用户名: 密码: 验证码:
农杆菌介导无标记耐盐基因水稻高效转化系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界盐碱地面积约占世界总耕地面积的20%。由于干旱,不合理的灌溉以及化肥的过度使用,工业污染加剧,土壤盐碱化正不断扩大,可供耕种的土地面积正日趋减少。水稻是世界1/3人口的主食,但一直处于供不应求的状况,因此,提高水稻产量,改良稻米品质关系到人类的生存和发展。在盐碱地区,利用转基因手段来获得高耐盐的转基因水稻,推广具有广泛适应性的水稻耐盐优异品种,是开辟盐碱荒地和水稻增产的一个新增长点,目前运用最广泛的转基因水稻方法之一是农杆菌介导转化法。研究建立农杆菌介导耐盐基因高效水稻转化系统具有重要理论和实际指导意义。根据外源基因是耐盐基因的特点,建立农杆菌介导无选择标记耐盐基因水稻转化系统对转基因水稻商品化应用具有重大意义,避免了抗性标记基因可能存在对食品和生态环境的潜在危害。
     制约农杆菌介导转化水稻效率的主要因素是周期长和转化受体的状态。本文从这两方面入手,建立高效农杆菌介导转化水稻系统。根据外源基因是耐盐基因,探讨NaCl作为筛选剂可行性,但传统确定NaCl筛选浓度需要绘制NaCl浓度梯度对愈伤组织增重率之间的生长曲线。此过程比较繁琐且容易造成污染和误差。探讨利用NaCl对水稻种子发芽率的抑制效果作为确定水稻耐盐基因转化中愈伤组织筛选所需NaCl使用浓度的可行性,同时比较NaCl与潮霉素的筛选效果。最后,将两者有机结合,对不同类型的耐盐基因进行农杆菌介导无标记高效转化水稻,证明该系统是完全可行和有效的。主要实验结果如下:
     (1)快速诱导水稻愈伤组织的建立
     在32℃暗培养7天诱导水稻愈伤组织的快速诱导系统,日本晴、秀水11、,春江06的出愈率均在60%以上,分别是92.87%、82.63%、64.83%;在28℃光培养7天诱导水稻愈伤组织的快速诱导系统,日本晴、秀水11、春江06的出愈率均在70%以上分别是95.5%、93.07%、74.87%。愈伤表面突起,呈淡黄色,具有活力,完全符合转化的要求,从传统的愈伤组织诱导需要15天缩短到7天。
     (2)高效农杆菌介导转化水稻的建立
     采取热激处理,中华11、秀水11、春江06转化效率提高率分别在58.50%、21.96%、27.85%;液体共培养感染,三种水稻转化率提高有60.57%、23.54%、25.17%,建立高效农杆菌介导转化水稻。
     (3)简便获得NaCl有效筛选浓度法的建立
     根据常规的NaCl浓度梯度对愈伤组织增重率之间的生长曲线,确定愈伤组织增重抑制率为80%左右的NaCl浓度为合适的筛选浓度,此相应NaCl浓度对四个品种水稻种子的发芽抑制率均达50%以上。因此,可选取对水稻种子的发芽抑制率达50%以上的NaCl浓度作为耐盐基因转化中筛选时NaCl有效浓度的重要参考。
     (4)证明转化耐盐基因中NaCl筛选的有效性和可行性
     根据选取的外源基因为耐盐基因,以NaCl作为筛选剂,达到了筛选的目的,对中华11来说,NaCl筛选下转化率为11.98%,潮霉素筛选下转化率为14.43%;对秀水11来说,NaCl筛选下转化率为32.06%,潮霉素筛选下转化率为42.64%;对春江06来说,NaCl筛选下转化率为32.03%,潮霉素筛选下转化率为41.39%,说明NaCl筛选效果与潮霉素筛选相近。
     (5)安全高效农杆菌介导转化水稻的建立
     采用NaCl筛选与高效农杆菌介导转化水稻相结合,发现秀水11转化效率提高率29.9%,建立安全高效农杆菌介导转化水稻。
     (6)证明安全高效农杆菌介导耐盐基因转化日本晴的可行性和有效性
     选取不同耐盐机制的耐盐基因,将其作为外源基因采用建立的农杆菌介导无选择标记耐盐基因高效转化水稻系统对日本晴进行转化,实验表明:BADH、CMO、PKCC的转化效率均在40%以上,分别是44.03%、46.29%、44.68%,证明农杆菌介导无标记耐盐基因高效转化日本晴是可行和有效的。
     综上所述,安全,快速,高效的农杆菌介导耐盐基因转化水稻系统已经建立。即32℃光培养7天后,进行43℃水浴30min,冰浴1min,移至事先浸润液体共培基的三层滤纸上暗培养2天,转至含盐筛选培养基,进行筛选,植株再生的水稻转化系统。
Saline land area accounts for 20% of the total arable land in the world. Because of the drought, unreasonable irrigation and fertilizer overuse, aggravation pollution of industry, the area of soil salinization is unceasingly enlarging, available area for farming land is decreasing. Rice is about one-third of the world population's stable, the yield of the rice has been in the shortage of supply, therefore, increase the rice yield, improve the rice quality relate to human survival and development. High salt tolerance of transgenic rice and extensive adaptability of rice varieties through transgenic technologies are new points of utilization salinity-alkalinity desert and increasing rice yield. Currently one of the most widely applied rice transformation technologies is Agrobacterium mediated transformation. Establishment of high efficient Agrobacterium mediated salt tolerance gene transformation of rice has important theoretical and practical guiding significance. According to salt tolerant character, establishment of high efficient Agrobacterium mediated marker-free salt tolerance gene transformation of rice is of great significance to apply commercialization, and avoid the potential hazards of the resistance marker genes that may exist on food and the ecological environment.
     The shortcomings of transformation efficience of Agrobacterium mediated transformation are the long cycle and transformation receptor state. This paper establishes high efficient Agrobacterium mediated transformation rice system starting from the two facts. According to salt tolerant character, NaCl used as a screening agent is explored, but traditional determine NaCl screening concentration needs to draw the growth curve between NaCl concentration gradient and callus weight increase ratio. This process is tedious, easy to pollute, and prone to errors. The feasibility of determine NaCl screening concentration through NaCl inhibition effect to rice seed germination is explored, meanwhile screening effect of NaCl is compared with hygohycine. Finally, with high efficient Agrobacterium mediated marker-free various types of salt resistance gene transformation of rice, this system is proved completely feasible and effective. The experimental results are as follows:
     (1)Establish a high efficient Agrobacterium mediated transformation rice system
     It is found after 32℃dark culture 7d, the callus induction rate of Nipponbare, Xiushui 11 and Chunjiang 06 are 60%above,92.87%,83.62%,64.83% respectively; after 28℃light culture 7d, the callus induction rate of Nipponbare, Xiushui 11 and Chunjiang 06 are 70%above,95.5%,93.07%,74.87%respectively. Callus surface protuberant, pale yellow, vigor that fully meet the transformation requirements, the time for callus induction shorten from 15d to 7d.
     (2) Establish high efficient Agrobacterium-mediated transformation of rice
     Zhonghua 11, Xiushui 11 and Chunjiang 06 transformation efficiency improve rate are 58.50%,21.96%,27.85%with heat shock treatment; Zhonghua 11, Xiushui 11 and Chunjiang 06 transformation efficiency improve rate are 60.57%,23.54%,25.17%with liquid co-culture infection, efficient Agrobacterium-mediated transformation rice is established.
     (3)Establish a Simple selection method of effective screening concentration of NaCl
     According to the growth curve between NaCl concentration gradient and callus weight increase ratio, it is showed when the weight gain inhibition rate reaches 80%, NaCl concentration appropriate for screening, the same as NaCl concentration when seed germination inhibition rate by 50%or more. Therefore, NaCl concentrations when seed germination inhibition rate by 50%as an important reference for screening in salt resistance genes transformation.
     (4) NaCl screening in salt-tolerant gene transformation is effective and feasible
     Transformation effect of NaCl as screening agent is compared with hygohycine. For Zhonghua 11, the transformation efficient of NaCl screening is 11.98%, and hygohycine is 14.43%; For Xiushui 11, the transformation efficient of NaCl screening is 32.06%, and hygohycine is 42.64%; For Chunjiang 06, the transformation efficient of NaCl screening is 32.03%, and hygohycine is 41.39%, which prove NaCl screening is feasible and effective.
     (5)Establish safe and high effective Agrobacterium mediated transformation of rice
     Adopted NaCl screening and high efficient agrobacterium-mediated transformation rice combination, it is found Xiushui 11's transformation efficiency improving rate is 29.9%, safe and high effective Agrobacterium mediated transformation of rice is established.
     (6) Safe and high effective Agrobacterium mediated salt-tolerant gene transformation of Nipponbare is feasible and effective
     Choosing salt resistance genes of different salt resistance mechanisms as the exogenous gene using Agrobacterium mediated marker-free salt resistance gene transformation of Nipponbare, the results show that the transformation efficiency of BADH, CMO, PKCC are all above 40%, respectively 44.03%,46.29%,44.68%, which proof Agrobacterium-mediated marker-free salt resistant gene transformation is feasible and effective.
     All the results suggest that:safe, fast and efficient Agrobacterium mediated salt resistance gene transformation rice system has been established:callus after 32℃light training for 7d,43℃water-bath 30min, ice bath beforehand 1min, moved to three-layer filter paper infiltrated liquid co-culture medium on dark for 2d, turn to salt screening medium, and plantlet regeneration.
引文
[1]苏宁,万向元,翟虎渠,等.功能型水稻研究现状和发展趋向[J].中国农业科学,2007,40(3):433-439
    [2]谢廉一,吴岱融,胡凯康.利用简单重复序列标记建立台湾主要粳稻品种的鉴别技术[J].植物种苗,2007,9(2):25-29
    [3]陶龙兴,张雪琴,沈波,等.水稻与非洲狼尾草体细胞融合再生植株的光合及农艺性状分析[J].中国水稻科学,2008,22(3):285-289
    [4]化青报,翟晓巧,段艳芳.木本植物悬浮细胞培养影响因素研究[J].河南林业科技,2008,28(2):13-15,22
    [5]Uchimiya H, Fushimi T, Hashimoto H, et al. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L) [J]. Molecular and General Genetics,1986,204(2):204-207
    [6]王紫萱,易自力,王志成,等.带npt-Ⅱ基因转基因水稻快速检测技术的建立[J].遗传,2007,29(4):499-507
    [7]唐丁,郭龙彪,钱前.水稻转基因技术与转基因水稻[J].中国稻米,2005,5:5-7
    [8]Zhang W, Wu R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants[J]. Theoretical and Applied Genetics,1988,76(6):835-840
    [9]华志华,朱雪峰,林鸿生,等.基因枪转化获得的转基因水稻中外源基因整合与表达规律研究[J].遗传学报,2001,28(11):1012-1018
    [10]程焉平.抗除草剂转基因作物的研究及其安全性[J].吉林农业科学,2003,28(4):23-28
    [11]王自章,张树珍,杨本鹏,等.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株[J].中国农业科学,2003,36(2):140-146
    [12]胡张华,吴关庭,金卫,等.农杆菌介导的水稻转化及bar基因稳定遗传[J].浙江农业学报,2003,15(6):317-331
    [13]郑鹏,谭德冠,孙雪飘,等.花粉管通道法介导的真菌耐盐基因转化拟南芥[J].基 因组学与应用生物学,2009,28(3):465-470
    [14]朱生伟,黄国存,孙敬三.外源DNA直接导入受体植物的研究进展[J].植物学通报,2000,17(1):11-16
    [15]Cao J, Duan XL, McElroy D, et al. Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells[J]. Plant Cell Rep,1992,11(11):586-591
    [16]孙希平,李润植,杨庆文.外源DNA导入植物的分子育种技术[J].安徽农业科学,2009,37(8):3468-3470
    [17]孙继英,付秀芹,胡波,等.转Br基因水稻的生态安全性研究进展[J].中国稻米,2007,2:1-4
    [18]孙文丽,刘昱辉,吴元华.大豆再生体系的研究进展[J].安徽农业科学,2008,36(16):6660-6662,6665
    [19]Toriyama, Aritmto Y, Uchimiya H, et al. Transgenic rice plants after direct gene transfer into protoplasts[J]. Bid/Technology,1988,6:1072-1074.
    [20]杨永智,王舰,张艳萍,等.植物外源基因转移技术综述[J].青海农林科技,2007,1:37-41
    [21]张新春,庄炳昌,李自超.水稻基因枪转化的研究[J].吉林农业科学,2002,27(2):17-21
    [22]黄大年,朱冰,杨炜,等.抗菌肽B基因导入水稻及转基因植株的鉴定[J].中国科学(C辑),1997,27:55-62
    [23]黄大年,高振宇,华志华,等.基因枪法在水稻工程育种中的应用[J].2001,18(31):283-287
    [24]魏丽奇,邵凤霞,单雷,等.花生转基因研究进展[J].中国生物工程杂志2008,28(10):124-129
    [25]魏开发,刘萍,林子英,等.农杆菌介导单子叶植物遗传转化问题与对策[J].植物学通报,2008,25(4):491-496
    [26]Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J,1994,6(2):271-282.
    [27]张素芝,荣廷昭.农杆菌介导的玉米遗传转化系统研究进展[J].遗传,2008, 30(10):1249-1256
    [28]王育花,继微,肖国樱.根癌农杆菌介导的水稻遗传转化影响因素研究[J].江西农业学报,2006,18(3):60-63
    [29]Sone T, Nagamori E, Ikeuchi T, et al. A novel gene delivery system in plants with calcium alginate micro-beads[J]. J. Biosci. Bioeng.,2002,94:87-91
    [30]Mizukami A, Nagamori E, Takakura Y, et al. Transformation of yeast using calcium alginate microbeads with surface-immobilized chromosomal DNA[J]. BioTechniques, 2004,35:734-736,738-740
    [31]Higashi T, Nagamori E, Sone T, et al. A novel transfection method for mammalian cells using calcium alginate microbeads[J]. J. Biosci. Bioeng.,2004,97:191-195
    [32]Liu H, Kawabe A, Matsunaga S, et al. Application of the bio-active beads method in rice transformation[J]. Plant Biotechnol.,2004,21:303-306
    [33]Liu H, Kawabe A, Matsunaga S, et al. An Arabidopsis thaliana gene on the yeast artificial chromosome can be transcribed in tobacco cells [J]. Cytologia,2004,69:235-240
    [34]Murakawa T, Kajiyama S, Ikeuchi T, et al. Improvement of transformation efficiency by bioactive-beads-mediated gene transfer using DNA-lipofectin complex as entrapped genetic material[J]. The Society for Biotechnology,2008,1(105):77-80
    [35]李淑萍.农杆菌T-DNA导入植物基因组的分子机理[J].河南农业科学,2005,4:16-20
    [36]李卫,郭光沁,郑国錩.根癌农杆菌介导遗传转化研究的若干新进展[J].科学通报,2000,45(8):798-807
    [37]潘素君,戴良英,刘雄伦,等.农杆菌介导的遗传转化在水稻基因工程中的应用[J].中国稻米,2007,3:10-14
    [38]Olhoft P M, Somers D A. L-Cysteine increases Agrobacteriummediated T-DNA delivery into soybean cotyledonary-node cells[J]. Plant Cell Reports,2001,20:706-711.
    [39]Kenjirou. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice(Oryza sativa L.)[J].Plant science,2009,176:522-527
    [40]付凤玲,冯质雷,渠柏艳,等.玉米未成熟胚胚性愈伤组织诱导率与内源激素含量的关系[J].核农学报,2006,20(1):10-14
    [41]Lincoln C, Turner J, Estelle M. Hormone-resistant mutants of Arabidopsis Have and attenuated response to Agrobacterium strains[J]. Plant Physiology,1992,98:979-983
    [42]张根义,徐武,李鸣,等.植物细胞感受态研究初探[J].农业生物技术学报,1997,5(1):100-102
    [43]Sophie C, Rajbir S S, Brigitte S S. Competence of Arabidopsis thaliana genotypes and mutants for Agrobcterium tumefaciens-mediated gene transfer:role of phytohormones [J]. J Exp Botany,2000,51(353):1961-1968
    [44]吴顺,萧浪涛,刘清,等.水稻愈伤组织中内源植物激素水平与遗传转化的关系[J].核农学报,2009,23(2):257-261
    [45]李天来,李益清.钙对弱光胁迫下番茄叶片保护酶活性及可溶性蛋白含量的影响[J].园艺学报,2008,35(11):1601-1606
    [46]何家苑,王业勤,黎尚豪.鱼腥藻(Anabaena 7120)DNA的转化作用[J].遗传学报,1984,11(2):100-105,
    [47]Yukoh H, Toshihiko K. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed[J]. Nature Protocols,2008,3(5): 824-834
    [48]余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,37,(6):581-586
    [49]马翠兰,刘星辉,蔡坤秀.柚耐盐性的研究[J].江西农业大学学报,2003,5(25):693-697
    [50]曹帮华,吕世海,刘欣玲,等.羊柴种子抗旱抗盐萌发生理研究[J].中国草地学报,2007,4(29):33-38
    [51]高相彬,胡艳丽,赵凤霞,等.外源苯甲酸对平邑甜茶幼苗根系膜脂过氧化的影响[J].林业科学,2009,45(12):129-134
    [52]戴丹丽,刘永华,吴晓花,等.外源硅对锈菌诱导下豇豆叶片不同细胞器中抗氧化特征的影响[J].浙江大学学报(农业与生命科学版),2010,36(1):96-103
    [53]王洪涛,艾希珍,郑楠,等.嫁接对低温弱光下辣椒幼苗膜脂过氧化及抗氧化酶活性的影响[J].应用生态学报,2010,21(5):1289-1294
    [54]杨晓英,刘友,良一,等.盐胁迫下野生大豆叶片中Na+、Cl积累导致活性氧伤害[J].大豆科学,2003,2(22):83-87
    [55]王果平,康喜亮,陶锦,等.不同盐浓度对芨芨草种子萌发过程中几种生理指标 的影响[J].干旱地区农业研究,2006,2(24):139-142
    [51]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,9(40):1-3
    [52]王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应[J].作物学报,2005,31(2):264-266
    [53]张景云,吴凤芝.盐胁迫对黄瓜不同耐盐品种叶绿素含量和叶绿体超微结构的影响[J].中国蔬菜,,2009(10):13-16
    [54]陈成升,谢志霞,刘小京.旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响[J].应用生态学报,2009,20(4):811-816
    [55]葛江丽,石雷,谷卫彬,等.盐胁迫条件下甜高梁幼苗的光合特性及光系统Ⅱ功能调节[J].作物学报,2007,33(8):1272-1278
    [56]邭树乾,刘国道,张绪元,等NaCl胁迫对刚果臂形草种子萌发及幼苗生理效应的研究[J].中国草地,2004,6(26):45-49.
    [57]赵可夫.植物抗盐生理[M].北京:中国科技出版社,1993
    [58]徐新文,徐海量,王艳玲,等.盐胁迫对沙漠公路防护林主要固沙植物叶绿素含量的影响[J].科学通报,2008,53:96-99
    [59]马翠兰,刘星辉,潘锦山,等.盐胁迫对坪山柚、福橘幼苗叶片蛋白质合成的影响[J].福建农林大学学报,2005,4(34):450-453
    [60]龙海涛,李玲,万小荣.ABA诱导基因及其与逆境胁迫的关系(综述)[J].亚热带植物科学,2004,33(4):74-77
    [61]仲崇斌,刘长江,费嘴,等.翅碱蓬CMO cDNA基因克隆、测序及重组植物表达载体的构建[J].中国生物工程杂志,2006,26(7):80-83
    [62]曾幼玲,幸婷,蔡忠贞,等.盐生植物盐爪甜菜碱醛脱氢酶基因的克隆及在盐胁迫下的BADH基因的表达[J].云南植物研究,2007,29(1):79-84
    [63]何晓兰,侯喜林,吴纪中,等.三角叶滨藜甜菜脱氢酶(BADH)基因的克隆及序列分析[J].南京农业大学学报,2004,27(1):15-19.
    [64]刘振林,曹华雯,夏新莉,等.甘菊BADH基因cDNA的克隆及在盐胁迫下的表达[J].武汉植物学研究,2009,27(1):1-7
    [65]杨晓玲,东方阳,孙耀中,等.转BADH基因水稻幼苗抗盐的若干生理生化反应[J].河北科技师范学院学报,2006,20(4):1-4
    [66]王茂良.植物抗渗透胁迫及其与脯氨酸的关系[J].北京园林,2006,22(2):21-24
    [67]Yoshiba Y, Kiyosue T, Katagiri T, et al. Correlation between the Induction of a Gene for △'-Pyrroline-5-Ca rboxylate Synthase and the Accumulation of Proline in Arabidopsis thaliana und, Osmotic Stress[J]. Plant J,1995, (7):751-760
    [68]Igarashi Y, YoshibaY, SanadaY, et al. Characterization of the Gene for Dehal-Pyrrohne-5-5Carboxylate Synthetase and Correlation between the Expression of the Gene and Salt Tolerance in Oryza sativa L[J]. Plant Physiol,1997,33(5):857-865
    [69]Ginzberg I, Stein H, Kapulnik Y, et al. Isolation and Characterization of Two Different cDN As of △'-Pyrroline-5-Carboxylate Synthasein Aifalfa, Transcriptionally Induced upon Salt Stress [J]. Plant Mol Biol,1998,38(5):755-764
    [70]Hu C A, Delauney A J, Verma D P S. A Bifunctional Enzyme(△'-pyrroline-5-carboxylate synthase)Catalyzes the First Two Steps in Proline Biosynthesis in Plant[J]. Proc Natl Acad Sci USA,1992, (89):9354-9358
    [71]王萍萍,马长乐,赵可夫,等.盐地碱蓬6-1-二氯吡咯-5-羟酸合成酶基因(SsP5CS)的克隆及表达特性[J].山东师范大学学报(自然科学版),2002,17(3): 59-62
    [72]支立峰,陈明清,余涛,等.P5CS转化水稻细胞系的研究[J].湖北师范学院学报(自然科学版),2005,25(4):39-43
    [73]卓加金.植物耐盐有新解[J].科学新闻,2009,2:33
    [74]王萍萍,马长乐,曹子谊,等.盐地碱蓬(Suaeda salsa)中SsINPS基因的分子克隆及表达特性分析[J].植物生理与分子生物学学报,2002,28(3):175-180
    [75]Blumwald E. Tonoplast vesicles as a tool in the study of ion transport at the plant vacuole[J]. Physiologla Plantarum,1987,69:731-734
    [76]Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter inArabidopsis[J]. Science,1999,285: 1256-1258
    [77]康浩,甘肖梅,潘文平,等.Na+/H+逆向转运蛋白与植物耐盐性的关系[J].湖南农业科学,2009,(2):11-14
    [78]Fukuda A, Nakamura A, Tagiri A, et al. Function, intracellular localization and the importance of salt tolerance of avacuolar Na+/H+ antiporter from rice[J]. Plant and Cell Physiology,2004,45:146-159
    [79]Verma D, Singla-Pareek S L, Rajagupal D, et al. Functional validation of a novel isoform of Na+/H+antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice[J]. J Biosci,2007,32(3):1-7
    [80]邵群,丁同楼,韩宁,等.高亲和K+转运载体(HKT)与植物抗盐性[J].植物生理学通讯,2006,42(2):175-181
    [81]Horie T, Yoshidal K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transportin Oryzasativa[J]. Plant J,2001,27:129-138
    [82]Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter [J]. Nature Genet,2005,37:1141-1146
    [83]Garciadeblas B, Senn ME, Bauelos MA, et al. Sodium transport and HKT transporters:the rice model [J]. Plant J,2003,34:788-801
    [84]Zhang H, Mi-Seong K, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant-Microbe Interactions,2008,21(6):737-744
    [85]水稻耐盐基因调控新机制研究获新进展[J].广东农业科学,2009,7:214
    [86]揭示水稻耐盐基因调控新机制[J].生命世界,2009,7:7
    [87]Bariels D, Sunkar R. Drought and salt tolerance in plants[J], Crit Rev Plant Sci,2005,24(1): 23-58
    [88]赵祥强.植物耐盐性分子机理研究进展[J].安徽农业科学,2009,37(17):7844-7849
    [89]Yamaoto A, Bhuiyan M N, Waritee R, et al. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants[J]. J Exp Bot,2005,56(417):1785-1796
    [90]Rodriguess M, Andrade M O, Gomes A P, et al. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7gene display enhanced tolerance to drought,salinity,and oxidative stress[J]. J Exp Bot,2006,57(9):1909-1918
    [91]杨惠敏,张晓艳,王根轩.植物水通道的生理生态特性及其参与气孔运动的研究进展[J].植物学通报,2005,22(3):276-283
    [92]Yamaguchi-Shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana:sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein[J]. Plant and Cell Physiology,1992,33:217-224
    [93]Fray RG, Wallace A, Grierson D, et al. Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins[J]. Plant Molecular Biology,1994,24:539-543
    [94]Yamada S, Katsuhara M, Kelly WB, et al. A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant[J]. The Plant Cell, 1995,7:1129-1142
    [95]丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展[J].中国农学通报,2003,19(6):33-36,39
    [96]张玲,李付广,刘传亮,等.棉花耐旱相关基因研究进展[J].安徽农业科学,2008,36(5):1781-1782,1813
    [97]T.Zh.Hu. OsLEA3, a late embryogenesis abundant protein gene from rice, confers tolerance to water deficit and salt stress to transgenic rice[J]. Russian Jouranl of Plant Physiology,2008,55(4):530-537
    [98]张雪芹,欧阳海波.盐胁迫下甜菜碱的生物合成及植物耐盐的分子机制(综述)[J].亚热带植物科学,2009,38(3):73-78
    [99]徐保红,杨洁.甘氨酸甜菜碱与植物抗胁迫能力[J].新疆大学学报:自然科学版,2008,25(3):349-352
    [100]牛艳,许兴,魏玉清,等.土壤生态因子与宁夏枸杞中甜菜碱含量变化的关系[J].中国农学通报,2005,21(8):221-223,231
    [101]骆爱玲,刘家尧,马德钦,等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,45(18):1953-1956
    [102]周树峰,李秋莉,吴元奇,等.农杆菌介导的辽宁碱蓬胆碱单氧化酶基因CMO转化烟草提高抗氧化胁迫的研究[J].中国农学通报,2010,26(15):44-47
    [103]孙耀中,东方阳,陈受宜,等.盐胁迫下转甜菜碱醛脱氢酶基因水稻幼苗耐盐生理的研究[J].华北农学报,2004,19(3):38-42
    [104]姜小丽,秦毓茜.植物的盐害及提高植物耐盐性的途径[J].安徽农业科学,2007,35(19):5697-5698
    [105]张宁,司怀军,栗亮,等.转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性[J].作物学报,2009,35(6):1146-1150
    [106]王艳青,陈雪梅,李悦,等.植物抗逆中的渗透调节物质及其转基因工程进展 [J].北京林业大学学报,2001,23(4):66-70
    [107]吴月亮,蔡明,蒋细旺,等.植物甜菜碱合成相关酶及其基因工程研究进展[J].安徽农业科学,2007,35(18):5348-5349
    [108]Burnet M, Lafontaine P J, Hanson A D. Assay purification, and Partial characterization of choline monooxygenase from spinach[J]. Plant Physiol,1995,108(2): 581-588
    [109]Nuccio M L, Russell B L, Nolte K, et al. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxyegenase[J]. Plant J,1998,16(2):487-496
    [110]沈义国,杜保兴,张劲松,等.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J].生物工程学报,2001,17(1):1-6
    [111]曲同宝,邓川,王丕武.CMO与BADH双基因表达载体构建及转化羊草的研究[J].中国生物工程杂志,2009,29(11):48-53
    [112]杨晓玲,郭守华,杨晴,等.转BADH基因水稻幼苗抗旱性研究[J].华北农学报,2007,22(3):60-64
    [113]郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,2000,42(3):279-283
    [114]宗自卫,常陆林.转BADH基因花生幼苗抗盐性研究[J].安徽农业科学,2009,37(15):6867-6868
    [115]付光明,苏乔,吴畏,等.转BADH基因玉米的获得及其耐盐性[J].辽宁师范大学学报:自然科学版,2006,29(3):344-347
    [116]Ishitani M, Nakanura T, Han S Y. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisig acid[J]. Plant Mol. Biol.,1995, 27:301-331
    [117]高继平,林鸿宣.水稻耐盐机理研究的重要进展—耐盐数量性状基因SKC1的研究[J].生命科学,2005,17(6):563-565
    [118]Lin H X, Zhu M Z, Yano M, et al. QTLs for Na+ and K+ uptake of shoot and root controlling rice salt tolerance[J]. Theoretical and Applied Genetics,2004,108(2):253-260
    [119]Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nat Genet,2005,37:1141-1146
    [120]Gassman W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1[J]. The Plant Jouranl,1996,10(5):869-882
    [121]Berthomieu P, Conejero G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal,2003,22:2004-2014
    [122]肖景华,吴昌银,韩斌,等.中国水稻功能基因组研究进展[J].中国科学C辑:生命科学,2009,39(10):909-924
    [123]祁祖白,李宝健,杨文广,等.水稻耐盐性遗传初步研究[J].广东农业科学,1991,1:18-21
    [124]Zhang G Y, Guo Y, Chen S L, et al. RFLP tagging of a salt tolerance gene in rice[J], Plant Sci.,1995,110:227-234
    [125]Guo Y, Chen S L, Zhang G Y, et al. Salt-tolerance rice mutant lines controlled by a major effect gene were obtained by cell engineering technique[J]. Acta Genetica Sinica, 1997,24(2):122-126
    [126]Fdloada A, Nakamura A, and Tanaka Y. Molecular cloning and expression of the Na+/H+ exchange gene in Oryza Sativa[J]. Bionchim. Biophys. Acta.,1999,1446: 149-155
    [127]Takehisa H, Shimodate T, Fukuta Y, et al。 Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water [J],Field Crops Res.,2004,89: 85-95
    [128]Koyama M L, Levesley A, Koebner R M D, et al., Quant itative trait loci for component physiological traits determ ining salt tolerance in rice[J], Plant Physio 1.2001, 125:406-422
    [129]Penna S. Building stress tolerance through over-producing trehalose in transgenic plants[J]. Trends Plant Sci.,2003,8(8):355-357
    [130]龚继明,何平,钱前,等.水稻耐盐性QTL的定位[J],科学通报,1998,43(17):1847-1850
    [131]林鸿宣,柳原城司,庄杰云,等.利用分子标记检测水稻耐盐性的QTL[J],中国水稻科学,1998,12(2):72-78
    [132]Flower T J. Improving crop salt tolerance [J]. J. Exp. Bot.,2004,55(396):307-319
    [133]高志民.PEAMT基因全长的克隆与转化研究[D].北京:中国科学院遗传与发育研究所,2002
    [134]徐冰,韩烈保,姚娜,等.草地早熟禾转CMO-BADH双基因和转CMO基因耐盐性分析[J].草地学报,2008,16(4):353-358
    [135]陈丽萍,何道一.植物抗旱耐盐基因的研究进展[J].基因组学与应用生物学,2010,29(3):542-549
    [136]程焉平.植物抗性转基因研究进展及其安全性问题[J],吉林师范大学学报(自然科学版),2005,3:82-84
    [137]吴发强,王世全,李双成,等.抗除草剂转基因水稻的研究进展及其安全性问题[J].分子植物育种,2006,4(6):846-852
    [138]Zhu Z, Wu R. Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides[J]. Plant Sci.,2008,174:519-423
    [139]Aldemita R R, Hodges T K. Agrobacteriumtumefaciens-mediated transformation of Japonica and Indicarice varieties[J]. Planta,1996,199:612-617
    [140]Chan M T, Chang H H, Ho S L, et al. Agrobacterium mediated production of transgenic rice plant expressing a chimetic a-amylase promoter β-glucuronidase gene[J]. Plant Mol Biol,1993,22:491-506.
    [141]Dong J, Teng W, Buchholz W G. Agrobacterium mediated transformation of Japonica rice[J]. Molecular Breeding,1996,2:267-276
    [142]Hiei Y, Ohta S, Kumashiro T, et al. Efficient transformation of rice mediated by Agrobacteriumand sequence analysis of the boundaries of the T-DNA[J]. The Plant Journal,1994,6(2):271-282
    [143]Rashid H, Yokoi S, Hinata K, et al. Transgenic plant production mediated by Agrobacteriumin Indicarice [J]. Plant Cell Reports,1996,15:727-730
    [144]Labra M, Savini C, Bracale M, et al. Genomic changes in transgenic rice(Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens[J]. Plant Cell Rep,2001,20:325-330
    [145]高永超,王加宁,邱维忠,等.不同光照和植物生长物质对地钱愈伤组织诱导及分化的影响[J].山东科学,2007,20(4):37-42
    [146]Seibert M P, Wetherbee J, Job D D. The effects of light intensity and spectral quality on growth and initiation in tobacco callus[J]. Plant physiol.,1975,56:103-139
    [147]潘战生,陈暨耀,蔡怀新,等.烟草叶组织培养中光与激素对形态发生的调节作用[J].实验生物学报,1989,22(3):279-285
    [148]Toki S. Repid and efficient Agrobacterium-mediated transformation in rice[J]. Plant Mol.Biol.Rep.,1997,15:16-21
    [149]刘萍,宋晓华,马惠萍,等.温度处理对春小麦花药愈伤组织诱导率影响初报[J].宁夏农学院学报,1996,17(1):52-56
    [150]于洋,石少华,许昱,等.提高培养温度建立水稻成熟胚再生体系[J].种子,2009,28(10):36-40
    [151]施利利,王松文,蔡宝立,等.影响农杆菌介导的水稻遗传转化效率的因素[J].天津农学院学报,2003,10(4):53-57
    [152]潘素君,戴良英,刘雄伦,等.农杆菌介导的遗传转化在水稻基因工程中的应用[J].中国稻米,2007,3:10-14
    [153]李洪清,李美茹.影响农杆菌介导植物基因转化的因素问题[J].植物生理学通讯,1997,35(2):145-151
    [154]李维焕,张霞,张慧,等.农杆菌介导的中华补血草遗传转化体系的建立[J].安徽农业科学,2008,36(7):2668-2669
    [155]Bronwyn RF, Shou HX,RachelKC,et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system[J]. Plant Physiol, 2002,129,13-22.
    [156]魏开发,刘萍,林子英,等.农杆菌介导单子叶植物遗传转化问题与对策[J].植物学通报2008,25(4):491-496
    [157]祁栋灵,韩龙植,张三元.水稻耐盐/碱性鉴定评价方法[J].植物遗传资源学报,2005,6(2):226-231
    [158]方先文,汤陵华,王艳平.耐盐水稻种质资源的筛选[J].植物遗传资源学报,2004,5(3):295-298.
    [159]张燕红,袁杰,王奉斌.不同新疆水稻品种种子发芽耐盐性的比较[J].安徽农学通报,2009,15(3):102-103.
    [160]Hakim M A, Uraimi A, Begum S, et al. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.)[J]. African Journal of Biotechnology,2010, 9(13):1911-1918
    [161]Jamil M, Rha E S. Response of transgenic rice at germination and early seedling growth under salt stress[J]. Pakistan Journal of Biological Sciences,2007,10(23): 4303-4306
    [162]Rai M, He C, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice[J]. Transgenic Res.,2009,18:787-799
    [163]张鹤山,刘洋,田宏,等.黑麦种子在不同盐分胁迫下萌发特性的研究[J].种子,2009,28(3):14-17
    [164]王奉斌,张燕红,袁杰,等.新疆耐盐水稻种质资源的筛选[J].新疆农业科学,2009,46(3):501-505
    [165]胡婷婷,刘超,王健康,等.水稻耐盐基因遗传及耐盐育种研究[J].分子植物育种,2009,7(1):10-116
    [166]杜青平,孟紫强,袁保红.S032-与C1-胁迫对小麦幼苗毒性的研究[J].农业环境保护,2002,21(4):328-330,342
    [167]王弋博,李勃,朱丽.外源甜菜碱对两种玉米耐盐性影响的研究[J].兰州大学学报(自然科学版),2005,41(2):35-37
    [168]董发才,苗璨,荆艳彩.小麦根系过氧化氢的积累与耐盐性的关系[J].武汉植物学研究,2002,20(4):293-298
    [169]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993,23-232
    [170]Peng Y H, Zho Y F, Mao Y Q. Alkali grass resists salt stress through high K+ and an end dermis barrier to Na+[J]. Journal of Experimental Botany,2004,55:939-949
    [171]Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola(Brassica napus L.) [J]. Environmental and Experimental Botany,2008,63:266-273
    [172]Zhang M S, Xie B, Tan F. Relationship between changes of endogenous hormone in sweet potato under water stress and variety drought resistance[J]. Agricultural Sciences in China,2002,1(6):626-630.
    [173]裘丽珍,黄有军,黄坚软,等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报,2006,32(4):420-427
    [174]彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国 农学通报,2002,18(4):80-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700