用户名: 密码: 验证码:
油气集输系统油/水过渡层治理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田进入原油开采的中后期时,采出液含水率非常高,原油脱水是油气集输系统中的关键环节。各大油田采用了热脱、电脱、机械离心、添加化学药剂、超声等方法,不断提高原油脱水率,保证原油品质。调查发现,油/水过渡层的存在导致原油脱水不及时,脱水效率低下,严重影响原油品质。针对这种情况,本课题以聚驱采出液沉降罐中油/水过渡层为研究对象,研究油/水过渡层的形成机理及其对原油脱水的影响,并采用二氧化氯氧化破乳法对油/水过渡层进行治理。
     本课题通过调查研究和化学分析等手段,首先分析油/水过渡层的结构特征和组成特征,根据油/水过渡层的组成和系统环境的特征,研究了油/水过渡层的形成机理;然后进行了二氧化氯氧化治理油/水过渡层的技术研究,并以脱水率为考察指标,考察了反应温度、搅拌时间、反应时间、加酸量以及二氧化氯溶液浓度对二氧化氯治理油/水过渡层脱水效果的影响规律,通过正交实验分析得出最佳治理方案。最后,考察了二氧化氯治理油/水过渡层的腐蚀性和安全性。
     研究结果表明,油/水过渡层是在天然乳化剂(胶质、沥青质等)、固体颗粒乳化剂(硫化亚铁、碳酸盐等)和聚合物共同作用下形成的稳定性强的油水乳化层,其中固体颗粒乳化剂含量虽然不多,但却起着决定性作用,特别是其中的FeS胶态颗粒的存在是油/水过渡层能够稳定存在的重要原因。通过试验证实,二氧化氯对油/水过渡层有较好的治理效果。油/水过渡层的脱水率受反应温度、搅拌时间、反应时间、加酸量以及二氧化氯溶液浓度的影响。新鲜的油/水过渡层在55℃,搅拌5 min,反应4 h,ClO_2浓度10%,加酸量0.3%的条件下脱水率可达86%。陈化的油/水过渡层在50℃,搅拌5 min,反应5 h,ClO_2浓度15%,加酸量0.5%的条件下脱水率可达到90%。在此条件下,腐蚀率在均匀腐蚀三级标准中的可用(0.1~1.0 mm/a)范围内。按照理论计算,二氧化氯的残余量不大,在控制好治理工艺的前提下,可以确保系统安全。
With the successive increase of water content, most oilfields have entered into the late development stage. So crude oil dehydration is the key procedure in the oil gathering and transportation system. In order to enhance dewatering rate and improve the quality of oil, many methods have been used in oilfields, such as thermal dehydration, electric dehydration, mechanical centrifugal dehydration, adding chemical reagent, ultrasonic dehydration and so on. The survey found that the quality of crude oil has been seriously affected as the existence of oil/water transition layers resulting in the dehydration of crude oil is not timely or inefficient. Therefore, we focus on analyzing the formation mechanism of oil/water transition layers, discussing its impact on crude oil dehydration and using the method of ClO_2 oxidation demulsification for the remediation of oil/water transition layers.
     The method of analysis and chemistry experiment was used in the research. Firstly, the structure and composition of the oil/water transition layers were analyzed and its formation mechanism. Then, the survey for the remediation of oil/water transition layers with ClO_2 oxidation had been performed. With the dewatering rate as target, the rules for temperature, stirring time, reaction time, acid volume and concentration of ClO_2 impacting on oil/water transition layers were researched. The best remediation option was determined with orthogonal experiment analysis,. In addition, causticity and security of the process of oil/water transition layers’remediation were discussed under the best option.
     The study found that oil/water transition layers is an oil/water emulsion which is formed under the joint action of natural emulsifiers, solid particle emulsifiers and polymers. The content of solid particle emulsifiers especially FeS is not much, but their existence decides the steady state of oil/water transition layers. The experimental results show that ClO_2 could effectively improve the dehydration rate of oil/water transition layers. The dehydration rate depends on stirring time, reaction temperature, reaction time, acid volume and concentration of ClO_2. For fresh oil/water transition layers, the dehydration rate could reach to 86% with option 55℃, stirring 5min, reaction time 4h, concentration of ClO_2 10% and acid volume 0.3%. For aging oil/water transition layers, the dehydration rate could reach to 90% with option 50℃, stirring 5min, reaction time 5h, concentration of ClO_2 15% and acid volume 0.5%. Under these conditions, the corrosion rate of corrosion is in the range of available standards (0.1 ~ 1.0 mm / a). Theoretically less residual ClO_2 content will ensure system safe on the condition of controlling well with the remediation process.
引文
[1]聂麦茜.石油中间乳化油破乳研究[J].西安建筑科技大学学报(自然科学版),1997,(03):254~256.
    [2]陈霞,李杰训,李东成.油水中间过渡层的预防及处理技术[J].油气田地面工程,2002,21(5):51~53.
    [3]岳勇,许毓,刘光全.油水中间层的过滤分离试验研究[J].石油天然气学报,2010,32(2):144~147.
    [4]黄耀达,吴涛,关克明.浅谈油气集输工艺过程及流程选用[J].石油和化工设备,2009,(12):24~26.
    [5]张晓华.原油脱水技术研究进展[J].化工科技,2009,17(5):57~62.
    [6]孙科明,顾晓丽.乳化废水破乳处理方法研究现状与进展[J].化工时刊,2010,(06):54~57.
    [7]张贤明,吴峰平,陈彬等.油包水型乳化液破乳方法研究现状及展望[J].石化技术与应用,2010,(02):159~163.
    [8]刘宏魏,高秀军,郭丽梅等.新型原油脱水方法[J].油气田地面工程,2007,(03):32~33.
    [9]肖蕴,赵军凯,许涛等.原油电脱水器技术进展[J].石油化工设,2009,(06):49~53.
    [10]王传新,常涛.含聚稠油脱水技术改进[J].油气田地面工程,2009,28(4):1~2.
    [11]任广哲.老化油脱水处理存在问题及解决办法[J].油气田地面工程,2008,27(8): 41.
    [12]周广军.电化学脱水器过渡层抑制剂研究与应用[D].大庆石油学院,2006.
    [13]周玉贺,王军,曹想.原油脱水中油-水中间过渡层的处理[J].石油规划设计,2000,(02):34~35.
    [14]李成龙,赵作滋,郑邦乾等.马岭油田原油化学脱水中溢流罐内形成的中间层乳状液的处理[J].油田化学,1995,12(4):342~346.
    [15]赵作滋等.原油脱水系统中溢流沉降灌内中间乳化层的形成与分离处理[J].油田化学,1996,13(4):78~80.
    [16]赵忠山,孙占华,郑鑫.污水沉降罐过渡层电动离心脱水处理试验[J].油气田地面工程,2004,23(8):30.
    [17]孙磉礅,蒋官澄,谢水祥等.油田原油集输絮凝物形成机制与处理技术[J].中国石油大学学报(自然科学版),2010,34(5):168~173.
    [18]范永平,王化军,张强等.油田沉降罐乳化层微波辐射脱水研究[C].中国化工学会2005年石油化工学术年会论文集,2005.
    [19]刘贵喜,刘连军,刘再锋.水力旋流器分离油水中间层乳化液的现场试验[J].石油机械,1995,23(11):19~26.
    [20] Wolf N O.Use of microwave radiation in separation emulsions and dispersions of hydrocarbons and water [P].US: 4582629, 1986-04-23.
    [21] Fang C S,Lai P M C.Microwave heating and separation of water in oil emulsions [J].Journal of Microwave Power and Electromagnetic Energy, 1995, 30 (1): 46~57.
    [22]吴迪等.胶态FeS颗粒在电脱水器油水界面上的沉积与防治[J].油田化学,2001,18(4):317~319.
    [23] Wang Demin,Hao Yuexing.Results of two polymer flooding pilots in the central area of Daqing oil field[Z].SPE26401.
    [24] Weiss WW,Baldwin RW.A large scale of design and practice for polymer flooding[Z].SPE/DOE12637.
    [25]盖立学.聚合物驱含油污水油水乳状液稳定机理及油水分离化学剂研究[D].浙江大学,2002.
    [26] Lee M,Martinelli F,Lynch B,Morris P.The use of dispersants on viscous fuel oils and water in crude oil emulsions[C].2005 International Oil Spill Conference,2005.
    [27]吴宗福,黄宏权等.一种新型低高效破乳剂的研制与应用[J].江汉石油学院学报,2003,25(1):85~88.
    [28]谭晓飞.超声辐射原油破乳技术的研究[D].天津大学,2007.
    [29]孙宝江,乔文孝,付静.三次采油中水包油乳状液的超声波破乳[J].石油学报,2000,21(6):97~101.
    [30]吴迪等.胶态FeS颗粒在电脱水器油水界面上的沉积与防治[J].油田化学,2001,18(4):317~319.
    [31]马健伟.电脱水器垮电场原因分析及解决措施[D].大庆石油学院,2005
    [32]张守献,高国强,孙双立等.坨五站中间乳化层快速增长原因及治理方案[J].油田化学,2003,20(4):338~341.
    [33]袁明贵.联合站脱水工艺技术[J].国外油田工程,1987(1):37~38.
    [34]万楚筠,黄凤洪,廖李.重力油水分离技术研究进展[J].工业水处理,2008,(07):13~16.
    [35]王玉江,崔景亭.碟片式离心机的原油脱水试验[J].油气田地面工程,1997,(03):19~23.
    [36]倪玲英.水力旋流器的研究现状及其在石油工业中的应用前景[J].过滤与分离,1999,(03):1~4.
    [37]蒋明虎,赵立新.旋流分离技术在工业水处理方面的应用[J] .工业水处理,2000,20(8):44~46.
    [38]王秀莲.水力旋流器在老化油处理中的应用[D].大庆石油学院,2006.
    [39] Klaika W J.Method and Apparatus for Controlling Fluency of High Viscosity Hydrocarbon Fluids[P].USPat:4067683,1978-08-16.
    [40] Wolf N O.Use of Microwave Radiation in Separating Emulsions and Dispersions of Hydrocarbons and water[P].USPat:4582629,1986-04-23.
    [41] Fang C S,Lai P M C,Chang B K L. oil Recovery and waste Reduction by Microwave Radiation[J].Environ Prog.1989,8(4):235~238.
    [42]刘惠玲.微波脱水技术[J].油田地面工程,1992,11(4):22~25.
    [43]刘宏魏,高秀军,郭丽梅.新型原油脱水方法[J].油气田地面工程,2007,(03): 32~33.
    [44]姜佳丽,苟社全,达建文等.原油破乳研究进展[J].化工进展,2009,28(2):214~221.
    [45]范永平,王化军,张强.油田沉降罐中间层复杂乳状液微波破乳——离心分离[J].过程工程学报,2007,7(2):258~262.
    [46]夏立新,陆世维,曹国英.沥青质和胶质稳定的油包水乳状液的破乳研究[J].油田化学,2003,20(1):23~25..
    [47] Xia L X,Lu S W,Cao G Y.Stability and demulsification of emulsions stabilized by asphaltenes or resins[J].J.Colloid.Interface Sci.,2004,271:504~506.
    [48]李英,赵德智,袁秋菊.超声波在石油化工中的应用及研究进展[J].石油化工,2005,34(2):176~180.
    [49]孙晓霞.乳化原油声化学法脱水研究进展[J].当代石油石化,2003,11(10):31~34.
    [50] Yang X.-G,Tan W.,Tan X.-F.Demulsification of crude oil emulsion via ultrasonic chemical method[J].Petroleum Science and Technology,2009,27(17):2010~2020.
    [51]丁洋,熊祥祖,魏世辕.微波破乳法原油脱水技术研究[J] .武汉工程大学学报,2010,(05):15~18.
    [52]张玉梅.超声处理炼厂污油破乳脱水研究[D].南京工业大学,2003.
    [53]唐琼,张新申,林海波等.絮凝法处理油田废水[J].皮革科学与工程,2003,13(3):49~51.
    [54]张逢玉,姜安玺,张雷等.微絮凝-接触过滤技术在油田废水处理中的应用[J].化学工程,2007,35(11):58~65.
    [55]贾会中.絮凝吸附法处理稠油采油污水技术研究[D].大连:大连海事大学,2003.
    [56] Kang W L, Jing G L. Influence of demulsifier on interfacial film between oil and water[J]. Colloids and SurfacesA, 2006, 272: 27~31.
    [57]肖稳发,刘锡建,张红.微生物技术在油气田开发中的研究与应用进展[J].化学与生物工程,2006,23(10):1~3.
    [58]彭伟,周华,陈永立.绿色生物破乳技术原理及研究状况[J].新疆石油科技,2007,17(2):67~69.
    [59]缪永霞,易绍金.环保型生物破乳剂的研究及应用[J].油气田环境保护,2007,17(4):44~45.
    [60] Pekdemir T,Copur M,Urum K.Emulsification of crude oil-water systems using biosurfactants[J].Process Safety Environ.Prot.,2005,83(B3):38~46.
    [61] Maneerat S,Phetrong K.Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant[J].Songklanakarin J.Sci.Technol,2007,29(3):781~791.
    [62]郭广东,邓松圣,张福伦.操作参数对固-液-液三相水力旋流器分离效率的影响[J].石油矿场机械,2010,39(5):17~19.
    [63]陈永红,卢明昌,孙宝江.利用声化方法对复杂乳化原油的破乳脱水研究[J].石油大学学报,2003,27(5):60~65.
    [64]周立亚,陆云.二氧化氯的性质、应用及制备方法研究[J].广西化工,2002,31(1):28~30.
    [65]陈超.二氧化氯与酸液协同提高解堵效果技术研究[J].南方油气,2005,18(1):55~60.
    [66]吴明松.二氧化氯对油田回注水的杀菌效果及工程应用[D].哈尔滨工业大学,2007
    [67]田兴国,吴彦川,山其坤.二氧化氯在油田增产增注中的应用[J].油田化学,1999,(04):385~390.
    [68]覃忠校,黎石松,张兴建.二氧化氯复合解堵工艺的研究及应用[J].石油钻探技术,2002,(03):63~65.
    [69]余海棠,郝世彦,赵晨虹.二氧化氯复合解堵技术[J].断块油气田,2009,(06):112~114.
    [70]姜学明,刘明立,张学昌.二氧化氯与酸液协同解堵工艺与应用效果[J].石油勘探与开发,2002,(06):103~104.
    [71]王洪记.国内外二氧化氯开发应用现状[J].江苏化工,2000,(10):11~14.
    [72]黄君礼.新型水处理剂二氧化氯技术及其应用[M].北京:化学工业出版社,2003:44~45.
    [73]项成林.二氧化氯在油田水处理中的应用前景[J].净水技术,2001,(04):8~11.
    [74]张刚,何芳,林颖庭.油田回注水系统中二氧化氯的杀菌实验研究[J].广州大学学报(自然科学版),2003,(06):565~568.
    [75] J. Y. Mason, A. Pitochell. Oxidative Treatment of Pollutants in Waste Water[J]. Intertech, 1996:1~13.
    [76] USEPA. Alternative Disinfectants for and Oxidants Guidance Manual: Final Draft[M]. Washington DC:OGEDE,1998.
    [77]王芳.二氧化氯杀菌剂在油田回注水处理中的应用[J].江汉石油职工大学学报,2007,20(4):68~71.
    [78]魏利,马放,刘广民等.二氧化氯用于油田注水系统杀菌的试验[J].给水排水,2006,32(4):51~53.
    [79] SY/I'5523-2000中华人民共和国石油天然气行业标准.
    [80] SYT--5119-2008岩石中可溶有机物及原油族组成组分分析法.
    [81]杨小莉,徐婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,15(l):87~96.
    [82]丁德馨,孙在春,杨国华等.原油乳状液的稳定与破乳[J].油田化学,1998,15(l):82-86.
    [83] Ruckenstein Eli.Thermodynamic Insights on Macroemulsion Stability[J].Advances in Colloid and Interface Science,1999,79:59~76.
    [84] Marco Vanni.Approximate Population Balance Equations for Aggregation-Breakage Processes[J].Journal of Colloid and Interface Science,2000,221:143~160.
    [85]吴结丰,郭海军,吕仁亮等.原油破乳剂的研究进展[J].化学推进剂与高分子材料,2009,7(1):28~30.
    [86] Eric Dickinson,Christos Ritzoulis.Creaming and Rheology of Oil-in-Water Emulsion Containing Sodium Dodecyle Sulfate and Sodium Caseinate[J].Journal of Colloid and Interface Science,2000,224:148~154.
    [87] Helen J. Wilson,Lorraine A. Pietraszewski,Robert H. Davis.Aggregation of Charged Particles under Electrophoresis or Gravity at Arbitrary Peclet Numbers[J].Journal of Colloid and Interface Science,2000,221:87~103.
    [88] Yu Xiang,Somasundraran P.,Role of Polymer Conformation in Interparticle-Bridging Dominated Flocculation[J].Journal of Colloid and Interface Science,1996,177:283~287.
    [89]杨忠平,王宪中,田喜军等.吉林油田联合站老化原油成因与脱水方法研究[J].油田化学,2010,27(3):337~341.
    [90]武炳明.高效破乳剂为油田安全生产除患[P].中国化工报,2006-08-1.
    [91]高建平,于九皋,林通.聚丙烯酰胺在水介质中的低温化学降解[J].化学工业与工程,1999,16(1):44~48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700