for Biomedical Applications[J]. Acta Biomater,2007,3(2):277-286.
    [21] Mulliken R S. Electronic Population Analysis on LCAO [Single Bond] MOMolecular Wave Functions. I[J]. J Chem Phys,1955,23(10):1833-1840.
    [22] Foster J P,Wenhold F. Natural Hybrid Orbitals[J]. J Am Chem Soc,1980,102(24):7211-7218.
    [23] Ziegler T. Approximate Density Functional Theory as a Practical Tool in MolecularEnergetics and Dynamics[J]. Chem Rev,1991,91(5):651-667.
    [24] Kohn W, Becke A D,Parr R G. Density Functional Theory of ElectronicsStructure[J].J Phys Chem,1996,100(31):12974-12980.
    [25] Deng L, Branchadell V, Ziegler T. Potential Energy Surfaces of the Gas-Phase SN2Reactions X-+CH3X=XCH3+X-(X=F,Cl,Br,I): A Comparative Study by DensityFunctional Theory and ab initio Methods[J]. J Am Chem Soc,1994,116(23):10645-10656.
    [26] Berces A, Ziegler T, Fan L. Density Functional Study of the Harmonic Force Fieldsof Cyclopentadienyl Anion, Cyclopentadienyl Lithium, and Ferrocene[J].J PhysChem,1994,98(6):1584-1595.
    [27] Schreckenbach G, Ziegler T. Calculation of NMR Shielding Tensors UsingGuage-Including Atomic and Modern Density Functional Theory[J].J Phys Chem,1995,99(2):606-611.
    [28] Bader R F W, Essén H. The Characterization of Atomic Interactions[J]. J ChemPhys,1984,80(5):1943.
    [29] Cremer D, Kraka E. A Description of the Chemical Bond in Terms of LocalProperties of Electron Density and Energy[J]. The Croatian Chemical Society,1984,57(8):1259-1281.
    [30] Feth S, Gibbs G V, Boisen M B, Hill F C. A Study of the Bonded Interactions inNitride Melecules in Terms of Bond Critical Point Properties and RelativeElectronegativities[J]. Phys Chem Miner,1998,25(3):234-241.
    [31] Louit G, Hocquet A, Ghomi M, Meyer M, Sühnel J. Guanine Tetrads Interactingwith Metal Ions. An AIM Topological Analysis of the Electronic DensityElectronic Supplementary Information (ESI) available: Geometric Data, TopologicData at the BCP and Integrated Properties of the Hydrogen Atom of Every H1...O6and H2...N7Hydrogen Bond[J]. Phys Chem Comm,2003,6(1):1-5.
    [32] Becke A D, Edgecombe K E. A Simple Measure of Electron Localization in Atomicand Molecular Systems[J]. J Chem Phys,1990,92(9):5397-5403.
    [33] Savin A, Nesper R, Wengert S, Fassler T F. ELF: The Electron LocalizationFunction[J]. Angew Chem Int Edit,1997,36(17):1809-1832.
    [34] Voigt W. Lehrbuch der Kristallphysik[M]. Leipzig:Taubner,1928:962.
    [35] Reuss A. Berechnung der Fliessgrenzevon Mischkristallen auf Grund derPlastiziatsbedingung[J]. Z Angew Math Mech,1929,9(1):49-58.
    [36] Hill R. The Elastic Behaviour of a Crystalline Aggregate[C]. Proc Phys SocLondon A,1952,65(5):349-354.
    [37] Pugh S F. Relations Between the Elastic Moduli and the Plastic Properties ofPolycrystalline Pure Metals[J]. Philos Mag,1954,45(367):823-843.
    [38] Pettifor D G. Theoretical Predictions of Structure and Related Properties ofIntermetallics[J]. Mater Sci Tech Ser,1992,8(4):345-349.
    [39]于振涛,周廉.生物医用型β型钛合金的设计与开发[J].稀有金属快报,2004,23(1):5-10.
    [40] Zhou T, Aindow M, Alpay S P, Blackburn M J, Wu M H. Pseudo-elasticDeformation Behavior in a Ti/Mo-based Alloy[J]. Scripta Mater,2004,50(3):343-348.
    [41] Hull R, Osgood R M, Parisi J, Warlimont H. Hartree-Fock-Slater Method forMaterials Science-The DV-X Alpha Method for Design and Characterization ofMaterials[G]. Springer Series in Materials Science,2006,84:30-50.
    [42] Morinaga M, Yukawa N, Maya T, Sone K, Adachi H. Theortical Design ofTitanium Alloys[C]. The Sixth World Conference on Titanium,1988:1601.
    [43] Kim T I, Han J H, Lee S I. New Titanium Alloys for Biomaterials:a Study ofMechanical and Corrosion Properties and Cytotoxicity[J]. Biomed Mater Eng,1997,7(4):253-263.
    [44] Niinomi M. Fatigue Performance and Cyto-toxicity of Low Rigidity TitaniumAlloy, Ti-29Nb-13Ta-4.6Zr[J]. Biomaterials,2003,24(16):2673-2683.
    [45] Toshihiro K, Masayuki N, Mitsuo N. Bioactive Calcium Phosphate InvertGlass-ceramic Coating on Beta-type Ti-29Nb-13Ta-4.6Zr alloy[J]. Biomaterials,2003,24(2):283-290.
    [46] Raman V, Nagarajan S, Rajendran N. Electrochemical Impedance SpectroscopicCharacterisation of Passive Film Formed over β Ti-29Nb-13Ta-4.6Zr alloy[J].Electrochem Comm,2006,8(8):1309-1314.
    [47] Niinomi M, Akahori T, Katsura S, Yamauchi K, Ogawa M. MechanicalCharacteristics and Microstructure of Drawn Wire of Ti-29Nb-13Ta-4.6Zr forBiomedical Applications[J]. Mater Sci Eng C,2007,27(1):154-161.
    [48] Abdel-Hady M, Hinoshita K, Morinaga M. General Approach to Phase Stabilityand Elastic Properties of β-type Ti-alloys using Electronic Parameters[J]. ScriptaMater,2006,55(5):477-480.
    [49]陆栋,蒋平,徐至中.固体物理学[M].上海:上海科学技术出版社,2003:55-65.
    [50]门福殿,刘成周.理想体系的相对论弹性模量的计算[J].世界科学技术,1998(4):15.
    [51]战丽波,王立志,柳盛典. n维低温强简并与完全简并理想费米气体的性质[J].德州学院学报,2005,21(2):48-50.
    [52] Upadhyaya J C. On the Volume-Dependent Contribution to the Elastic Constants ofCubic Metals[C]. Proceedings of the Royal Society A: Math, Phys and Eng Sci,1977,356(1686):345-350.
    [53] Finnis M W. The Energy and Elastic Constants of Simple Metals in Terms ofPairwise Interactions[J]. J Phys F: Met Phys,1974,4(10):1645-1656.
    [54] Kohn W, Hohenberg P. Inhomogeneous Electron Gas[J]. Phys Rev,1964,136(3B):B864-B871.
    [55] Sham L J, Kohn W. Self-consistent Equations Including Exchange and CorrelationEffects[J]. Phys Rev,1965,140(4A):A1133-A1138.
    [56] Song Y, Yang R, Li D, Wu W T, Guo Z X. Calculation of Theoretical Strengths andBulk Moduli of bcc Metals[J]. Phys Rev B,1999,59(22):14220-14225.
    [57] Shein I R, Ivanovskii A L. Elastic Properties of Mono-and PolycrystallineHexagonal AlB2-like Diborides of s, p and d Metals from First-principlesCalculations[J]. J Phys Condens Matter,2008,20(41):415218-9.
    [58] Shang S L, Saengdeejing A, Mei Z G, Kim D E, Zhang H, Ganeshan S, Wang Y,Liu Z K. First-principles Calculations of Pure Elements: Equations of State andElastic Stiffness Constants[J]. Comput Mater Sci,2010,48(4):813-826.
    [59] Wang S Q, Ye H Q. Plane-wave Pseudopotential Study on Mechanical andElectronic Properties for IV and III-V Crystalline Phases with Zinc-blendeStructure[J]. Phys Rev B,2002,66(23)235111-7.
    [60] Miedema A R, Boer F R de, Chatel P F. de Empirical Description of the Role ofElectronegativity in Alloy Formation[J]. J Phys F: Met Phys,1973,3(8):1558-1576.
    [61]程大勇.金属材料弹性性质与电子结构的第一性原理计算[D].中科院金属所博士学位论文,2001:77-87.
    [62] Li C H, Chin Y L, Wu P. Correlation between Bulk Modulus of TernaryIntermetallic Compounds and Atomic Properties of their Constituent Elements[J].Intermetallics,2004,12(1):103-109.
    [63] Kresse G, Hafner J. Ab initio Molecular Dynamics for Liquid Metals[J]. Phys RevB,1993,47(1):558-561.
    [64] Kresse G, Furthmüller J. Efficient Iterative Schemes for ab initio Total-energyCalculations using a Plane-wave Basis Set[J]. Phys Rev B,1996,54(16):11169-11186.
    [65] Perdew J P, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, Molecules,Solids, and Surfaces: Applications of the Generalized Gradient Approximation forExchange and Correlation[J]. Phys Rev B,1992,46(11):6671-6687.
    [66] Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the ProjectorAugmented-wave Method[J]. Phys Rev B,1999,59(3):1758-1775.
    [67] Wang S Q, Ye H Q. Ab initio Elastic Constants for the Lonsdaleite Phases of C, Siand Ge[J]. J Phys: Condens Matter,2003,15(30):5307-5314.
    [68] Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. Oxford: Clarendon,1954:336-338.
    [69] Segall M D, Shah R, Pickard C J, Payne M C. Population Analysis of Plane-waveElectronic Structure Calculations of Bulk Materials[J]. Phys Rev B,1996,54(23):16317-16320.
    [70] Al-Douri Y, Abid H, Aourag H. Correlation Between the Bulk Modulus and theCharge density in Semiconductors[J]. Physica B,2001,305(2):186-190.
    [71] Cheng D Y, Wang S Q, Ye H Q. Calculations Showing a Correlation betweenElectronic Density and Bulk Modulus in fcc and bcc Metals[J]. Phys Rev B,2001,64(2)024107-4.
    [72] Li C H, Wu P. Correlation of Bulk Modulus and the Constituent Element Propertiesof Binary Intermetallic Compounds[J]. Chem Mater,2001,13(12):4642-4648.
    [73] Wills J M, Harrison W A. Interionic Interactions in Transition Metals[J]. Phys RevB,1983,28(8):4363-4373.
    [74] Makino Y. Empirical Determination of Bulk Moduli of Elemental Substances byPseudopotential Radius[J]. J Alloys Compd,1996,242(1-2):122-128.
    [75] Raju S, Mohandas E, Raghunathan V S. The Pressure Derivative of Bulk Modulusof Transition Metals: An Estimation using the Method of Model Potentials and aStudy of the Systematics[J]. J Phys Chem Solids,1997,58(9):1367-1373.
    [76] Goble R J, Scott S D. The Relationship between Mineral Hardness andCompressibility (or Bulk Modulus)[J]. Can Mineral,1985,23(May):273-285.
    [77] Singh N, Yadav B S. The Elastic Moduli, the Volume Contribution and the Cauchyratio for d and f shell Metals[J]. Pramana-J Phys,1994,42(5):387-394.
    [78] Kittel C. Introduction To Solid State Physics[M]. John Wiley&Sons Inc, NewYork,2005:40.
    [79] Blaha P, Schwarz K, Luitz J. Computer Code WIEN2K[M]. Vienna University ofTechnology,2000.
    [80] Slutsky L J, Garland C W. Elastic Constants of Magnesium from4.2K to300K[J].Phys Rev1957,107(4)972-976.
    [81] Vallin J, Mongy M, Salama K, Beckman O. Elastic Constants of Aluminum[J]. JAppl Phys,1964,35(6):1825-1826.
    [82] Ostanin S A, Trubitsin V Y. A simple Model for Calculating the P-T Phase Diagramof Ti[J]. J Phys Condens Matter,1997,9(36):L491-L496.
    [83] Prasad Y V R K, Rao K P, Hort N, Kainer K U. Optimum Parameters andRate-controlling Mechanisms for Hot Working of Extruded Mg-3Sn-1Ca Alloy[J].Mater Sci Eng A,2009,502(1-2):25-31.
    [84] Abu Leil T, Hort N, Dietzel W, Blawert C, Huang Y, Kainer K U, Rao K P.Microstructure and Corrosion Behavior of Mg-Sn-Ca Alloys after Extrusion[J].Trans Nonferrous Met Soc China,2009,19(1):40-44.
    [85] Staiger M P, Pietak A M, Huadmai J, Dias G. Magnesium and its Alloys asOrthopedic Biomaterials: a Review[J]. Biomaterials,2006,27(9):1728-1734.
    [86] Liu H M, Chen Y G, Zhao H F, Wei S H, Gao W. Effects of Strontium onMicrostructure and Mechanical Properties of as-cast Mg-5wt.%Sn alloy[J]. JAlloys Compd,2010,504(2):345-350.
    [87] Sevik H, A kg z S, Can Kurnaz S. The Effect of Tin Addition on theMicrostructure and Mechanical Properties of Squeeze Cast AM60alloy[J]. J AlloysCompd,2010,508(1):110-114.
    [88] Xiang Q, Wu R Z, Zhang M L. Influence of Sn on Microstructure and MechanicalProperties of Mg-5Li-3Al-2Zn Alloys[J]. J Alloys Compd,2009,477(1-2):832-835.
    [89] Nayyeri G, Mahmudi R, Salehi F. The Microstructure, Creep Resistance, andHigh-temperature Mechanical Properties of Mg-5Sn Alloy with Ca and SbAdditions, and Aging Treatment[J]. Mater Sci Eng A,2010,527(21-22):5353-5359.
    [90] Honma T, Ohkubo T, Hono K, Kamado S. Chemistry of Nanoscale Precipitates inMg-2.1Gd-0.6Y-0.2Zr (at.%) Alloy Investigated by the Atom Probe Technique[J].Mater Sci Eng A,2005,395(1-2):301-306.
    [91] Counts W A, Friák M, Raabe D, Neugebauer J. Using ab initio Calculations inDesigning bcc Mg-Li Alloys for ultra-light Weight Applications[J]. Acta Materialia,2009,57(1):69-76.
    [92] Zhou P, Gong H R. Phase Stability, Mechanical Property, and Electronic Structureof an Mg-Ca system[J]. J Mech Behav Biomed Mater,2012,8:154-164.
    [93] Tang P-Y, Wen L, Tong Z-F, Tang B-Y, Peng L-M, Ding W-J. Stacking Faults inB2-structured Magnesium Alloys from First Principles Calculations[J]. ComputMater Sci,2011,50(11):3198-3207.
    [94] Zhang H, Shang S L, Saal J E, Saengdeejing A., Wang Y., Chen L.-Q., Liu Z.-K.Enthalpies of Formation of Magnesium Compounds from First-principlesCalculations[J]. Intermetallics,2009,17(11):878-885.
    [95] Du Y, Liu S H, Zhang L J, Xu H H, Zhao D D, Wang A J, Zhou L C. An Overviewon Phase Equilibria and Thermodynamic Modeling in Multicomponent Al Alloys:Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn System[J]. Calphad,2011,35(3):427-445.
    [96] Wang J L, Shang S-L, Wang Y, Mei Z-G, Liang Y-F, Du Y, Liu Z-K.First-principles Calculations of Binary Al Compounds: Enthalpies of Formationand Elastic Properties[J]. Calphad,2011,35(4):562-573.
    [97] Suh J-Y, Lee Y-S, Shim J-H, Park H M. Prediction of Elastic Properties ofPrecipitation-hardened Aluminum Cast Alloys[J]. Comput Mater Sci,2012,51(1):365-371.
    [98] Wolverton C, Ozoli V. First-principles Aluminum Database: Energetics ofBinary Al Alloys and Compounds[J]. Phys Rev B,2006,73(14)144104-14.
    [99] Gao M, Rollett A, Widom M. Lattice Stability of Aluminum-rare Earth BinarySystems: A First-principles Approach[J]. Phys Rev B,2007,75(17)174120-16.
    [100] Vannarat S, Sluiter M, Kawazoe Y. First-principles Study of Solute-dislocationInteraction in Aluminum-rich Alloys[J]. Phys Rev B,2001,64(22)224203-8.
    [101] Benali A, Lacaze-Dufaure C, Morillo J. Density Functional Study of CopperSegregation in Aluminum[J]. Surf Sci,2011,605(3-4):341-350.
    [102] Hoshino T, Fujima N, Asato M, Tamura R. Medium-ranged Interactions ofTransition-metal (3d and4d) Iimpurity Pairs in Al and Atomic Structures ofAl-rich Al-transition-metal Alloys[J]. J Alloys Compd,2007,434-435(31):572-576.
    [103] Zhou W L, Liu L J, Li B L, Song Q G, Wu P. Structural, Elastic, and ElectronicProperties of Al-Cu Intermetallics from First-Principles Calculations[J]. JElectron Mater,2008,38(2):356-364.
    [104] Tkachenko V G, Kolesnik L I, Maksimchuk I N, Shklover V V. DislocationMechansm of Hydrogen Embrittlement of Metals and Alloys with hcp and fccCrystal Structure[J]. Int J Hydrogen Energy,1996,21(11/12):1105-1113.
    [105] Qian M, Cao P. Discussions on Grain Refinement of Magnesium Alloys byCarbon Inoculation[J]. Scripta Mater,2005,52(5):415-419.
    [106] Larsen D S, N rskov J K. Calculated Energies and Geometries for HydrogenImpurities in Al and Mg[J]. J Phys F: Metal Phys,1979,9(10):1975-1982.
    [107] Stier W, Camargo L G, óskarsson F, Jónsson H. Hydrogen Storage in MagnesiumBased Alloys[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem,2005,229:852.
    [108] Zeng C A, Hu J P, Ouyang C Y. Hydrogen Solution in Tetrahedral or OctahedralInterstitial Sites in Al[J]. J Alloys Compd,2011,509(37):9214-9217.
    [109] Perrot F, Rasolt M. Hydrogen Impurity in Aluminium: Calculation of the LatticeRelaxation Energy[J]. Solid State Communications,1980,36(6):579-580.
    [110] Lu G Q, Orlikowski D, Park L, Politano O, Kaxiras E. Energetics of HydrogenImpurities in Aluminum and their Effect on Mechanical Properties[J]. Phys Rev B,2002,65(6)064102-8.
    [111] Ismer L, Park M S, Janotti A, Van de Walle C G. Interactions between HydrogenImpurities and Vacancies in Mg and Al: A Comparative Analysis based onDensity Functional Theory[J]. Phys Rev B,2009,80(18)184110-10.
    [112] Lu G, Kaxiras E. Hydrogen Embrittlement of Aluminum: The Crucial Role ofVacancies[J]. Phys Rev Lett,2005,94(15)155501-4.
    [113] Hofmann G O. Biodegradable Implants in Traumatology: a Review on theState-of-the art.[J]. Arch Orthop Trauma Surg,1995,114(3):123-132.
    [114] Vormann J. Magnesium: Nutrition and Metabolism[J]. Mol Aspects Med,2003,24(1-3):27-37.
    [115] Davis J R. Handbook of Materials for Medical Devices[M]. USA: ASMInternational,2003.
    [116] Song G L, Atrens A. Corrosion Mechanisms of Magnesium Alloys. AdvancedEngineering Materials[J]. Adv Eng Mater,1999,1(1):11-33.
    [117] Witte F, Fischer J, Nellesen J, Crostack H A, Kaese V, Pisch A, Beckmann F,Windhagen H. In vitro and in vivo Corrosion Measurements of MagnesiumAlloys[J]. Biomaterials,2006,27(7):1013-1018.
    [118] Salman S A, Ichino R, Okido M. A Comparative Electrochemical Study of AZ31and AZ91Magnesium Alloy[J]. Int J Corrosion,2010,2010:1-7.
    [119] Song G L, Atrens A. Understanding Magnesium Corrosion. A Framework forImproved Alloy Performance[J]. Adv Eng Mater,2003,5(12):837-858.
    [120] Zhao M-C, Liu M, Song G L, Atrens A. Influence of the β-phase Morphology onthe Corrosion of the Mg Alloy AZ91[J]. Corros Sci,2008,50(7):1939-1953.
    [121] Xu S W, Matsumoto N, Kamado S, Honma T, Kojima Y. Effect of Mg17Al12Precipitates on the Microstructural Changes and Mechanical Properties of HotCompressed AZ91magnesium alloy[J]. Mater Sci Eng A,2009,523(1-2):47-52.
    [122] Lee S-W, Chen Y-L, Wang H-Y, Yang C-F, Yeh J-W. On Mechanical Propertiesand Superplasticity of Mg-15Al-1Zn Alloys Processed by ReciprocatingExtrusion[J]. Mater Sci Eng A,2007,464(1-2):76-84.
    [123] Lin L, Wang F, Yang L, Chen L J, Liu Z, Wang Y M. Microstructure Investigationand First-principle Analysis of die-cast AZ91Alloy with Calcium Addition[J].Mater Sci Eng A,2011,528(15):5283-5288.
    [124] Amir Esgandari B, Mehrjoo H, Nami B, Miresmaeili S M. The Effect of Ca andRE Elements on the Precipitation Kinetics of Mg17Al12Phase during ArtificialAging of Magnesium Alloy AZ91[J]. Mater Sci Eng A,2011,528(15):5018-5024.
    [125] Wang Y H, Wang Q D, Ma C J, Ding W J, Zhu Y P. Effects of Zn and ReAdditions on the Solidification Behavior of Mg-9Al Magnesium Alloy[J]. MaterSci Eng A,2003,342(1-2):178-182.
    [126] Tian X, Wang L M, Wang J L, Liu Y B, An J, Cao Z Y. The Microstructure andMechanical Properties of Mg-3Al-3RE Alloys[J]. J Alloys Compd,2008,465(1-2):412-416.
    [127] Li R G, Xu Y, Qi W, An J, Lu Y, Cao Z Y, Liu Y B. Effect of Sn on theMicrostructure and Compressive Deformation Behavior of the AZ91D agingAlloy[J]. Mater Charact,2008,59(11):1643-1649.
    [128] Wang R M, Eliezer A, Gutman E M. An Investigation on the Microstructure of anAM50Magnesium Alloy[J]. Mater Sci Eng A,2003,355(1-2):201-207.
    [129] Zhao P, Wang Q D, Zhai C Q, Zhu Y P. Effects of Strontium and Titanium on theMicrostructure, Tensile Properties and Creep Behavior of AM50Alloys[J]. MaterSci Eng A,2007,444(1-2):318-326.
    [130] Wu Y F, Du W B, Nie Z R, Cao L F, Zuo T Y. Thermodynamic Calculation ofIntermetallic Compounds in AZ91Alloy Containing Calcium[J]. TransNonferrous Met Soc China,2006,16(2):392-396.
    [131] Zhou D W, Liu J. S., Zhang J., Peng P. Structural Stability of IntermetallicCompounds of Mg-Al-Ca Alloy[J]. Trans Nonferrous Met Soc China,2007,17(2):250-256.
    [132] Zhou D W, Liu J S, Peng P, Chen L, Hu Y J. A First-principles Study on theStructural Stability of Al2Ca, Al4Ca and Mg2Ca Phases[J]. Mater Lett,2008,62(2):206-210.
    [133] Zhou D W, Peng P, Liu J S. Energetics, Electronic Structure, and StructureStability of the Calcium Alloying Mg17Al12Phase from First PrinciplesCalculations[J]. Mater Sci-Poland,2007,25(1):145-153.
    [134] Huang Z W, Zhao Y H, Hou H, Han P D. Electronic Structural, Elastic Propertiesand Thermodynamics of Mg17Al12, Mg2Si and Al2Y Phases from First-principlesCalculations[J]. Physica B: Condensed Matter,2012,407(7):1075-1081.
    [135] Wang N, Yu W-Y, Tang B-Y, Peng L-M, Ding W-J. Structural and MechanicalProperties of Mg17Al12and Mg24Y5from First-principles Calculations[J]. J Phys D:Appl Phys,2008,41(19):195408.
    [136] Olijnyk H, Holzapfel W. High-pressure Structural Phase Transition in Mg[J]. PhysRev B,1985,31(7):4682-4683.
    [137] Tambe M, Bonini N, Marzari N. Bulk Aluminum at High Pressure: AFirst-principles Study[J]. Phys Rev B,2008,77(17)172102-4.
    [138] Zhang M X, Kelly P M. Edge-to-edge Matching and its Applications[J]. ActaMaterialia,2005,53(4):1085-1096.
    [139] Lee Y-L, Kleis J, Rossmeisl J, Morgan D. Ab initio Energetics of LaBO3(001)(B=Mn, Fe, Co, and Ni) for Solid Oxide Fuel Cell Cathodes[J]. Phys Rev B,2009,80(22)224101-20.
    [140] Iotova D, Kioussis N, Lim S P. Electronic Structure and Elastic Properties of theNi3X (X=Mn, Al, Ga, Si, Ge) Intermetallics[J]. Phys Rev B,1996,54(20):14413-14422.
    [141] Banerjee R, Nag S, Stechschulte J, Fraser H L. Strengthening Mechanisms inTi-Nb-Zr-Ta and Ti-Mo-Zr-Fe Orthopaedic Alloys[J]. Biomaterials,2004,25(17):3413-3419.
    [142] Bhola R, Bhola S M, Mishra B, Olson D L. Electrochemical Evaluation ofWrought Titanium-15Molybdenum Alloy for Dental Implant Applications inPhosphate Buffer Saline[J]. Port Electrochim Acta,2010,28(2):135-142.
    [143] Zhou Y-L, Niinomi M, Akahori T. Changes in Mechanical Properties of Ti Alloysin Relation to Alloying Additions of Ta and Hf[J]. Mater Sci Eng A,2008,483-484(15):153-156.
    [144] Elias L M, Schneider S G, Schneider S, Silva H M, Malvisi F. Microstructural andMechanical Characterization of Biomedical Ti-Nb-Zr(-Ta) Alloys[J]. Mater SciEng A,2006,432(1-2):108-112.
    [145] Terlinde G T, Duerig T W, Williams J C. Microstructure, Tensile and Fracture inAged Ti-10V-2Fe-3Al[J]. Metall Trans A,1983,14A(10):2101-2115.
    [146] Duerig T W, Albercht J, Richter D. Formation and Reversion of Stress InducedMartensite in Ti-10V-2Fe-3Al[J]. Acta Metall,1982,30(12):2161-2172.
    [147] Sun Q Y, Song S J, Zhu R H, Gu H C. Toughening of Titanium Alloys byTwinning and Martensite Transformation[J]. J Mater Sci,2002,37(12):2543-2547.
    [148] Chen W, Sun Q Y, Xiao L, Sun J. Deformation-Induced Grain Refinement andAmorphization in Ti-10V-2Fe-3Al Alloy[J]. Metall Mater Trans A,2011,43(1):316-326.
    [149] Lei L M, Huang X, Wang M M, Wang L Q, Qin J N, Li H P, Lu S Q. Effect of hotCompressive Deformation on the Martensite Transformation of Ti-10V-2Fe-3AlTitanium Alloy[J]. Mater Sci Eng A,2011,530(15):591-601.
    [150] Zhou Y-L, Luo D-M. Microstructures and Mechanical Properties of Ti-Mo AlloysCold-rolled and Heat Treated[J]. Mater Charact,2011,62(10):931-937.
    [151] Motemani Y, McCluskey P J, Zhao C W, Tan M J, Vlassak J J. Analysis ofTi-Ni-Hf Shape Memory Alloys by Combinatorial Nanocalorimetry[J]. ActaMaterialia,2011,59(20):7602-7614.
    [152] Otsuka K, Ren X. Physical Metallurgy of Ti-Ni-based Shape Memory Alloys[J].Progr in Mater Sci,2005,50(5):511-678.
    [153] Matsumoto H, Yoneda H, Sato K, Kurosu S, Maire E, Fabregue D, Konno T J,Chiba A. Room-temperature Ductility of Ti-6Al-4V Alloy with α′MartensiteMicrostructure[J]. Mater Sci Eng A,2011,528(3):1512-1520.
    [154] Matsumoto H, Yoneda H, Fabregue D, Maire E, Chiba A, Gejima F. MechanicalBehaviors of Ti-V-(Al, Sn) Alloys with α′Martensite Microstructure[J]. J AlloysCompd,2011,509(6):2684-2692.
    [155] Li Y, Cui Y, Zhang F, Xu H. Shape Memory Behavior in Ti-Zr Alloys[J]. ScriptaMater,2011,64(6):584-587.
    [156] Hu Z H, Zhan Y Z, She J, Zhang G H, Peng D. The Phase Equilibria in theTi-Cu-Y Ternary System at773K[J]. J Alloys Compd,2009,485(1-2):261-263.
    [157] Sun J, Yao Q, Xing H, Guo W Y. Elastic Properties of β, α′′and ω MetastablePhases in Ti-Nb Alloy from First-principles[J]. J Phys Condens Matter,2007,19(48):486215-8.
    [158]姚强,邢辉,孟丽君,孙坚. Ti-Mo合金的结构稳定性和弹性性质的第一性原理研究[J].金属学报,2008,44(1):19-22.
    [159] Song Y, Xu D S, Yang R, Li D, Wu W T, Guo Z X. Theoretical Study of theEffects of Alloying Elements on the Strength and Modulus of Beta-typeBio-titanium Alloys[J]. Mater Sci Eng A,1999,260(1-2):269-274.
    [160] Hu Q-M, Li S-J, Hao Y-L, Yang R, Johansson B, Vitos L. Phase Stability andElastic Modulus of Ti Alloys Containing Nb, Zr, and/or Sn from First-principlesCalculations[J]. Appl Phy. Lett,2008,93(12):121902-3.
    [161] Lin C, Yin G L, Zhao Y Q, Ge P, Liu Z L. Analysis of the Efect of Alloy Elementson Martensitic Transformation in Titanium Alloy with the use of Valence ElectronStructure Parameters[J]. Mater Chem Phys,2011,125(3):411-417.
    [162] Lazar P, Jahnátek M, Hafner J, Nagasako N, Asahi R, Blaas-Schenner C, St hr M,Podloucky R. Temperature-induced Martensitic Phase Transitions in Gum-metalApproximants: First-principles Investigations for Ti3Nb[J]. Phys Rev B,2011,84(5)054202-17.
    [163] Nagasako N, Asahi R, Hafner J. Ideal Tensile and Shear Strength of a Gum MetalApproximant: Ab initio Density Functional Calculations[J]. Phys Rev B,2012,85(2)024122-17.
    [164] Kim H Y, Ikehara Y, Kim J I, Hosoda H, Miyazaki S. Martensitic Transformation,Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys[J]. ActaMaterialia,2006,54(9):2419-2429.
    [165] Ping D, Mitarai Y, Yin F. Microstructure and Shape Memory Behavior of aTi-30Nb-3Pd Alloy[J]. Scripta Mater,2005,52(12):1287-1291.
    [166] Hosoda H, Fukui Y, Inamura T, Wakashima K, Miyazaki S. Mechanical Propertiesof Ti-Nb Biomedical Shape Memory Alloys Containing13-and14-groupElements[C]. Pricm5: The Fifth Pacific Rim International Conference onAdvanced Materials and Processing, Pts1-5,2005,475-479:2329-2332.
    [167] Jeong H W, Yoo Y S, Lee Y T, Park J K. Elastic Softening Behavior of Ti-NbSingle Crystal near Martensitic Transformation Temperature[J]. J Appl Phys,2010,108(6):063515-6.
    [168] Christ H J, Decker M, Zeitler S. Hydrogen Diffusion Coefficients in the TitaniumAlloys IMI834, Ti10-2-3, Ti21S, and Alloy C[J]. Metall Trans A,2000,31A(6):1507-1517.
    [169] Hempelmann R, Richter D, Stritzker B. Optic Phonon Modes andSuperconductivity in α Phase (Ti, Zr)-(H, D) alloys[J]. J Phys F: Met Phys,1982,12(1):79-86.
    [170] Khoda-Bakhsh R, Ross D K. Determination of the Hydrogen site Occupation inthe α Phase of Zirconium Hydride and in the α and β Phases of Titanium Hydrideby Inelastic Neutron Scattering[J]. J Phys F: Met Phys,1982,12(1):15-24.
    [171] Xu Q C, Van der Ven A. First-principles Investigation of Metal-hydride PhaseStability: The Ti-H System[J]. Phys Rev B,2007,76(6)064207-12.
    [172] Tao S, Notten P, van Santen R, Jansen A. Density Functional Theory Studies ofthe Hydrogenation Properties of Mg and Ti[J]. Phys Rev B,2009,79(14)144121-7.
    [173] Woo G C, Weatherl C E. The Precipitation of Gama-deuterides (hydrides) inTitanium[J]. Acta Metall,1985,33(10):1897-1906.
    [174] Lentz C W, Koss D A, Stout M G, Hecker S S. The Effect of Hydrogen on theMultiaxial Stress-Strain Behavior of Titanium Tubing[J]. Metall Trans,1983,14A(12):2527-2533.
    [175] Liang C P, Gong H R. Fundamental Influence of Hydrogen on Various Propertiesof α-titanium[J]. Int J Hydrogen Energy,2010,35(8):3812-3816.
    [176] Graciani J, Hamad S, Sanz J F. Changing the Physical and Chemical Properties ofTitanium Oxynitrides TiN1-xOxby Changing the Composition[J]. Phys Rev B,2009,80(18)184112-10.
    [177] Tal-Gutelmacher E, Eliezer D. The Hydrogen Embrittlement of Titanium-BasedAlloys[J]. JOM,2005,57(9):46-49.
    [178] Wasz M L, Brotzen F R, McLellan R B, Griffin A J. Effect of Oxygen andHydrogen on Mechanical Properties of Commercial Purity Titanium[J]. Int MaterRev,1996,41(1):1-12.
    [179] Ottaviani G, Nava F, Quierolo G, Iannuzzi G, De Santi G, Tu K N. TemperatureOxygen Dissolution in Titanium [J]. Thin Solid Films,1987,146(1-2)201-207.
    [180] Ando T, Nakashima K, Tsuchiyama T, Takaki S. Microstructure and MechanicalProperties of a High Nitrogen Titanium Alloy[J]. Mater Sci Eng A,2008,486(1-2):228-234.
    [181] Conrad H. Effect of Interstitial Solutes on the Strength and Ductility ofTitanium[J]. Progr Mater Sci,1981,26:123-403.
    [182] Li Y G, Blenkinsop P A, Loretto M H, Rugg D, Voice W. Effect of Carbon andOxygen on Microstructure and Mechanical Properties of Ti-25V-15Cr-2Al (wt%)alloys[J]. Acta Mater,1999,47(10):2889-2905.
    [183] Chu M, Jones I P, Wu Xinhua. Effect of Carbon on Microstructure andMechanical Properties of a Eutectoid β Titanium Alloy[J]. J Mater Eng Perform,2005,14(6):735-740.
    [184] Zhang S Z, Xu H Z, Li G P, Liu Y Y, Yang R. Effect of Carbon and agingTreatment on Precipitation of Ordered α2in Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd Alloy[J]. Mater Sci Eng A,2005,408(1-2):290-296.
    [185] Sun Z G, Chen G Q, Wang Y Q, Zhou W L, Hou H L. Investigations on ColdDeformation Mechanisms of the Hydrogenated Ti-6Al-4V Alloys[J]. Mater SciEng A,2010,527(4-5):1003-1007.
    [186] Ilyin A A, Kollerov M Y, Golovin I S. Hydrogen Influence on Plastic DeformationMechanism of beta-Titanium Alloys of Ti-Nb System[J]. J Alloys Compd,1997,253-254(20):144-147.
    [187] Feng J, Liu H, He P, Cao J. Effects of Hydrogen on Diffusion Bonding ofHydrogenated Ti6Al4V Alloy Containing0.3wt%Hydrogen at Fast heatingRate[J]. Int J Hydrogen Energy,2007,32(14):3054-3058.
    [188] Shan D B, Zong Y Y, Lu T F, Lv Y. Microstructural Evolution and FormationMechanism of fcc Titanium Hydride in Ti-6Al-4V-xH Alloys[J]. J Alloys Compd,2007,427(1-2):229-234.
    [189] Furuhara T, Annaka S, Tomio Y, Maki T. Superelasticity in Ti-10V-2Fe-3AlAlloys with Nitrogen Addition[J]. Mater Sci Eng A,2006,438-440(25):825-829.
    [190] Obbard E G, Hao Y L, Talling R J, Li S J, Zhang Y W, Dye D, Yang R. The Effectof Oxygen on α″Martensite and Superelasticity in Ti-24Nb-4Zr-8Sn[J]. ActaMaterialia,2011,59(1):112-125.
    [191] Li S J, Cui T C, Li Y L, Hao Y L, Yang R. Ultrafine-grained β-type TitaniumAlloy with Nonlinear Elasticity and High Ductility[J]. Appl Phy. Lett,2008,92(4):043128-3.
    [192] Hennig R G, Trinkle D R, Bouchet J, Srinivasan S G, Albers R C, Wilkins J W.Impurities Block the Alpha to Omega Martensitic Transformation in Titanium[J].Nat Mater,2005,4(2):129-133.
    [193] Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S. Effect of HeatTreatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys[J].Mater Trans,2002,43(12):2978-2983.
    [194] Hao Y L, Li S J, Sun S Y, Yang R. Effect of Zr and Sn on Young's Modulus andSuperelasticity of Ti-Nb-based Alloys[J]. Mater Sci Eng A,2006,441(1-2):112-118.
    [195]罗湖斌,胡青苗,杨锐.合金化对β钛合金热膨胀系数的影响:第一性原理研究[J].中国有色金属学报,2010,20(s1):399-403.
    [196] Geetha M, Singh A K, Asokamani R, Gogia A K. Ti based Biomaterials, theultimate Choice for Orthopaedic Implants-A review[J]. Progr in Mater Sci,2009,54(3):397-425.
    [197] Song Y, Guo Z X, Yang R. Influence of Interstitial Elements on the Bulk Modulusand Theoretical Strength of a-titanium: A First-principles Study[J]. Phil Mag A,2002,82(7):1345-1359.
    [198] Donohue J. The Structures of the Elements[M]. John Wiley&Sons, New York,1974:324.
    [199] Kharia K K, Rack H J. Martensitic Phase Transformations in IMI550(Ti-4Al-4Mo-2Sn-0.5Si)[J]. Metall Mater Trans,2001,32A(3):671-679.
    [200] Errandonea D, Meng Y, Somayazulu M, H usermann D. Pressure-inducedTransition in Titanium Metal: a Systematic Study of the Effects of UniaxialStress[J]. Physica B Condens Matter,2005,355(1-4):116-125.
    [201] Pang M J, Zhan Y Z, Yang W C, Li C L, Wang H Z, Jiang W P, Du Y.First-principles Calculations on the Crystal, Electronic Structures and ElasticProperties of Ag-rich γ′Phase Approximates in Al-Ag Alloys[J]. Comput MaterSci,2012,51(1):415-421.
    [202] Hu C-E, Zeng Z-Y, Zhang L, Chen X-R, Cai L-C, Alfè D. TheoreticalInvestigation of the High Pressure Structure, Lattice Dynamics, Phase Transition,and Thermal Equation of State of Titanium Metal[J]. J Appl Phys,2010,107(9):093509-10.
    [203] Wu X. Review of Alloy and Process Development of TiAl Alloys[J].Intermetallics,2006,14(10-11):1114-1122.
    [204] Schmitz-Niederau M, Schütze M. The Oxidation Behavior of Several Ti-AlAlloys at900oC in Air[J]. Oxid Met,1999,52(3/4):225-240.
    [205] Schmiedgen M, Graat P C, Baretsky B, Mittemeijer E. The Initial Stages ofOxidation of γ-TiAl: an X-ray Photoelectron Study[J]. Thin Solid Films,2002,415(1-2):114-122.
    [206] Shanabarger M R. Comparative Study of the Initial Oxidation Behavior of aSeries of Titanium-Aluminum Alloys[J]. Appl Surf Sci,1998,134(1-4):179-186.
    [207] Taylor T N, T Paffett M. Oxide Properties of a γ-TiAl: a Surface Science Study[J].Mater Sci Eng A,1992,153(1-2):584-590.
    [208] Maurice V, Despert G, Zanna S, Josso P, Bacos M-P, Marcus P. Self-Assemblingof Atomic Vacancies at an Oxide/Intermetallic Alloy Interface[J]. Nat Mater,2004,3:687-691.
    [209] Maurice V, Despert G, Zanna S, Josso P, Bacos M-P, Marcus P. The Growth ofProtective Ultra-thin Alumina Layers on γ-TiAl(111) Intermetallic Single-CrystalSurfaces[J]. Surf Sci,2005,596(1-3):61-73.
    [210] Maurice V, Despert G, Zanna S, Josso P, Bacos M-P, Marcus P. XPS Study of theInitial Stages of Oxidation of α2-Ti3Al and γ-TiAl Intermetallic Alloys[J]. ActaMater,2007,55(10):3315-3325.
    [211]李虹,刘利民,王绍青,叶恒强.氧原子在γ-TiAl(111)表面吸附的第一性原理研究[J].金属学报,2006,42(9):897-902.
    [212] Liu S Y, Shang J X, Wang F H, Zhang Y. Ab initio Study of SurfaceSelf-Segregation Effect on the Adsorption of Oxygen on the γ-TiAl(111)Surface.[J]. Phys Rev B,2009,79(7):075419-075410.
    [213] Liu S Y, Shang J X, Wang F H, Zhang Y. Surface Segregation of Si and itsEffecton Oxygen Adsorption on a γ-TiAl(111) Surface from First Principles[J]. J PhysCondens Matter,2009,21(22):225005-7.
    [214] Liu S Y, Shang J X, Wang F H, Zhang Y. Ab initio Atomistic ThermodynamicsStudy on the Selective Oxidation Mechanism of the Surfaces of IntermetallicCompounds[J]. Phys Rev B,2009,80(8):085414-085415.
    [215] Gong H R, He Y H, Huang B Y. Bond Strength and Interface Energy between PdMembranes and TiAl Supports[J]. Appl Phys Lett,2008,93(10):101907-101903.
    [216] Gong H R. Electronic Structure and Related Properties of Pd/TiAl Membranes[J].Intermetallics,2009,17(7):562-567.
    [217] Wang L X, Shang J, Wang H F, Zhang Y, Chroneos A. Unexpected Relationshipbetween Interlayer Distances and Surface/Cleavage Energies in γ-TiAl: DensityFunctional Study[J]. J Phys Condens Matter,2011,23(26):265009-7.
    [218] Cheng F, Tao Z, Liang J, Chen J. Efficient Hydrogen Storage with theCombination of Lightweight Mg/MgH2and Nanostructures[J]. Chem Commun,2012,48(59):7334-7343.
    [219] Bogdanovic B, Hartwig T H, Spliethoff B. The Development, Testing andOptimization of Energy-Storage Materials Based on the MgH2-Mg System[J]. IntJ Hydrogen Energy,1993,18(7):575-589.
    [220] Zaluska A, Zaluski L, Str me Olsen J Q. Nanocrystalline Magnesium forHydrogen Storage[J]. J Alloys Compd,1999,288(1-2):217-225.
    [221] Schlapbach L, Zuttel A. Hydrogen-Storage Materials for Mobile Applications[J].Nature,2001,414(6861):353-358.
    [222] Sakintuna B, Lamaridarkrim F, Hirscher M. Metal Hydride Materials for SolidHydrogen Storage: A Review[J]. Int J Hydrogen Energy,2007,32(9):1121-1140.
    [223] Eberle U, Felderhoff M, Schuth F. Chemical and Physical Solutions for HydrogenStorage[J]. Angewandte Chemie,2009,48(36):6608-6630.
    [224] Larsson P, Araujo C M, Larsson J A, Jena P, Ahuja R. Role of Catalysts inDehydrogenation of MgH2Nanoclusters[C]. Proceedings of the NationalAcademy of Sciences of the United States of America,2008,105(24):8227-8231.
    [225] Song Y, Zhang W, Yang R. Stability and Bonding Mechanism of Ternary (Mg, Fe,Ni)H2Hydrides from First principles Calculations[J]. Int J Hydrogen Energy,2009,34(3):1389-1398.
    [226]张健,黄雅妮,毛聪,龙春光,邵毅敏,付俊庆,彭平. Ti,V,Nb掺杂MgH2储氢体系的放氢性能及微观机理[J].化学学报,2010,68(20):2077-2085.
    [227] Kelkar T, Pal S. A Computational Study of Electronic Structure, Thermodynamicsand Kinetics of Hydrogen Desorption from Al-and Si-doped α-, γ-, andβ-MgH2[J]. J Mater Chem,2009,19(25):4348.
    [228] Dai J H, Song Y, Yang R. First Principles Study on Hydrogen Desorption from aMetal (=Al, Ti, Mn, Ni) Doped MgH2(110) Surface[J]. J Phys Chem C,2010,114(25):11328-11334.
    [229] Dai J H, Song Y, Yang R. Intrinsic Mechanisms on Enhancement of HydrogenDesorption from MgH2by (001) Surface Doping[J]. Int J Hydrogen Energy,2011,36(20):12939-12949.
    [230] Jiang T, Sun L-X, Li W-X. First-principles Study of Hydrogen Absorption onMg(0001) and Formation of Magnesium Hydride[J]. Phys Rev B,2010,81(3)035416-9.
    [231] Pozzo M, Alfe D. The Role of Steps in the Dissociation of H2on Mg(0001)[J]. JPhys Condens Matter.2009,21(9):095004-4.
    [232] Kecik D, Aydinol M K. Density Functional and Dynamics Study of theDissociative Adsorption of Hydrogen on Mg (0001) Surface[J]. Surf Sci,2009,603(2):304-310.
    [233] Li Y F, Yang Y, Wei Y H, Zhang P. Influences of Al doping on the ElectronicStructure of Mg(0001) and Dissociation Properties of H2[J]. Phys Lett A,2010,374(7):975-980.
    [234] Pozzo M, Alfè D. Hydrogen Dissociation and Diffusion on Transition Metal (=Ti,Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) Surfaces[J]. Int JHydrogen Energy,2009,34(4):1922-1930.
    [235] Du A J, Smith S C, Yao X D, Lu G Q. First-principle Study of Adsorption ofHydrogen on Ti-doped Mg (0001) Surface[J]. J Phys Chem B,2006,110(43):21747-21750.
    [236] Du A J, Smith S C, Yao X D, Lu G Q. The Role of Ti as a Catalyst for theDissociation of Hydrogen on a Mg (0001) Surface[J]. J Phys Chem B,2005,109(38):18037-18041.
    [237] Vegge T. Locating the Rate-limiting Step for the Interaction of Hydrogen withMg(0001) using Density-functional Theory Calculations and Rate Theory[J].Phys Rev B,2004,70(3)035412-7.
    [238] Wu G X, Zhang J Y, Wu Y Q, Li Q, Chou K C, Bao X H. Density FunctionalTheory Study of Hydrogenation Mechanism in Fe-doped Mg(0001) Surface[J].Appl Surf Sci,2009,255(12):6338-6344.
    [239] Du A J, Smith S C, Yao X D, Lu G Q. The Role of Ti as a Catalyst for theDissociation of Hydrogen on a Mg(0001) Surface[J]. J Phys Chem B,2005,109(38):18037-18041.
    [240] Li Y, Zhang P, Sun B, Yang Y, Wei Y. Atomic Hydrogen Adsorption and IncipientHydrogenation of the Mg(0001) Surface: a Density-Functional Theory Study[J]. JChem Phys,2009,131(3):034706-10.
    [241] Tang J-J, Yang X-B, Chen M, Zhu M, Zhao Y-J. First-Principles Study of BiaxialStrain Effect on Hydrogen Adsorbed Mg (0001) Surface[J]. J Phys Chem C,2012,116(28):14943-14949.
    [242] Hao S Q. The TiAl Channel Mechanism for Enhanced (de)hydrogenation Kineticsin Mg-based Films[J]. Appl Phy. Lett,2010,97(11):111905-3.
    [243] Johansson M, Ostenfeld C, Chorkendorff I. Adsorption of Hydrogen on Clean andModified Magnesium Films[J]. Phys Rev B,2006,74(19)193408-4.
    [244] Dura J A, Kelly S T, Kienzle P A, Her J H, Udovic T J, Majkrzak C F, Chung C J,Clemens B M. Porous Mg Formation upon Dehydrogenation of MgH2ThinFilms[J]. J Appl Phys,2011,109(9):093501-7.
    [245] Vermeulen P, Niessen R A H, Notten P H L. Hydrogen Storage in MetastableMgyTi(1-y)Thin Films[J]. Electrochemistry Communications,2006,8(1):27-32.
    [246] Hao S Q, Sholl D S. Effect of TiH2-Induced Strain on Thermodynamics ofHydrogen Release from MgH2[J]. J Phys Chem C,2012,116(2):2045-2050.
    [247] Tao S-X, Notten P H L, van Santen R A, Jansen A P J. DehydrogenationProperties of Epitaxial (100) MgH2/TiH2Multilayers-A DFT Study[J]. ComputMater Sci,2011,50(10):2960-2966.
    [248] Zahiri B, Harrower C T, Shalchi A B, Mitlin D. Rapid and Reversible HydrogenSorption in Mg-Fe-Ti Thin Films[J]. Appl Phy. Lett,2009,95(10):103114-3.
    [249] Kalisvaart W P, Harrower C T, Haagsma J, Zahiri B, Luber E J, Ophus C, PoirierE, Fritzsche H, Mitlin D. Hydrogen Storage in Binary and Ternary Mg-basedAlloys: A Comprehensive Experimental Study[J]. Int J Hydrogen Energy,2010,35(5):2091-2103.
    [250] Zahiri R, Zahiri B, Kubis A, Kalisvaart P, Shalchi A B, Mitlin D. MicrostructuralEvolution during Low Temperature Sorption Cycling of Mg-AlTi MultilayerNanocomposites[J]. Int J Hydrogen Energy,2012,37(5):4215-4226.
    [251] Song Y, Dai J H, Yang R. Mechanism of Oxygen Adsorption on Surfaces ofγ-TiAl[J]. Sur Sci,2012,606(9-10):852-857.
    [252] Dai J H, Song Y, Yang R. Adsorption of Water Molecule on (001) and (110)Surfaces of MgH2[J]. Surf Sci,2011,605(13-14):1224-1229.
    [253] Pozzo M, Alfe D, Amieiro A, French S, Pratt A. Hydrogen Dissociation andDiffusion on Ni-and Ti-doped Mg(0001) Surfaces[J]. J Chem Phys,2008,128(9):094703-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700