用户名: 密码: 验证码:
煤层气水平井排采控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面工程的制约与采收面积的需求,使水平井成为煤层气的主要开采方式和开发的发展趋势。然而,水平井在开采试验中产量低、衰减快,除了煤层气储层低含气饱和度、低储层压力、低渗透率等客观条件制约外,排采强度的不合理是影响煤层气产量的一个决定性因素。煤层气储层渗透率在排采过程处于动态变化,排采强度也需作相应的调整和优化。目前对煤层气水平井排采流体的动态变化特征仍认识不清,排采强度调整不当,导致产量不稳定、产能低。因此,通过研究煤层气水平井的渗流特征,制定合理的排采强度,为水平井的排采制度优化提供参考和依据,对于提高煤层气水平井,指导我国煤层气开采具有重要意义。
     本文通过对煤层气储层特征及产出机理进行分析研究,从煤层气的产出机理与井中流体相态变化的三个阶段,分析不同排采阶段煤层气、水的渗流特征,推导了煤层气水平井排采二维势稳态分布,证实了其等势面为一簇以水平井两端点为焦点的椭圆面。建立了水平井不同排采阶段煤层气储层中水、气-水动态变化模型,采用模型化的方法分析不同阶段排水量对煤层气井产能的影响,同时,建立了饱和水单相流、非饱和单相流和气-水两相流阶段的排采强度模型。实例分析LL-01PW水平井不同排采阶段的排采特征,给出了不同排采阶段最优化排采强度。
     研究结果认为总产水量和日产水量是地层供水能力和排采强度的综合反映,井底压力变化则是煤层气井排采的一个关键数据,是排采强度直接作用的结果,初步建立并验证了水平井不同排采阶段排采强度模型。提出了煤层气水平井开采中,需根据研究区煤层气储层特征,建立开采区的排采强度模型,通过模型分析不同排采阶段压力传递规律和井底压力变化特征,调整排采强度,控制井底压力的变化,增加采收面积,提高煤层气水平井的产能。
Horizontal wells have become a dominating recovery method and development tendency on CBM exploitation, because of restriction of surface engineering and demanding for harvesting area. However, horizontal wells have low production and fast attenuation in experiment, unreasonable production intensity is a determining factor, besids restriction of CBM reservoir from external condition of low gas saturation, low reservoir pressure, low permeability and so on. CBM reservoir permeability is a dynamic change in the production, so production intensity should be made corresponding adjustment and optimization.At present, there’s no clear understanding on the dynamic change characteristics of production fluid in CBM horizontal wells, and adjusting production intensity is unreasonable, which lead to unstable yield and low productivity. So the study on the restriction of fluid productivity based on reservoir characteristics is important to guide CBM exploitation and increase CBM exploitation benefit in our county.
     According to the analyze and research of CBM reservoir characteristics and mechanism production, based on CBM mechanism production and three stages of a phase behavior change in a well, analysised of different stages of CBM production and water flow characteristics, and two-dimensional potential steady state distribution of horizontal CBM production wells is derived, and the equipotential surface are a cluster elliptic surface wich its focus is the horizontal well two endpoints has been proved. Established water and gas-water dynamics model at different stages of CMB horizontal well production, analysis the effect of CBM wells productivity at different stages displacement by using modeling method. At the same time, the production intensity model of single-phase flow saturated water, single-phase flow in unsaturated and gas-water two-phase flow are established. Example analysis of different production stages characteristics on LL-01PW horizontal well. And given the different stages optimized production intensity.
     The results obtained indicated that daily water production and accumulative water production are the comprehensive reflection of stratigraphy water supply capacity and production intensity, and bottom hole pressure change is one key data to CBM horizontal wells production,and it is the result of direct effect of production intensity. Production intensity models have been initially established and validated on horizontal wells different production stages, acorrding to study area CBM reservoir characteristics and initially established. In the exploitation of horizontal CBM wells, improving the productivity of horizontal CBM wells by analyzing the pressure transfer law of different stages of production and variation of bottom hole pressure change with the model, regularizing the production intensity, controlling the changes in bottom hole pressure, increasing the harvesting area of horizontal CBM wells.
引文
[1]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京,煤炭工业出版社,1999
    [2]国土资源部油气资源战略研究中心编.世界油气资源信息手册(2008)[M].北京:地质出版社,2009,3
    [3]张新民,庄军,张遂安等.中国煤层气地质与资源评价[M].北京:科学出版社,2002
    [4]谭国庆,周心权等.近年来我国重大和特别重大瓦斯爆炸事故的新特点[J].中国煤炭. 2009,35(4) :6-9
    [5]鲜学福.我国煤层气开采利用现状及其产业化展望[J],重庆大学学报,2000
    [6]倪小明,王延斌等.煤层气井排采初期合理排采强度的确定方法[J].西南石油大学学报.2007,29(6):101-102
    [7]倪小明,苏现波等.煤储层渗透率与煤层气垂直井排采曲线关系[J].煤炭学报,2009, 34(9):1196-1197
    [8] Harpalani S, Shraufnagel R A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal [ J ]. Fuel, 1990, 69 (4):551-556
    [9] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study [J].Adsorption rate modeling Fue1,1999,78 (11):1345-1362
    [10] Bustin R M. Importance of fabric and composition on the stress sensitivity of permeability in some coal, Northern Sydney Basin, Australia: Relevance to CBM Exploitation [J].AAPG Bulletin,1997,81 (11):171-184
    [11] Levine J R 1996.Model study of the influence of matrix shrinkage on absolute permeability of coalbed reservoirs[J].Geological Society Publication.(199):197-212
    [12] Shi,J.Q.,Duruca,S.,2005:A model for changes in coalbed permeability during primary and enhanced methane recovery, SPE Reservoir Evaluation&Engineering August,291-299
    [13] Sawyer W K, Paul G W.1990.Schraufnagle RA. Development and application of 3D coalbed simulator. Paper CIM/SPE,90-119
    [14] Palmer I, Mansoori J.1998.How permeability depends upon stress and pore pressure in coal be:A new model [M],SPE BEE.539-544
    [15] Palmer I D,Spiter S W. Coalbed methane well completions and simulations [J].AAPG Studies in Geology,1993,38:303-309
    [16] Warrenh J E,Root P J.The behavior of naturally fractured reservoirs[J].Society of Petroleum Engineers Journal 1963,3:245-255
    [17] Ertekin T.,King G.R. Development of coal gas production simulators and mathematical models for well test strategies.Topical report under GRI contract number 5081-321-0457, July,1983
    [18] Kolesar J.E.,Ertekin T,Obut S.T. The unsteady stature of sorption and diffusion phenomena in the micropore structure of coal:Part1—Theory and mathematical formulation. SPE. Form. Eval.,1990
    [19] Gray I. Reservoir engineering in coal seams: Part1—The physical process of gas storage and movement in coal seams. SPE Reservoir Engineering, Feb.1987:28-34
    [20] Gray I. Reservoir engineering in coal seams: Part2—Observations of gas movement in coal seams. SPE Reservoir Engineering, Feb.1987:28-34
    [21]张卫东,煤层气水平井开发技术现状及发展趋势[J].中国煤层气,2008, 5(4):19-22
    [22]张先敏.煤层气储层数值模拟及开采方式研究[D].东营:中国石油大学(华东),2007,4:14-17
    [23]王起新,孙维吉等.煤层气运移双重介质气-水两相流数学模型及数值模拟[J].西安石油大学学报(自然科学版),2007,522(81)
    [24]赵阳升,杨栋,胡耀青等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报, 2001,26(5):455-458
    [25]宋岩,张新民.煤层气成藏机制及经济开采理论基础[M].北京:科学出版社,2005
    [26]薛改珍,金学锋等.沁水盆地煤层气安全钻井工艺[J].石油钻探技术,2007,35(5):65-67
    [27]石书灿,李玉魁等.煤层气竖直压裂井与多分支水平井生产特征[J],西南石油大学学报(自然科学版)2009,31(1):48-52
    [28]马东民.煤层气井采气机理分析[J].西安科技学院学报,2003,23(2):156-158
    [29]王红岩,刘洪林,赵庆波等.煤层气富集成藏规律[M].北京:石油工业出版社,2005
    [30]赵群,王红岩,李景明等.快速排采对低渗透煤层气井产能伤害的机理研究[J].山东科技大学学报(自然版),2008:27(3)
    [31]秦勇,曾勇译.PalmerID,MetealfeRS,YeeD,R.Puri等著.煤层甲烷储层评价及生产技术[M].徐州:中国矿业大学生出版社,1996
    [32]韩月旺,苏现波.煤层气储层几何模型及其应用[J].焦作工学院学报:自然科学版,2004, 2(4):251-254
    [33]傅雪海,秦勇等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,(10)增刊(I):51-55
    [34]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社.2009
    [35]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学,1998,17(1):6-11
    [36]王平安.煤层甲烷赋存、输运机理及数值模拟研究[D].成都:西南石油学院,2002
    [37]王佛山.煤层气矿藏中水-气两相流作用关系的基本理论及试验研究[D],辽宁工程技术大学.2000,12
    [38] King C R, Ertekin T M. A surbey of mathenatical models related to methane production from coal seams[J].Part II: Non-Equilibrium Sorption Models. Proceedings of the 1989 CBM Symposium,1989:129-155
    [39]张遂安,叶建平,唐书桓等.煤对甲烷气体吸附-解吸机理的可逆性实验研究[J],天然气工业,2005,(1):44-48
    [40] Yang R T, Saunders J T. Adsorption of gases on coal and heated-treated coals at elevated temperature and pressure[J], Fuel,1985,64:616-620
    [41]桑树勋,朱炎铭,张井等.煤吸附气体的固气作用机理(II)—煤吸附气体的物理过程与理论模型[J],天然气工业,2005,(1):16-20
    [42]刘常洪,杨思敬.关于煤甲烷吸附体系吸附规律的研究[J].煤矿安全, 1992(4):1-5
    [43]聂百胜,何学秋等.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,(5): 14-17
    [44]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999, 24(6):566-570
    [45]谢克昌.煤的结构与反应性[M].科学出版社,2002
    [46]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:9-10
    [47]孙维吉.不同孔径下瓦斯流动理论及模型研究[D].抚顺:辽宁工程技术大学,2007
    [48]郝石生,陈章明,高耀斌等.天然气藏的形成和保存[M].北京:石油工业出版社,1995
    [49]傅广,吕延防编著.天然气扩散作用及其研究方法[M].北京:石油工业出版社,1999
    [50]刘想平.水平井向井流动态关系及其应用研究[D].中国石油天然气总公司石油勘探开发研究院,1998
    [51]袁迎中.水平井渗流理论及产能评价方法研究[D].西南石油大学,2009
    [52]翟云芳.渗流力学[M].北京:石油工业出版社,2003:13-30
    [53]张建国,雷光伦,张艳玉.油气层渗流力学[M].东营:中国石油大学出版社,2006:33-39
    [54]陶树,汤达帧,吕玉民.基于产能变化的煤储层渗透率动态变化定量-半定量化表征[A].2010年全国煤层气学术研讨会论文集-煤层气勘探开发理论与技术,411-416
    [55] M.J.Economides,C.W.Brand,and T.P.Friek,Well Congiguraton in AnisotroPic Reservoirs, SPE27980,1994
    [56]王红冬,张正喜,王海生.山西不同煤级储层有效渗透率的实验研究[J].中国煤炭,2010,36(10):103-106
    [57]陈元千.水平井产量公式的推导与对比[J].新疆石油地质,2009,29(1):68-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700