用户名: 密码: 验证码:
水稻粒型主效基因qSS7的定位与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一。随着世界人口的迅速增长,粮食短缺成为困扰世界各国的重大问题。同时,随着人们物质生活水平的提高,稻米品质越来越受到消费者的重视。水稻粒型包括粒长、粒宽和长宽比,是水稻粒重的决定因子,也是外观品质的重要指标。因此改良水稻粒型是提高产量和改善稻米品质的有效途径。发掘和深入研究水稻粒型基因对分子标记辅助选择进行水稻育种具有重要的理论和实践意义。本研究利用以珍汕97B为受体、热带粳稻Cypress为供体的染色体片段代换系,定位和鉴定水稻粒型主效QTL,研究其遗传效应,精细定位QTL,结合测序、表达量分析和生物信息学的方法确定候选基因,揭示该QTL的作用模式;考察该QTL对籽粒灌浆速率、产量和品质等相关性状的影响。主要结果如下:
     1.通过对水稻染色体片段代换系的筛选,鉴定出一份粒型与受体亲本珍汕97B有显著差异的代换系08Q043。08Q043较珍汕97B粒长增加约1.5mm,粒宽减小约0.7mm,长宽比增加约1.5,千粒重下降约3g。图示基因型显示08Q043共有8个Cypress导入片段,分别位于第1、4、5、6、7和12染色体,基因组其它背景与珍汕97B一致。
     2.通过08Q043与珍汕97B构建的F2分离群体及F2:3群体,采用BSA法将控制粒型的QTL定位于第7染色体长臂上RM21930-RM21936区间内,08Q043等位基因同时增加粒长和长宽比,减小粒宽,不影响粒重,故命名为qSS7。
     3.在F2:3群体中挑选了一个目标片段为杂合且只在第4染色体长臂上有一个纯合导入片段的单株衍生了一个含有1025个单株的分离群体,共筛选到18个重组交换单株。通过对这18个单株的后代家系考察,将qSS7精细定位到23kb的区间。分析重组交换单株的后代表型发现,该区间可能有两个紧密连锁的基因对粒型产生影响。
     4.对双亲候选区间测序及基因预测发现该区间共有4个预测基因,其中两个基因双亲间没有序列差异,另两个基因(LOC_Os07g41200和LOC_Os07g41210)存在一定序列差异。双亲LOC_Os07g41200的启动子区和编码区分别有26个和14个SNP和InDel,其中编码区2个SNP导致编码氨基酸的改变;LOC_Os07g41210在启动子区和编码区分别有30个和9个SNP和InDel,其中编码区3个SNP导致编码氨基酸的改变,1个SNP导致珍汕97B编码蛋白的提前终止。
     5.两个侯选基因在08Q043和珍汕97B的穗发育阶段存在表达差异。随着幼穗发育,LOC_Os07g41200的表达量随之降低,08Q043的表达量都比珍汕97B高。LOC_Os07g41210两亲本呈U字形表达,幼穗发育前期该基因的表达量较高,随着幼穗发育,该基因的表达量逐渐下降,到幼穗发育后期,该基因又呈上升表达,在幼穗发育成熟前的所有时期08Q043的表达量均比珍汕97B低。
     6.利用两个InDel标记和LOC_Os07g41210编码区的序列将核心种质的qSS7分为10种单倍型。其中珍汕97B单倍型(H1)主要分布于籼稻,08Q043单倍型(H2)主要分布于热带粳稻,日本晴单倍型(H3)主要分布于温带粳稻。籼稻H4粒长显著长于H1和H5;温带粳稻H2粒长显著大于H3和H5,粒宽显著大于H1、H3和H5。
     7.构建了目标位点qSS7的近等基因系,观察发现08Q043近等基因系外稃内表皮细胞长度比珍汕97B长13.7%,宽度窄11.8%,与粒型的差异基本吻合,表明qSS7主要通过影响颖壳细胞大小控制粒型。
     8.利用近等基因系考察了颖壳发育动态和灌浆速率。穗长大于8cm时,08Q043等位基因近等基因系颖壳比珍汕97B等位基因近等基因系细长,与表达量分析和颖壳细胞观察的结果吻合。在水稻灌浆过程中,两个近等基因系间灌浆速率没有显著差异。
     9.近等基因系的产量和品质相关性状的考察结果显示,qSS7除了影响粒型外,还影响抽穗期、穗长、着粒密度、垩白率和垩白度,不影响其他农艺性状。
Rice is one of the most important crops. With the population growing, food shortage becomes the main problem in most countries. With the improvement of people's living standard, rice quality has been paid more attention by consumers. Seed shape, consisting of seed length, seed width and length to width ratio, is the determinant of grain weight and one of important appearance quality traits. It's considered an effective method to improve grain yield and quality by improving seed shape. Characterization and identification of novel genes for seed shape can help facilitate the improvement of grain yield and quality by marker-assisted selection in rice breeding program. In this study, using a chromosome segment substitution line derived from a cross between a tropical japonica variety Cypress and an indica variety ZS97B, a major quantitative trait locus qSS7controlling seed shape was identified. Candidate genes for qSS7were characterized by sequencing, expression and bioinformatics analysis. The grain filling rate, grain yield and quality were also surveyed in the near-isogenic line (NIL) developed for qSS7. The main results are as follows:
     1. One line with long seeds, named as08Q043, was selected from the chromosome segment substitution lines in which they have the similar genetic background of ZS97B.08Q043has significantly longer and slender seeds than that of ZS97B. Graphic genotype of08Q043showed at least8Cypress chromosomal segments introduced, which located on the chromosomes1,4,5,6,7,12, respectively.
     2. The major quantitative trait locus (QTL) for seed shape in the F2and F23populations derived from08Q043and ZS97B was initially mapped to the interval of RM21930-RM21936on the long arm of chromosome7by BSA method The Cypress allele increased seed length and the ratio of seed length to width, and decreased seed width, but did not significantly change seed weight. The QTL was thus designed as qSS7.
     3. A large segregating population that was developed by selfing an introgression line heterozygous at qSS7locus was used for fine mapping. The genotype analysis of1025 plants in the population using several markers surrounding the QTL region identified18recombinant individuals. qSS7was then finely mapped to a23kb region by progeny test. Further analysis of the most important recombinant plants and thier derived segregation populations suggested at least two genes in this region affecting seed shape.
     4. By sequencing the small region, numerous polymorphic variations were identified between ZS97B and08Q043. There were four predicted genes predicted in the small region of23kb in length. Among them, two genes have no differences in the sequences between the two parents, and the other two genes (LOC_Os07g41200and LOC_Os07g41210) have several sequence differences. There are26and14SNPs or InDels between the two parents in the promoter and encoding region of LOC_Os07g41200, respectively, of which two SNPs might change amino acids. There are30and9SNPs or InDels between the two parents in the promoter and encoding region of LOC_Os07g41210, respectively, of which three SNPs changed amino acids, specifically one SNP resulting in a premature termination of the gene in ZS97B. These two predicted genes were thus considered as the most likely candidates for qSS7.
     5. The expression levels of the candidate genes were analyzed at various stages of panicle development. LOC_Os07g41200in08Q043expressed at higher levels than in ZS97B through almost the entire panicle development stage (panicles ranging3-23cm in length), except the early stage (panicles2cm in length). In contrast, the expression levels of LOC_Os07g41210in ZS97B were higher at most of the panicle development stages except the late one (panicles reaching23cm in length) than those in08Q043.
     6. Ten haplotypes were revealed by two InDel markers and coding sequence of LOC_Os07gg41210. ZS97B haplotype (HI) exists mainly in indica,08Q043haplotype (H2) exists mainly in tropical japonica, and Nipponbare haplotype (H3) exists mainly in temporal japonica. Seed length of H4is longer than that of H1and H5; seed width of H2is wider than that of H3and H5, and ratio of length to width of H2is larger than that of H3and H5.
     7. To characterize the qSS7effect in details, a pair of NIL (NTL-08Q043and NIL-ZS97B) with different alleles at the qSS7were developed. The length and width of the inner epidermal cells of the outer glume (lemma) was measured by SEM, showing that the cell length was13.7%longer and the cell width was11.8%narrower in NIL-08Q043than in ZS97B. These differences are consistent with that of seed shape, showing that qSS7controls seed shape possibly by affecting cell shape of spikelets.
     8. The dynamics of seed development and grain filling rate were surveyed using the NILs. The seed shape was significantly different between the two NILs after panicle8cm in length. This result consisted with the expression levels during the panicle development stage. However, no difference in grain filling rate between two the NILs was observed at entire grain-filling stage.
     9. Yield and quality-related traits in the NILs were investigated as well. There were differences in heading date, panicle length, spikelet density, grain chalk percentage and grain chalk degree between the two NILs (NIL-08Q043and NIL-ZS97B), but no difference in grain yield and grain quality.
引文
1.崔艳华,邱丽娟,常汝镇,吕文河.植物核心种质研究进展.植物遗传资源学报,2003,4(3):279-284
    2.符福鸿,王丰,黄文剑,彭惠普,伍应运,黄德娟.杂交水稻谷粒性状的遗传分析.作物学报,1994,20(1):39-45
    3.郭咏梅,穆平,刘家富,李自超,卢义宣.水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位.作物学报,2007,33(1):50-56
    4.金连登,罗玉坤,朱智伟,陈能,许立,陈铭学,阂捷.对新世纪初我国稻米产业发展对策的若干思考.中国稻米,2001,3:5-8
    5.金伟栋,洪德林.太湖流域粳稻地方品种核心种质的构建.江苏农业学报,2007,23(6):516-525
    6.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,4
    7.李长涛,石春海,吴建国,徐海明,张海珍,任玉玲,费万辛.利用基因型值构建水稻核心种质的方法研究.中国水稻科学,2004,18(3):218-222
    8.林鸿宣,闵绍楷,熊振民,钱惠荣,庄杰云,陆军,郑康乐,黄宁.应用RFLP图谱定位分析籼稻粒型数量性状基因座位.中国农业科学,1995,28(4):1-7
    9.林荔辉,吴为人.水稻粒型和粒重的QTL定位分析.分子植物育种,2003,1(3):337-342
    10.罗玉坤,朱智伟,陈能,段彬伍,章林平.中国主要稻米的粒型及其品质特性.中国水稻科学,2004,18(2):135-139
    11.祈祖白,李宝健,杨文广,吴秀峰.水稻籽粒外观品质及脂肪的遗传研究.遗传学报,1983,10(6):452-458.
    12.石春海,申宗坦.籼稻粒形及产量性状的加性相关和显性相关分析.作物学报,1996,22(1):36-42
    13.石春海,何慈信,朱军,陈建国.籼稻稻米外观品质性状的遗传主效应和环境互作效应分析.中国水稻科学,1999,13(3):179-182
    14.吴长明,孙传清,陈亮,李自超,王象坤.应用RFLP图谱定位分析稻米粒 形的QTL.吉林农业科学,2002,27(5):3-7
    15.邢永忠,谈移芳,徐才国,华金平,孙新立.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,2001,43(8):840-845
    16.杨娣丰,曾瑞珍,朱海涛,陈岚,张泽民,丁效华,李文涛,张贵权.水稻粒长基因GS3在聚合育种中的效应.分子植物育种,2010,8(1):59-66
    17.余四斌,穆俊祥,赵胜杰,周红菊,谭友斌,徐才国,罗利军,张启发.以珍汕97B和9311为背景的导入系构建及其筛选鉴定.分子植物育种,2005,3(5):629-636
    18.余四斌.植物分子标记与分子标记图谱构建.见张献龙主编,植物生物技术.北京:科学出版社,2004.P426-427
    19.中华人民共和国国家标准.优质稻谷GB/T17891-1999.北京:中国标准出版社,1999
    20.张剑霞.利用分子标记辅助选择转移野生稻增长QTL和聚合水稻优良基因. [硕士毕业论文].武汉:华中农业大学图书馆,2009
    21.张艳,胡春根,姚家玲.水稻长粒和短粒品种稃片的发育及细胞学观察.中国水稻科学,2009,23(2):160-164
    22.张玉魁,潘忠诚.一种快速DNA聚丙烯酰胺凝胶电泳与银染干胶技术.中国医科大学学报,2003,32(4):308-309
    23.赵芳明,朱海涛,丁效华,曾瑞珍,张泽民,李文涛,张桂权.基于SSSL的水稻重要性状QTL的鉴定及稳定性分析.中国农业科学,2007,40(3):447-456
    24.赵明富,黄招德,吴春珠,车容会,施碧红,方珊如,孙永建,赵志民.水稻谷粒粒长显性主效QTL的遗传分析与定位.分子植物育种,2008,6(6):1057-1060
    25. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi. Genome sequencing reveals agronomically imprtant loci in rice using MutMap. Nat biotechnol,2012,30(2):174-179
    26. Agrama HA, Yan WG, Lee F, Fjellstrom R, Chen MH, Jia M, McClung A. Genetic assessment of a mini-core subset developed from the USDA rice genebank. Crop Sci,2009,49:1336-1346
    27. Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH. QTL mapping of grain quality traits from the interspecific cross Oryza sativa×O.glaberrima. Theor Appl Genet,2004,109:630-639
    28. Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK. Mapping of quantitative trait loci for basmati quality traits in rice(Oryza sativa L). Mol Breeding,2008,21:49-65
    29. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang CL, Toomajian C, Traw B, Zheng HG, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. Plos Genet,2005, 1(5):e60
    30. Ashikari M. Wealthy Farmer's Panicle, promotes rice yield is restricted its expression by two-way epigenetic silencing. Abstract,9th International Symposium of Rice Functional Genomics,2011, Taiwan, China
    31. Ayahiko S, Takeshi I, Kaworu E, Takeshi E, Hiromi K, Saeko K, Masahiro Y. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet,2008,40(8):1023-1028
    32. Bai XF, Luo LJ, Yan WH, Kovi MR, Zhan W, Xing YZ. Genetic dissection of grain shape using a recombination inbred population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet,2010,11:16
    33. Botstein B, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map using restriction fragment length polymorphism. Am J Hum Genet,1980, 32:314-331
    34. Buckler ES, Thornsberry JM. Plant molecular diversity and applications to genomics. Curr Opin Plant Biol,2002,5:107- 111
    35. Chen JJ, Ding JH, Ouyang YD, Du HY, Yang JY, Chen K, Zhao XB, Zhao J, Qiu SQ, Zhang XL, Yao JL, Liu KD, Wang L, Xu CG, Li XH, Xue YB, Xia M, Ji Q, Lu JF, Xu ML, Zhang QF. A triallelic system of 55 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybride in rice. Proc Natl Acad Sci,2008,105(32):11436- 11441
    36. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo ZW, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Stein N, Schulte, D, Steuernagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, et al. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci,2010,107(50):21611 -21616
    37. Dany H, Hidenori S. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. Plos One,2012a,7(2):e31325
    38. Dany H, Hidenori S.An atypical bHLH protein encode by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interation with a typical bHLH protein APG. Breed Sci, 2012b,62:133-141
    39. Davasi A, Soller M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet,1992,85:353-359
    40. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics,1993,134:943-951
    41. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006,112:1164-1171
    42. Fan CC, Yu SB, Wang CR, Xing YZ. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet,2008,118:465-472
    43. Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol,2003,54:357-374
    44. Govindaraj P, Arumugachamy S, aheswaram S. Bulked segregant sanalysis to detect main QTL associated with grain quality parameters in Basmati370/ASD 16 cross in rice (Oryza sativa L). Euphytica,2005,144:61-68
    45. Hansen M, Kraft T, Ganestam S, Nilsson N. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res,2001,77(1):61 - 66
    46. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Yan JB, Buckler ES. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science,2008,319:330-333
    47. Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH, Wang L, Deng LW, Li WJ,Lu YQ, Weng QY, Liu KY, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet,2010,42:961 -967
    48. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:793-800
    49. Jiang GH, He YQ, Xu CG, Li XH, Zhang QF. The genetic basis of stay-green in rice analyzes in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet,2004,108:688-698
    50. Jiang GH, Xu CG, Tu JM, Li XH, He YQ, and Zhang QF. Pyramiding of insect-and disease-resistance genes into an elite indica, cytoplasm male sterile restorer line of rice, Minghui 63. Plant Breeding,2004,123:112-116
    51. Jiang YH, Cai ZX, Xie WB, Long T, Zhang QF. Rice functional genomics research:Progress and implications dor crop genetic improvement. Biotechnol Adv,2012,30:1059-1070
    52. Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics,1994,136:1447-1455
    53. Kanako K, Shigeru K, Katsuyuki O, Yuki A, Tsuyu A, Izumi K, Masahiro Y, Hidemi K, Yukimoto I. A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol,2010,51(8):1315-1329
    54. Kawahara Y, Bastide MI, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu JZ, ZhouSG, Childs KL, Davidson RM, Lin HN, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kin J, Numa H, Itoh T, et al. Improvement of Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice,2013,6:4
    55. Konieczny A, Ausubel FM. A procedure of mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J,1993,4(2):403-410
    56. Kraakman AT, Niks RE, Van den Berg PM, Stam P, Eeuwijk AV. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics,2004,168:435-446
    57. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-200
    58. Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development,2006,133:4305-4314
    59. Lemieux B. Overview of DNA chip technology. Mol Breeding,1998,4:277-289
    60. Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res,2010,20:838-849
    61. Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR. QTL detection for rice grain quality traits using an interspecific back-cross population derived from cultivated Asian (O. sativa L) and African (O.glaberrima S) rice. Genome,2004,47:697-704
    62. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CG, Li XH, Xiao JH, He YQ, Zhang QF. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet,2011,43(12):1266-1269
    63. Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, Massachusetts, USA,1992
    64. Lincoln SE, Daly MJ, Lander ES. Mapping genes controlling quantitative traits with MAPMAKER/QTL1.1:a tutorial and reference manual,2nd edn. Whitehead Institute Technical Report, Cambridge,1993
    65. Litt M, Luty JA. Hypervariable microsatellite revealed by in vitro amplification of adinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet,1989, 44:399-401
    66. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2'△△CT method. Methods,2001,25:402-408
    67. Mao HL, Sun SY, Yao JL, Wang CR, Yu SB, Xu CG, Li XH, Zhang QF. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci,2010,107(45):19579-19584
    68. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosome. Theor Appl Genet,1988,26:815 — 829
    69. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L). DNA Res,2002, 9:199-207
    70. Michemore RW, Paren I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregating population. Proc Natl Acad Sci,88:9828-9832
    71. Monna L, Lin HX, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet,2002,104:772-778
    72. Murray MG, Thompson WF. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res,1980,8:4321
    73. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weige D. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2002,30:190-193
    74. Noriko TK, Jiang H, Kubo T, Sweeney M, Takashi M, Hiroyuko K, Padhukasahasram B, Bustamante K, Atsushi Y, Kazuyuki D, McCouch SR. Evolutionary History of GS3, a Gene Conferring Grain Length in Rice. Genetics, 2009,182:1323-1334
    75. Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    76. Paterson A, Lander S, Hewitt J, Peterson S, Lincoln H, Tanksley S. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature,1988,335:721-726
    77. Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, Park JH, Woo MO, Jin Z, An G, Lee J, Koh HJ. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet,2009,119:1497-1506
    78. Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali AA. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR marker. Euphytica,2004,137:325-332
    79. Reddy MP, Sarla N, Siddiq EA. Inter-simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica,2002,128:9-17
    80. Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet,1998,96:957-963
    81. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES IV. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci,2001, 98(20):11479-11484
    82. Ramkumar G, Sivaranjani AKP, Pandey MK, Sakthivel K, Rani NS, Sudarshan I, Prasad GSV, Neeraja CN, Sundaram RM, Viraktamath BC, Madhav MS. Development of a PCR-based SNP marker system for effective selection of kernel length and kernel elongation in rice. Mol Breeding,2010,26:735-740
    83. Shao GN, Tang SQ, Luo J, Jiao GA, Wei XJ, Tang A, Wu JL, Zhuang JY, Hu PS. Mapping of qGL7-2, a grain length QTL on chromosome7 of rice. J Genet Genomics,2010,27:523-531
    84. Shao GN, Wei XJ, Chen ML, Tang SQ, Luo J, Jiao GA, Xie LH, Hu PS. Allelic variation for a candidate gene for GS7, responsible for grain shape in rice. Theor Appl Genet,2012,125:1303-1312
    85. She KC, Hiroaki K, Kazuyoshi K, Hiromoto Y, Makoto H, Tomohiro I, Masato F, Natsuka N, Yumi T, Mitsuhiro Y, Tomohiko T, Ken'ichiro M, Mari K, Eiko I, Shoshi K, Naoki K, Junshi Y, Tsuyu A, Masahiro Y, Takashi A, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant cell,2010,22(10):3280-3294
    86. Shuhei S, Izumi K, Tsuyu A, Masahiro Y, Hidemi K, Kotaro M, Yukimoto I. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice,2012,5:4
    87. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2006,39(5):623-630
    88. StatSoft (1999) Statistica. StatSoft Incorporated, Tusla
    89. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq:rapid mapping if quantitative trait loci in rice by whole gemone resequencing of DNA from two bulked population. Plant J,2013,74:174 -178
    90. Takera S, Matsuoka M. Genetic approaches to crop improvement:responding to environmental and population changes. Nat Rev Genet,2008,9:444-457
    91. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF. Genetic bases of appearance quality of rice grain in Shanyou 63, an elite rice hybrid. Theor Appl Genet,2000,101:823-829
    92. Temnykh S, Park W, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.). Theor Appl Genet,2000,100:697-712
    93. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgin G The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    94. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet,2003,107:479-493
    95. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES IV. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28(3):286-289
    96. Tian ZX, QianQ, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci,2009,106(51):21760-21765
    97. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet,2006,112:1258-1270
    98. Wang CR, Chen S, Yu SB. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet, 2011,122:905-913
    99. Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet,2008,40(11):1370- 1374
    100.Wang JK, Wan XY, Crossa J, Crouch, J, Weng JF, Zhai HQ, Wan JM. QTL mapping of grain length in rice(Oryza sativa L.) using chromosome segment substitution lines. Genet Res,2006,88:93 - 104
    101.Wang JK, Wan XY, Li HH, Pfeiffer WH, Crouch J, Wan JM. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet,2007,115:87-100
    102.Wang L, Wang AH, Huang XH, Zhao Q, Dong GJ, Qian Q, Sang T, Han B. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombination inbred lines. Theor Appl Genet,2011,122:327-340
    103.Wang L, Xie WB, Chen Y, Tang WJ, Yang JY, Ye RJ, Liu L, Lin YJ, Xu CG, Xiao JH, Zhang QF. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J,2010,61:752-766
    104. Wang P, Zhou GL, Cui KH, Li ZK, Yu SB. Clustered QTL for source leaf size and yield traits in rice(Oryza sativa L.). Mol Breeding,2012,29:99-113
    105.Wang P, XingYZ, Li ZK, Sibin Yu. Improving rice yield and quality by QTL pyramiding. Mol Breeding,2012,29(4):903-913
    106. Wang P, Zhou GL, Yu HH, Yu SB. Fine Mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet,2011,123:1319-1330;
    107.Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSOL16 in rice. Nat Genet,2012,44(8):950-954
    108.Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res,2008,18:1199-1209
    109.Williams KJ, Kubelik AR, Livak KJ, Rafalski JA, Tingery SV. DNA polymorphisms amplified by arbitrary primers are useful as genetics markers. Nucleic Acids Res,1990,18(22):6531-6535
    110.Wilson LM, Whitt SR, Ibanez AM, Rocherford TR, Goodman MM, Buckler ES Ⅳ. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell,2004,16:2719-2733
    111.Wu R, Zeng ZB. Linkage and linkage disequilibrium mapping in natural population. Genetics,2001,157:899-909
    112.Vos P, Hogers R, Bleeker M, Reijans M, Lee TV, Homes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23(21):4407-4414
    113.Xie XB, Jin FX, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x O. rufipogon cross. Theor Appl Genet,2008, 116:613-22
    114.Xie XB, Song MH, Jin FX, Ahn SN, Suh JJ, Hwang HG, McCouch SR. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet,2006,113:885-894
    115.Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet,1998,97:37-44
    116.Yan CJ, Yan S, Yang YC, Zeng XH, Fang YW, Zeng SY, Tian CY, Sun YW, Tang SZ, Gu MH. Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica,2009,169:215-226
    117.Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner DJ, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell T, Buckler ES, Warburton M, et al. Rare genetic variation at Zea mays crtRBl increases β-carotene in maize grain. Nat Genet,2010, 42(4):322-327
    118.Yan S, Zou GH, Li SJ, Wang H, Liu HQ, Zhai GW, Guo P, Song HM, Yan CJ, Tao YZ. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor Appl Genet,2011,123 (7):1173 - 1181
    119. Yang JY, Zhao XB, Cheng K, Du HY, Ouyang YD, Chen JJ, Qiu SQ, Huang JY, Jiang YH, Jiang LW, Wang J, Xu CG, Li XH, Zhang QF. A Killer-Protector System Regulates Both Hybrid Sterility and Segregation Distortion in Rice. Science,2012,337:1336-1340
    120. Yuki A, Keiko M, Tsuyu A, Izumi K, Masahiro Y, Hidemi K, Yukimoto I. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed grain in rice. Genes Genet Syst,2010,85:327-339
    121.Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci,1993,90:10972-10976
    122.Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    123.Zhang HL, Zhang DL, Wang MX, Sun JL, Qi YW, Li JJ, Wei XH, Han LZ, Qiu ZG, Tang SX, Li ZC. A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet,2011,122:49-61
    124.Zhang N, Xu Y, Akash M, McCouch S, Oard JH. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. TheorAppl Genet,2005,110:721-729
    125.Zhang QF, Shen BZ, Dai XK, Mei MH, Maroof MAS, Li ZB. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genetic male sterility in rice. Proc Natl Acad Sci,1994,91:8675-8679
    126.Zhao KY, Tung CW, Eizenga GC, Wright MH, All ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun,2011,2:467
    127.Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics,2010,184:343-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700