用户名: 密码: 验证码:
地下金属矿山开采安全机理辨析及灾害智能预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国入世以来的经济全球化的飞速发展,中国金属矿资源市场已不可避免地融入金属矿资源国际市场。世界金属矿资源市场的需求变化与价格波动及国际金属矿资源开采形势的发展对中国金属矿资源开采企业的影响十分巨大。因此,中国金属矿资源企业在市场需求与价格竞争等方面面临着前所未有的非常严峻的挑战。如何有效地减小因安全事故带来损失,降低安全管理费用和生产成本,是中国金属矿资源企业提高金属矿资源开采的盈利水平的十分重要的关键因素。而多学科设计优化方法、模糊理论、人因工程、熵理论、时滞微分方程理论、神经元网络理论等非线性理论与人工智能方法在有效地减小因安全事故带来损失,降低安全管理费用和生产成本方面具有明显的优势,可望为中国金属矿资源企业开采盈利水平提高提供理论基础与技术保障。
     为此,论文的研究以国家“十一五”科技支撑计划课题—金属矿大范围隐患空区调查及事故辨识关键技术研究[2007BAK22B04-12]和国家自然科学基金项目—金属矿山采场冒顶声发射信号混沌辨析及其智能预报研究[51274250]为依托,重点开展地下金属矿山开采安全生产规模、地下金属矿山开采人机安全非线性动态演化机理、地下金属矿山开采过程人机环境系统安全熵、地下金属矿山开采多因素耦合灾害智能预测与地下金属矿山开采灾害征兆参数时间序列智能预测的研究,取得主要研究成果与创新如下:
     (1)首次以地下金属矿山开采过程中的生产收益、安全度和环境影响度为子系统目标函数,以自适应变尺度混沌免疫优化算法为手段构建了地下金属矿山开采安全生产规模辨析模型,并对地下金属矿山开采安全生产规模进行了有效辨析和整体配置优化研究,实用结果表明,某地下铅锌矿生产规模约为125万t/a,经济寿命为14a,对应的生产收益系数可增加15.13%、安全度系数可增加5.4%和环境影响度系数可降低9.52%;
     (2)考虑马虎水平对安全水平的影响时滞性,构建了地下金属矿山开采人机系统马虎性与安全性的非线性动态演化模型,其有效性较好地得到仿真结果的验证,通过对地下金属矿山开采人机安全非线性动态演化及其趋势定性分析成功地揭示了动态区域内马虎水平与安全水平的相互作用演化模式,为地下金属矿山开采人机系统的安全性评价与控制提供了依据:
     (3)采用耗散结构理论和熵变方程建立了地下金属矿山开采人机环境系统安全熵阈限模型,揭示了初始总安全熵过高时地下金属矿山开采人机环境系统容易崩溃的机理,并构建了地下金属矿山开采人机环境系统安全熵辨析模型,应用结果表明,影响地下金属矿山开采人机环境系统安全熵辨析值的主要原因是由于该人机环境系统安全没有协调发展,导致熵产的产生;
     (4)在采用聚类方法确定径向基函数参数的基础上,构建了基于自适应变权重模糊RBF神经网络的地下金属矿山开采多因素耦合灾害智能预测模型,并对其进行了训练、检验和实际应用,结果表明:该预测模型精度高且泛化能力较强,并在以南方某地下金属矿山为例进行大规模采空区围岩失稳预测中得到很好验证;
     (5)采用将原始输入时间序列的单个预测模型预测值按正交的三角函数扩展的方法建立了函数链神经网络预测模型,结合模糊自适应变权重算法计算函数链神经网络权重,提出了基于模糊自适应变权重算法的函数链神经网络的地下金属矿山开采灾害征兆参数时间序列智能预测方法,并成功应用于某铅锌矿冒顶预报,应用结果表明,该智能预测模型需要建模数据少,能满足非线性的预测要求,并具有较高的预测精度和好的泛化能力,为金属矿山采场冒顶准确预测提供了新方法。
The metal market of China has entered into international market since China became one of WTO and rapid devolepment of economic globalization, and influences from changes of metal mineral resources market the world and development of international metal mineral resources mining are enormous, therefore, the metal mineral resources industry in China will encounter a very flinty challenge. Obviously, it is a most vital and urgently solved problem for the metal mineral resources industry how to reduce accident loss, how to lower safety management costs and production costs and how to improve the economy benefits and competition capability in the metal mineral resources exploitation.
     But nonlinear science theory and artificial intelligent method including multidisciplinary design optimization, human factors engineering, the theory of differential delay equations, the theory of neural network, the theory of entropy and the theory of fuzzy are of unique superiority in solving the mentioned problems and will be able to offer a new method for solving them.
     The main research task in this paper such as safety production scale model of underground metal mine, evolution mechanism of man machine safe nonlinear dynamic for mining mineral resources in the underground metal mine, instability identification about large scale underground mined-out area in the metal mine, safety entropy analysis on man machine environment system for mining mineral resources in the underground metal mine, multi factor coupling disaster prediction in the underground metal mine and disaster evidence parameter time series prediction in the underground metal mine were studied. And the research fund is obtained from the national "eleven five" science and technology support program(namely survey on metal mine area hidden cavity and research on the key technologies of fault identification[2007BAK22B04-12]) and the National Natural Science Fund Projects(namely study on chaos discrimination for acoustic emission signals from roof caving in metal mine and its intelligent forecasting[51274250]), the main innovations and achievements of the paper are expressed as:
     (1)An analysis model of safety production scale of underground metal mine was established by using of some methods such as making income of production, safety and environmental impact as the subsystem objective function and using adaptive mutative scale chaos immunization optimization algorithm to solve multidisciplinary design optimization model, and safety production scale of underground metal mine was analyzed validly and optimized overally. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine is more realistically reflect the actual operating conditions, the production scale is about1.25million t/a, the economic life approximately is14a, corresponding coefficient of production profits can be increased to15.13%, safety factor can be increased to5.4%and environmental impact coefficient can be reduced by9.52%.
     (2)Considering time delay when sloppy level influencing on safety level, the safety nonlinear dynamic evolutionary model of man machine system for mining mineral resources in the underground metal mine was proposed based on human sloppy and safety and its validty was tested by using of simulation results. Qualitative analysis on nonlinear dynamic evolution of man machine system for mining mineral resources in the underground metal mine and its trend reveal evolutionary patterns of interaction of sloppy and safety qualitatively in four dynamic regions. And some theory basis for safety evaluation and control to the underground metal mining mechanical system is provided by the research results.
     (3)A safety entropy thresholds model of man machine environment system for mining mineral resources in the underground metal mine was established and analyzized qualitatively based on dissipative structure theory and entropy change equation and the results reaveled that man machine environment system for mining mineral resources in the underground metal mine will collapse when The initial total safety entropy is too high. Moreover, safety entropy analysis model of man machine environment system for mining mineral resources in the underground metal mine was established, the result shows that the main factor which affects the safety for the man machine environment system is that the safety for man machine environment system doesn't develop coordinately and leads to entropy production into man machine environment system in the underground metal mine.
     (4)The parameters of radial basis function were determined through clustering method and prediction model of multi factor coupling disaster from underground metal mining based on adaptive variable weight FRBFNN model was built. The prediction model of multi factor coupling disaster from underground metal mining was trained, tested and applied. The results show that adaptive variable weight FRBFNN model has high training accuracy and generalization ability. Correctness of analysis about adaptive variable weight FRBFNN model was proved by the practical application results about instability discrimination of surrounding rock in large-scale underground mined-out area of a metal mine in south China.
     (5)After a functional link neural network forecasting method was established by using of the method that it made some forecasting values from different single forecasting model being extended according to orthogonal trigonometric function and the weight of functional link neural network was calculated based on fuzzy adaptive variable weight algorithm fuzzy adaptive variable weight algorithm, prediction method of disaster warning parameter time series in underground metal mining based on fuzzy adaptive variable weight function link neural network was brought up. The success forecasting results of happening rate of acoustic emission in some lead&zinc mine reveal that the functional link neural network forecasting method based on fuzzy adaptive variable weight algorithm is higher than that of other forecasting model. The functional link neural network forecasting is very useful for predict roof caving.
引文
[1]陈玉民,胡乃联,郑小礼,潘贵豪.黄金矿山低品位资源技术经济评价与应用[J].北京科技大学学报,2009,31(5):533-536,556.
    [2]陈建宏,古德生.矿业资源经济学[M].长沙:中南大学出版社,2009.
    [3]王来贵,刘向峰,王玉富.岩石力学系统的基本问题[J].辽宁工程技术大学学报(自然科学版),2001,20(4):339-440.
    [4]GAO Feng, ZHOU Ke-ping, DONG Wei-jun, SU Jia-hong. Similar material simulation of time series system for induced roof caving in continuous mining under backfill[J]. Journal of Central South University of Technology,2008, 15(3):356-360.
    [5]权太范.信息融合神经网络-模糊推理理论与应用[M].北京:国防工业出版社,2002.
    [6]鄂加强,左红艳,罗周全.神经网络模糊推理智能信息融合及其工程应用[M].北京:中国水利水电出版社,2012.
    [7]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版社,2006.
    [8]鄂加强,杨蹈宇,崔洪江,唐文武.工程热力学[M].北京:中国水利水电出版社,2010.
    [9]任佩瑜,宋勇,张莉.论管理熵、管理耗散结构与我国企业文化的重塑[J].四川大学学报,2000,(4):45-49.
    [10]Kroo I M, Chopra I. Multidisciplinary optimization of aeronautical system[J]. Journal of aircraft,1990,27(12):977-978.
    [11]王保国,王新泉,刘淑艳,霍然.安全人机工程学[M].北京:机械工业出版社,2007.
    [12]邹国良.我国有色金属危机矿山发展对策[J].金属矿山,2007,(12):22-23.
    [13]张兴凯.我国非煤矿山标准现状与分析[J].中国安全科学学报,2008,18(4):173-176.
    [14]国家安全生产监督管理总局监督管理一司.2007年全国非煤矿山事故分析[R].2008.1.
    [15]蔡美峰.岩石力学在金属矿山采矿工程中的应用[J].金属矿山,2006,(1):28-33.
    [16]周科平,高峰,古德生.采矿环境再造与矿业发展新思路[J].中国矿业,2007,16(4):34-36.
    [17]古德生,李夕兵.现代金属矿床开采科学技术[M].长沙:冶金工业出版社,2006.
    [18]刘望平.灾源空区信息获取及管理与应用研究[D].长沙:中南大学,2007.
    [19]KUMAR P, KIRAN S, CHOUDHURY P B. Pillar and roadway stability assessment of development working of a metal mine with rock mechanics instrumentation-A case study[J]. Journal of Mines, Metals and Fuels,2010, 58(5):109-111.
    [20]VONGPAISAL S, LI G, PAKALNIS R. New 3D engineering curves for predicting stope stability and mining dilution in longitudinal blasthole mining operations [J]. International Journal of Mining, Reclamation and Environment, 2009,23(2):92-102.
    [21]TESARIK D R, SEYMOUR J B, YANSKE T R. Long-term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(7): 1182-1196.
    [22]LIU Zhi-xiang, GUO Yong-le, LIU Chao, LU Jun-hua. Laws of strata energy release and corresponding safety warning system in metal mine[J]. Transactions ofNonferrous Metals Society of China,2011,21(11):2508-2512.
    [23]PENG Kang, LI Xi-bing, WAN Chuan-chuan, PENG Shu-quan, ZHAO Guo-yan. Safe mining technology of undersea metal mine[J]. Transactions of Nonferrous Metals Society of China,2012,22(3):740-746.
    [24]来长青.采空区沉陷机理及地表变形破坏的时空预测研究[D].陕西:长安大学,2005.
    [25]贺跃光.工程开挖引起的地表移动与变形模型及监测技术研究[D].长沙:中南大学,2003.
    [26]寇新建,王建华.地表移动函数的相关性及其计算[J].矿冶工程,1998,18(1):50-54.
    [27]贺跃光,颜荣贵,朱殿柱.构造地应力作用下的地表移动规律研究[J].矿冶工程,2000,20(3):12-14.
    [28]唐春安,张永彬.岩体间隔破裂机制及演化规律初探[J].岩石力学与工程学报,2008,27(7):1362-1369.
    [29]黄明利,唐春安,朱万成.非均质岩桥对裂纹扩展贯通机制影响的数值分析[J].辽宁工程技术大学学报,2000,19(1):468-471.
    [30]方建勤.地下工程开挖灾害预警系统的研究[D].长沙:中南大学,2004.
    [31]罗一忠.大面积采空区失稳的重大危险源辨识[D].长沙:中南大学,2005.
    [32]何娇云.矿山采动灾害监测及控制技术研究[D].武汉:武汉理工大学,2007.
    [33]Webster R. J. CANMET offers Canadian industry a unique R&D Partner. AMC Journal,1993, (3):17-25.
    [34]RYDER J. A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of the South African Institute of Mining and Metallurgy, 1988,88(1):27-39.
    [35]GURTUNCA R. G, ADAMS D. J. Determination of the in situ modulus of the rockmass by the use of backfill measurements[J]. Journal of the South African Institute of Mining and Metallurgy,1991,91(3):81-88.
    [36]Dotrison D. M.高战敏译.未来的深部硬岩开采[J].国外金属矿山,1997,(2):26-32.
    [37]郭立.深部硬岩岩爆倾向性动态预测模型及其应用[D].长沙:中南大学,2004.
    [38]李庶林.论我国金属矿山地质灾害与防治对策[J].中国地质灾害与防治学报,2002,13(4):44-52.
    [39]王李管,宋明军,贾明涛,尚晓明,龚元翔.深部矿床开采致灾环境监控技术研究[J].金属矿山,2007,(9):13-15.
    [40]冯肇瑞,崔国璋.安全系统工程[M].北京:冶金工业出版社,1987.
    [41]林泽炎.人为事故预防学[M].哈尔滨:黑龙江教育出版社,1998.
    [42]赵朝义,丁玉兰.人为失误及其辨识技术的研究[J].工业安全与环保,2002,28,(5):40-6.
    [43]陈宝智.危险源辨识、控制及评价[M].成都:四川科学技术出版社,1996.
    [44]徐向东.关于安全意识的哲学研究[J].中国安全科学学报,2003,13(7):1-3.
    [45]毛海峰.有意违章行为动因分析与控制对策探讨[J].中国安全科学学报,2003,13(2):18-21.
    [46]黄海武.人的不安全行为干预技术[J].安全与健康,2002,(12):31-32
    [47]罗云,程五一.现代安全管理[M].北京:化学工业山版社,2004.
    [48]陈宝智.安全管理[M].天津:天津大学出版社,1999.
    [49]刘铁忠,李志祥,王梓薇.企业安全管理能力的概念框架研究[J].商业时代,2006,(24):50-52.
    [50]Birgitte Rasmussena, Kurt Petersenb E. Plant functional modeling as a basis for assessing the impact of management on plant safety[J]. Reliability Engineer and System Safety,1999,201-207.
    [51]Alison Vredenburgh G. Organizational safety:which management practices are most effective in reducing employee injury rates?[J]. Journal of Safety Reseach, 2002, (33):259-276.
    [52]Mcdonald N., Corrigan S., Daly C., Cromie S. Safety management system and safety culture in aircraft maintenance organizations[J]. Safety Science,2000, (34):151-176.
    [53]Goetsch D. L. Occupational Safety and health for Technologist, Engineers, Managers[M]. New Jersey:Prentice-hall.1999.334-345.
    [54]Nick Hurst W, Stephen Young. Measures of safety management performance and attitudes to safety at six major hazard sites[J]. J. Loss Press Process Inc.,1996, 9(2):161-172.
    [55]Kelly T. P., McDermid J. A. systematic approach to safety case maintenance[J]. Reliability Engineering and System Safety,2001, (71):271-184.
    [56]Neil Mitchison, Georgios A. Papadak is safety management system under Service: Implementation and assessment J]. Journal of Loss Prevention in the Process Industries,1999, (12):43-51.
    [57]David Rechenthin. Project safety as a sustain competitive advantage[J]. Journal of safety research,2004, (35):297-308.
    [58]David D. M. Creating safer workerplace assessing the determinants and role of safety climate[J]. Journal of safety research,2004, (35):297-308.
    [59]Seth Ayim Gyekye. Causal attribution of ghanaian industrial workers for accident occurrence:miners and non-miners perspective[J]. Journal of safety research, 2003, (34):533-538.
    [60]Heinrich H. Industrial Accident Prevention[M]. NewYork:McGraw-Hill.1980: 112-123.
    [61]于明,孙林岩,崔凯.人机系统警觉性与安全性的非线性演化研究[J].工业工程与管理,2008,(5):54-57.
    [62]孟爱国,孙海山.从人机系统角度出发谈露天开采作业中的规程特性[J].能源技术与管理,2008,(2):66-68.
    [63]刘国强,陈国明.关于复杂人机系统个人安全能力的探讨[J].安全,2011,(2): 12-15.
    [64]王泽申.关于人机系统安全分析中人的因素的一些探讨[J].中国安全科学学报,1997,2(7):26-30.
    [65]张涛,陈建宏,王斌,周智勇.矿山安全综合评价模糊数学模型及其应用[J].金属矿山,2006,(2):146-149.
    [66]Terano T., Murayama Y., Akiyama N. Human reliability and safety evaluation of man-machine systems[J]. Automatica,2007,19(6):719-722.
    [67]Kontogiannis T., Leopoulos V., Marmaras N. A comparison of accident analysis techniques for safety-critical man-machine systems[J]. Automatica,2007,19(6): 719-722.
    [68]Cacciabue P. C. Evaluation of human factors and man-machine problems in the safety of nuclear power plants[J].Nuclear Engineering and Design,2006,109(3): 417-431.
    [69]石红红,王志宏.矿山安全生产能力模糊综合评价[J].辽宁工程技术大学学报,2005,(12):48-50.
    [70]荆全忠,姜秀慧,杨鉴淞,周延峰.基于层次分析法(AHP)的煤矿安全生产能力指标体系研究[J].中国安全科学学报,2006,9(16):74-79.
    [71]张婕,曹西京,杨玮,席俭飞.基于层次分析法的安全生产能力研究[J].轻工机械,2010,28(2):107-110.
    [72]吴爱祥,郭立,刘湘平,周科平.矿业联合企业开采最优生产能力的确定[J].有色金属,2003,55(2):101-104.
    [73]陈晓慧,孙涛.我国煤层气开发的合理生产规模研究[J].中国矿业,2002,11(3):43-45.
    [74]李淑华,张淑艳.企业最佳生产规模的确定[J].商业研究,2004,(295):6-8.
    [75]张智明,才庆祥,周伟,工博文,威华.露天矿生产规模的确定模型[J].金属矿山,2011,425(11):5-8.
    [76]ZHENG Ming-gui, CAI Si-jing.An intelligent system for calculating the scale of rational, enlarged production of an underground non-ferrous metal mine[J]. Journal of China University of Mining and Technology,2008,18(2):214-219.
    [77]Asad M.W, Dimitrakopoulos R. Optimal production scale of open pit mining operations with uncertain metal supply and long-term stockpiles[J].Resources Policy,2012,37(1):81-89.
    [78]Hsua C., Li H. An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale[J]. International Journal of Production Economics,2009,118(2):486-500.
    [79]LUO Yi-zhong, WU Ai-xiang, LIU Xiang-ping, WANG Hong-jiang. Stability and reliability of pit slopes in surface mining combined with under ground mining in Tonglushan mine[J]. Journal of Central South University of Technology,2004, 11(4):434-439.
    [80]高峰.顶板诱导崩落机理及次生灾变链式效应控制研究[D].长沙:中南大学,2009:56-59.
    [81]刘艳红,罗周全.采空区失稳的安全流变-突变理论分析[J].工业安全与环保,2009,35(9):5-7.
    [82]罗周全,谭浪浪,邓俏.基于FLAC3D-RSM的采空区失稳概率分析及验证[J].科技导报,2012,30(10):43-47.
    [83]谭浪浪,罗周全,邓俏.某典型采空区失稳模式分析及可视化验证[J].矿业工程研究,2011,26(4):40-43,
    [84]刘杰,万文,赵延林.缓倾斜中厚矿体采空区稳定性数值模拟分析[J].矿业工程研究,2011,26(4):44-47.
    [85]HU Yu-xi,LI Xi-bing. Bayes discriminant analysis method to identify risky of complicated goaf in mines and its application[J].Transactions of Nonferrous Metals Society of China,2012,22(2):425-431.
    [86]KONG Hai-ling, MIAO Xie-xing, WANG Lu-zhen, ZHANG Yu, CHEN Zhan-qing. Analysis of the Harmfulness of Water-Inrush from Coal Seam Floor Based on Seepage Instability Theory[J]. Journal of China University of Mining and Technology,2007,17(4):453-458.
    [87]陈庆发,周科平,胡建华.高峰矿105号矿体碎裂矿段采空区稳定性离散元分析[J].矿冶工程,2009,29(4):14-17.
    [88]罗红波,矫兴艳,王冉.矿井人-机-环境系统安全评价[J].矿业快报,2007,(12):39-42.
    [89]冯畅,赵诺,赵廷弟.人-机-环系统安全风险模型研究[J].新技术新工艺,2009,(6):15-20.
    [90]国汉君.内-外因事故致因理论与实现安全生产的途径[J].中国安全科学学报,2007,17(7):46-53.
    [91]焦强.矿井人-机-环境系统的本质安全化研究[D].西安:西安科技大学,2010.
    [92]卜昌森,程卫民,周刚,王刚,孙鑫.人-机-环境系统工程安全分析与评价 研究[J].工业安全与环保,2009,35(2):44-46.
    [93]彭信山.综掘工作面复杂条件下人环境耦合关系研究[D].焦作:河南理工大学,2011.
    [94]Findler N. V. A predictive man-machine environment for training and evaluating control operators[J]. Engineering Applications of Artificial Intelligence,2002, 5(5):441-450.
    [95]Proctor C. L., Khalid T. M. A quantitative approach to performance evaluation of man-machine systems having a stochastic environment[J]. International Journal of Man-Machine Studies,2000,3(2):127-140.
    [96]桂祥友,郁钟铭,孟絮屹.贵州煤矿瓦斯涌出量灰色预测的应用[J].采矿与安全工程学报,2007,24(4):449-453.
    [97]李响,贾明涛,王李管,白云飞.基于蒙特卡罗随机模拟的矿岩崩落块度预测研究[J].岩土力学,2009,30(4):1186-1190.
    [98]温彦良,李胜,常来山.基于模式识别的煤与瓦斯突出危险性概率预测[J].煤炭工程,2011,(2):79-81.
    [99]张东明,尹光志,魏作安.重庆某矿开采过程中岩层移动的分形特征及其预测[J].有色金属,2003,55(4):131-134.
    [100]赵国彦.金属矿隐覆采空区探测及其稳定性预测理论研究[D].长沙:中南大学,2010.
    [101]袁海平,吴祥松,温广军.流变断裂型矿岩自然崩落速率模拟预测[J].采矿与安全工程学报,2008,25(3):341-347.
    [102]程艳琴,工连国,张连福,吴宇.突变学理论在桃园矿10煤底板突水预测中的应用[J].煤田地质与勘探,2007,35(1):45-48.
    [103]邓红卫,崔秀敬,高峰,李杰林.残矿回采地压安全预警系统的构建方法与应用研究[J].中国安全科学学报,2010,20(10):129-134.
    [104]周科平,苏家红,古德生,史秀志,向仁军.复杂充填体下矿体开采安全顶板厚度非线性预测方法[J].中南大学学报(自然科学版),2005,36(6):1094-1099.
    [105]刘钦,刘志祥,李地元,李威.金属矿开采岩层移动角预测知识库模型及其工程应用[J].中南大学学报(自然科学版),2011,42(8):2446-2451.
    [106]贺桂成,肖富国,张志军,丁德馨.康家湾矿含水层下采场导水裂隙带发育高度预测[J].采矿与安全工程学报,2011,28(1):122-126.
    [107]周福宝,李金海.煤矿火区启封后复燃预测的BP神经网络模型[J].采矿与 安全工程学报,2010,27(4):494-499.
    [108]李文秀,乔金丽,杨洪海,梅松华,房家庭,杨成林.翔宇磷矿山体下开采安全预测与技术决策[J].岩石力学与工程学报,2004,23(18):3185-3189.
    [109]柏熙,林桂玲,李成文,陈于金,吴正茂.基于神经网络和遗传算法的智能监控系统的数学建模[J].矿业安全与环保,2006,33(1):15-17.
    [100]William O'Leary. Wastewater recycling and environmental constraints at a base metal mine and process facilities[J]. Water Science and Technology,1996, 33(10-11):371-379.
    [101]Herr J. W. Modelling acid mine drainage on a watershed scale for TMDL calculations[J]. Journal of the American Water Resources Association,2003, 39(2):289-300.
    [102]Song W. D., Kuang Z. X., Yin X. P. Study on optimized production scale in transition from surface to under-ground mining at east open-pit, Daye iron mine[J]. Metal Mine,2004, (12):9-11,22.
    [103]王文铭,颜培争.基于神经网络的矿山企业智能诊断专家系统[J].中国矿业,2004,13(8):65-67,73.
    [104]陈孝华,魏一鸣,叶家冕,黄德铺,杨德全.地下矿山采掘计划神经网络专家系统研究[J].云南冶金,2002,31(5):1-4,9.
    [105]ZHENG Ming-gui, CAI Si-jing. An intelligent system for calculating the scale of rational, enlarged production of an underground non-ferrous metal mine[J]. Journal of China University of Mining and Technology,2008,18(2):214-219.
    [106]Wang Y. H., Xu J., Wang G, et al. Assessment for production and operation ability of medium and small-sized enterprises based on neural network[J]. Journal of China University of Mining & Technology,2006,16(3):376-380.
    [107]鄂加强,李志鹏,袁丁,滕达,雷吉平,龚金科.新型双向硬密封旋球阀多学科设计优化[J].中南大学学报(自然科学版),2010,41(2):45-52.
    [108]谢常清,鄂加强,彭雨,龚金科,赵延明.制动电阻器多学科设计优化[J].铁道学报,2008,30(5):119-124.
    [109]袁文华,鄂加强,龚金科,王春华,彭雨.自适应粒子群优化的高压共轨燃油喷嘴多学科优化设计[J].内燃机工程,2009,30(5):63-67.
    [110]Sobieszcanski-sobieski J. A Step from Hierarchic to Nonhierarchic System[R] NASA/CP-3031,1989.
    [111]Renaud J. E. Improved Coordination in Nonhierarchic System Optimization[J]. AIAAJournal,1993,131(12):2367-2373.
    [112]Sellar R. S. Response Surface Based Concurrent Subspace Optimization for Multidisciplinary System Design[J]. AIAA-96-0714,1996.
    [113]Bolebaum C. L. Formal and Heuristic System Decomposition in Structural Optimization[J]. NASA/CR-4413,1991.
    [114]Braun R.D. Use of the Collaborative Optimization Architecture for Launch Vehicle [J]. AIAA-96-4018,1996
    [115]McAllister C. D., Simpson T. W. Multidisciplinary robust design optimization of an internal combustion engine[J]. Journal of Mechanical Design,2003,125(1): 124-130.
    [116]Suh M W, Shim M B, Kim M S. Multidisciplinary design optimization of engine mounts with consideration of the driveline[A]. Proceedings of the institution of mechanical engineers part D-Journal of automobile engineering[C]. 2003:217 (D2):107-114.
    [117]余雄庆,姚卫星.关于多学科设计优化计算框架的探讨[J].机械科学与技术.2003,23(3):286-289.
    [118]龚春林.多学科设计优化技术研究[D].西安:西北工业大学,2004.
    [119]陈琪峰,李晓斌,戴金海.导弹总体参数优化设计的合作协调进化MDO算法[J].国防科技大学学报,2001,23(5):9-11.
    [120]谷良贤,龚春林.多学科设计集成环境的模式和应用.宇航学报,2004,(4):459-462.
    [121]胡峪,李为吉.飞机多学科设计的分级优化方法[[J].西北工业大学学报.2001,19(1):144-147.
    [122]吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科优化设计[J].航空动力学报,2005,(10):795-803.
    [123]李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计[J].航空动力学报,2006,21(1):13-18.
    [124]舒彪.基于多学科涡轮叶片气动设计优化[J].南京航空航天大学学报,2005,37(6):714-719.
    [125]陈琪锋.导弹总体参数优化设计的合作协同进化MDO算法[J].国防科技大学学报,2001,23(5):9-12.
    [126]李响.飞行器多学科设计优化的三种基本类型及协同设计方法[J].宇航学报,2005,26(6):693-697.
    [127]Yang Hai-Dong, E Jia-Qiang, Qu Ting. Multidisciplinary design optimization for air-condition production system based on multi-agent technique[J]. Journal of Central South University of Technology,2012,19(2):527-536.
    [128]吴宝贵.汽车设计的多学科设计优化方法[J].应用科学学报,2005,23(4):420-423.
    [129]秦东晨.汽车车身的多学科优化设计(MDO)研究[J].现代机械,2004(5):4-6.
    [130]陈亮.多学科协同设计的约束网络模型研究[J].中国制造业信息化,2005,34(9): 98-102.
    [131]陈尹梅.轿车空调制冷系统仿真平台应用研究[D].长沙:湖南大学,2008.
    [132]Jiaqiang E, Chunhua WANG, Yaonan WANG, Jinke GONG. A new adaptive mutative scale chaos optimization algorithm and its application[J]. Journal of Control Theory & Applications,2008,6(2):141-145.
    [133]杨海东,鄂加强.自适应变尺度混沌免疫优化算法及其应用[J].控制理论与应用,2009,26(10):1069-1074.
    [134]袁大祥.论动态安全评价[J].中国安全科学学报,2003,13(5):38-40.
    [135]Guastello S. J. Nonlinear dynamics, complex systems and occupational accidents[J]. Human Factors and Ergonomics in Manufacturing,2003,13(4): 293-304.
    [136]刘国强,陈国明.关于复杂人机系统个人安全能力的探讨[J].安全,2011,(2):12-15.
    [137]史秀志,陆广,张舒.金属矿山地下开采系统的风险管理研究[J].安全与环境工程,2008,15(1):108-111.
    [138]时保,张德存,盖明久.微分方程理论及其应用[M].北京:国防工业出版社,2005.
    [139]王树禾.微分方程模型与混沌[M].合肥:中国科学技术大学出版社,1999.
    [140]王爽英,吴超,左红艳.中小型煤矿生产安全模糊层次分析评价模型及其应用[J].中南大学学报(自然科学版),2010,41(5):1914-1918.
    [141]王彬.熵与信息[M].西安:西安交通大学出版社,1994.
    [142]里夫金,霍华德(美).熵,一种新的世界观[M].上海:上海译文出版社,1986.
    [143]梁灿彬.广义热力学第二定律[J].大学物理,1983,(12):24-26.
    [144]阎康年.热力学第二定律和热寂说的起源与发展[J].大学物理,1986,(2):126.
    [145]周善东.熵与热力学定律的关系[J].广西物理,1996,(2):11-13.
    [146]张学文.物理场的熵及其自发减小现象[J].自然杂志,1988,(11):847-850,812.
    [147]方兆灶.熵概念的泛化[J].自然杂志,1984,(2):91-97.
    [148]尹佳斌.熵增加原理在求最大功问题中的应用[J].大学物理,1990,(1):45-48.
    [149]楚海林.基于熵的工业生产环境影响问题研究[D].西南交通大学,2005.
    [150]许开立,陈宝智.人-机系统安全评价的模糊数学模型及应用[J].中南工学院学报,1999,13(2):49-53.
    [151]Meesad P., Yen G. G. Accuracy, comprehensibility and completeness evaluation of a fuzzy expert system[J].International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2003,11(4):445-466.
    [152]Alexander D. General Entropy of General Measures[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2002,10(3):213-225.
    [153]许开立,董立菊,陈宝智,陈全.基于模糊熵的安全等级隶属度向量的离散化方法[J].中国有色金属学报,2000,(4):139-143.
    [154]刘爱华,施式亮,吴超.基于模糊模式识别的模糊综合评价在高层建筑火灾危险评价中的应用[J].中国安全科学学报,2005,15(11):107-111.
    [155]Ropers S. I., Greenaway B. A. UK Perspective on the development of marine ecosystem indicators [J]. Marine Pollution Bulletin,2005,50(1):9-19.
    [156]Wilcoxb. Ecosystem health in practice; emerging areas of application in environment and human health[J]. Ecosystem Health,2005,7(4):318-325.
    [157]Joneso A. H., Voulvoulisn, Ixster J. N. Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment J]. Critical Reviews in Toxicology,2004,34(4):335-350.
    [158]Jerry M. S., Mariano B., Annalee Y. Developing ecosystem health indicators in centro habana:A community-based approach[J]. Ecosystem Health,2001,7(1): 15-26.
    [159]LI Shu-qing, YAN Zhi, DUAN Yu. Application of Risk of Matrix in Classification of Dangerous and Hazardous Factors[J]. China Safety Science Journal,2010,20(4):83-87.
    [160]Horng Ray-Hua, Lin Re-Ching, Chiang Yi-Chen, Chuang Bing-Han, Hu Hung-Lieh, Hsu Chen-Peng. Failure modes and effects analysis for high-power GaN-based light-emitting diodes package technology [J]. Microelectronics Reliability,2012,52(5):818-821.
    [161]Moriyama T., Ohtani H. Risk assessment tools incorporating human error probabilities in the Japanese small-sized establishment[J]. Safety Science,2009, 47(10):1379-1397.
    [162]Dunj6 J., Fthenakis V., Vilchez J. A., Arnaldos J. Hazard and operability (HAZOP) analysis. A literature review[J]. Journal of Hazardous Materials,2010, 173(1-3):19-32.
    [163]Ferdous R., Khan F., Sadiq R., Amyotte P., Veitch B. Handling data uncertainties in event tree analysis[J]. Process Safety and Environmental Protection,2009, 87(5):283-292.
    [164]Doytchev D. E., Szwillus G. Combining task analysis and fault tree analysis for accident and incident analysis:A case study from Bulgaria[J]. Accident Analysis & Prevention,2009,41(6):1172-1179.
    [165]SAFARI M, ATAEI M, KHALOKAKAIE R., KARAMOZIAN M. Mineral processing plant location using the analytic hierarchy process-a case study:the Sangan iron ore mine (phase 1)[J]. Mining Science and Technology(China), 2010,20(5):691-695.
    [166]颜兆林.系统安全性分析技术研究[D].长沙:国防科学技术大学,2001.
    [167]ZHONG Mao-hua, CHEN Bao-zhi. Study in Dynamic Risk Classification of Major Hazards Based on Neural Networks[J]. China Safety Science Journal, 1997,7(2):6-10.
    [168]Vogel D. D. A neural network model of memory and higher cognitive functions[J]. International Journal of Psychophysiology,2005,55(1):3-21.
    [169]田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006.
    [170]Roh S. B., Oh S. K., Pedrycz W. Design of fuzzy radial basis function-based polynomial neural networks[J]. Fuzzy Sets and Systems,2011,185(1):15-37.
    [171]Li Jian-ping, Du Chang-long, Teng Guang-lin. Experimental of pumping gangue into the mined-out area[J]. Procedia Earth and Planetary Science,2009,1(1): 760-765.
    [172]柴炜,饶运章,黄奔文.地下大面积采空区失稳研究[J].中国矿山工程,2008,37(3):27-30.
    [173]Miao Sheng-jun, Lai Xing-ping, Zhao Xing-guang, Ren Fen-hua. Simulation experiment of AE-based localization damage and deformation characteristic on covering rock in mined-out area[J]. International Journal of Minerals, Metallurgy and Materials,2009,16(3):255-260.
    [174]Meck M.L., Atlhopheng J., Masamba W.R.L., Ringrose S. Pollution implications of Save River water from weathering and dissolution of metal hosting minerals at Dorowa phosphate mine, Zimbabwe[J]. Physics and Chemistry of the Earth, Parts A/B/C,2010,35(13-14):679-685.
    [175]程卫民,苏绍桂,辛嵩.系统安全性预测模型与系统的建立[J].辽宁工程技术大学学报,2003,22(4):533-535.
    [176]曾康,胡乃联.煤矿系统安全预测模型与组合预测[J].煤炭学报,2008,33(10):1122-1125.
    [177]刘素兵.组合预测模型的构建及其应用[D].西安:西安理工大学,2008.
    [178]Bates J. M., Granger C. W. J.. Combination of Forecasts[J]. Operations Research Quarterly,1969,20 (4):451-468.
    [179]AKSU C., GUNTER S. I. An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts[J]. International Journal of Forecasting, 1992, (8):27-43.
    [180]HARVEY N., HARRIES C. Effects of judges'forecasting on their later combination of forecasts for the same outcomes[J]. International Journal of Forecasting,2004,20(3):391-409.
    [181]PALIT A. K., POPOVIC D. Nonlinear Combination of Forecasts Using Artificial Neural Network[J]. Fuzzy Logic and Neuro-Fuzzy Approaches,2000 IEEE,566-561.
    [182]ZOU Hui, YANG Yu-hong. Combining time series models for forecasting[J]. International Journal of Forecasting,2004,20(1):69-84.
    [183]TANG X. W., ZHOU Z. F., SHI Y. The Variable Weighted Functions of Combined Forecasting[J]. Computers & Mathematics With Application,2003, 45(4-5):723-730.
    [184]CHEN Yu, ZHANG Qi-sen. Application of functional-link neural network in evaluation of sublayer suspension based on FWD test[J]. Journal of Central South University of Technology,2004,11(2):225-228.
    [185]鄂加强,张华美,龚金科,王耀南.基于函数链神经网络的管道煤气流量计量系统[J].中南大学学报(自然科学版),2006,37(5):976-980.
    [186]胡力耘,谷强,卢杰持.函数链神经网络在火箭大喷管加工中的应用[J].大连理工大学学报,1997,37(4):443-446.
    [187]鄂加强,王耀南,龚金科,李春生.一种新的非线性模糊自适应变权重组合预测模型[J].模糊系统与数学,2006,20(4):123-127.
    [188]TSEKOURAS G. J., DIALYNAS E. N., HATZIARGYRIOU N. D., KAVATZA S. A non-linear multivariable regression model for midterm energy forecasting of power systems[J]. Electric Power Systems Research,2007,77(12): 1560-1568.
    [189]BAR-GERA Hillel, BOYCE David. Solving a non-convex combined travel forecasting model by the method of successive averages with constant step sizes[J]. Transportation Research Part B:Methodological,2006,40(5):351-367.
    [190]曹庆林,余克圣,桑玉发.采场冒顶灾害的声发射预报技术[J].中国有色金属学报,1996,6(2):7-12.
    [191]傅鹤林,桑玉发.采场冒顶的声发射预测预报[J].岩石力学与工程学报,1996,15(2):109-114.
    [192]黄仁东,余健,徐国元,刘敦文.声发射技术在湘西金矿深井安全开采中的应用[J].中国安全科学学报,2004,14(1):101-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700