用户名: 密码: 验证码:
山东地区中生代岩浆作用与地壳拉张—兼论煌斑岩与金成矿的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燕山期(205~65Ma)山东地区地壳活动强烈,构造体系已由古亚洲构造域完全转化为滨太平洋构造域,构造活动导源于太平洋板块对欧亚板块的俯冲。由于太平洋板块对欧亚板块的俯冲(NW向),鲁东地区岩石圈发生了快速拆沉减薄作用,同时鲁东地区也可能会出现地幔柱的活动;另外,在太平洋板块俯冲作用影响下,郯庐断裂(山东称沂沭断裂)带发生了大型左行走滑剪切和拉张活动。以上构造因素加上早白垩世末—晚白垩世期间燕山造山带的垮塌,都可能为山东地区中生代地壳拉张提供了动力条件。
     山东地区中生代(燕山期)基性脉岩特别发育,这些幔源基性岩脉充填张性裂隙,是大陆地壳拉张的标志;另外,山东地区也存在大量拉张背景下的燕山期火山岩和碱性岩。但关于它们的年代学和系统的地球化学研究还比较薄弱,且对其成因和形成的构造环境,仍存在着争议。本论文主要从同位素年代学、岩石化学、地球化学和Sr—Nd—Pb同位素方面对山东地区燕山期基性脉岩、火山岩和碱性超基性脉岩进行了系统研究。同时,考虑到鲁东地区煌斑岩中金含量普遍较高,且燕山期又是山东金矿的主成矿期,论文中对煌斑岩与金成矿之间的关系也作了一定的研究。通过研究,得出以下主要认识:
     1、火山岩为一套以钙碱性安山岩为主,含少量拉斑玄武岩和英安岩。成因上为富集地幔部分熔融作用的结果,但在成岩过程中也可能存在单斜辉石、斜长石、橄榄石和Ti-Fe氧化物等矿物的分离结晶作用。碱性超基性脉岩岩性上为单一的橄榄辉石岩,为富集地幔源低度(3.4%)部分熔融作用的产物,岩浆演化过程经历了以橄榄石为主的分馏作用。基性脉岩主要包括辉长岩、辉绿岩(主要分布在鲁西地区)和煌斑岩(以斜闪煌斑岩为主,同时含部分拉辉煌斑岩和角闪煌斑岩)(主要分布在鲁东地区),都为富集岩石圈地幔部分熔融的产物。三类岩石在侵位结晶过程都不存在明显的地壳混染。
     2、火山岩、碱性超基性脉岩和基性脉岩(除少数外)都形成于大陆板内拉张环境。
     3、富集地幔源区(EM1)的产生是俯冲并熔融的扬子下地壳物质进入华北岩石圈地幔并与之相互交代作用形成的。
     4、研究区中生代基性脉岩K-Ar年龄分布范围为72.2±1.70Ma~204.2±5.4Ma,且基本上在90~140Ma之间变化。综合碱性超基性脉岩和已知的青山组的火山岩、基性脉岩年龄数据,认为山东地区中生代地壳拉张至少存在四次:即约80Ma、100Ma、120Ma和140Ma。但鲁东地区在地壳拉张方面可能存在着与鲁西地区不同的制约因素:即鲁东地
    
    区存在拆沉作用和可能存在地慢柱的影响’、而鲁西地区可能受到了郊庐断裂的左行走
    滑剪切和拉张活动的影响。
    5、胶北地区煌斑岩为钙碱性系列,
     的找矿勘探工作具有一定意义。
    且金含量普遍较高(平均28ppb),该研究对胶北地区
The crustal movement was intense in Yanshanian, from 205Ma to 65Ma in Shandong Province. When the tectonic system completely changed from paleo-Asian tectonic circle to shore Pacific tectonic circle, and established the elementary tectonic framework of Shandong Province. From then on, the tectonic movements of Shandong were ascribed to the subduction (north-west-trending) of Pacific plate under Eurasian. Due to the west north direction subduction, fast collapse (delamination) may take place and the mantle plume emerged in Ludong, In addition, owing to the subduction of Pacific plate under Eurasian, there appeared left-lateral advection and extension for Tan-Lu faults (named as Yishu fault in Shandong), and together with the collapse of Yanshanian orogenic belts, all induced the crustal extension in Shandong.
    The Yanshanian mafic dikes, volcanic rocks and alkaline rocks resulting from extensional setting largely appeared in Shandong Province. However, it is unsubstantial for the investigation on chorology and geochemisty, and dissimilar for the research on petrogenesis and tectonic setting. Therefore, based on the isotopic chorology, petrochemistry, geochemisty and Sr, Nd, Pb isotope, the Ph.D dissertation mainly studied some Yanshanian mafic dikes, volcanic rocks and alkalic-ultramafic dikes in Shandong Province. In addition, in view of the high gold contents in the lamprophyres, and the significance of Yanshanian for gold mineralization in Shandong, the relation between lamprophyres and gold deposit is also discussed in this paper. By studying, the main conclusions have been achieved as follows:
    I.The volcanic rocks, as the result of the partial melting of enriched mantle, comprise calc-alkaline andesite and dacite and a few tholeiite. During diagenetic process, there may exist the fractional crystallization of clino-pyroxene, plagioclase, olivine and Ti-Fe oxide, and the accumulation of olivine. The alkalic-ultramafic dikes formed by low degree partial melting (3.4%) of enriched mantle, consist of single olivine pyroxenolite, the dominating olivine fractionation is evident. The mafic dikes also formed by the partial melting of enriched mantle, include gabbro, diabase
    
    
    (distributing mainly in Luxi) and lamprophyres (camptovogesite, odinite and hornblende lamprophyres) (mainly in Ludong). For all the rocks, crustal contamination was absent when magma emplaced.
    2. The mafic dikes, volcanic rocks and alkalic-ultramafic dikes are terrestrial, and were all formed in the extensional settings.
    3. The formation of the enriched mantle (EM1) is attributed to the strong metasomatism-taking place between subducted Yangtze lower crust and NC (north of China) ancient lithosphere. Due to the subduction of Pacific palte under Eurasian in early Cretaceous, at about 140 Ma, fast collapse (delamination) took place and the mantle plume emerged, both resulted in the large-scale crustal extension in Ludong. In addition, owing to the subduction of Pacific plate under Eurasian, there appeared left-lateral advection and extension for Tan-Lu faults (named as Yishu fault in Shandong), and which induced the crustal extension in Luxi. Under the cooperation of lifts and mantle fluids, the melting point of mantle peridotite fell, and then, extensive melting took place in the enriched mantle, which resulted in the appearance of abundant mafic dikes, ultramafic dikes and contemporaneous volcanic rocks in Shandong Province. Moreover, in view of the speeds of collapse, extension and magmatic emplacement were so fast that n
    o crustal contamination in magma.
    4.The K-Ar isotopic data of mafic dikes vary between 72.2 ± 1 70Ma and 204.2 ± 5.4Ma, and mostly between 90 Ma and 140 Ma. Integrating the ages of the mafic dikes and alkalic-ultramafic dikes in this paper, and the known data of mafic dikes and volcanic rocks, at least, there existed four episodes Mesozoic crustal extension in Shandong Province, namely, 80Ma, 100Ma, 120 Ma and140Ma, which is similar to that of SC (South China), indicating that maybe the effect of the subductio
引文
1. Ashley PM, Cook NDJ, Hill RL, Kent A JR. Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hillgrove, New South Wales, Australia. Lithos, 1994, 32: 249-272.
    2. Baer G, Heimann A. Physics and chemistry of dykes. Rotterdam, Neth: Balkema, 1995, 1-339.
    3. Beccaluva L,Di Girolamo P, Serri G.Petrogenesis and tectonic setting of the Roman volcanic Province, Italy. Lithos, 1991,26:191-221.
    4. Bhattacharji S. Mafic dikes and dike swarms in Deccan volcanics, India: indicator of plume-related magmatism, hot-spot center, and deeper system for flood basalt volcanism at K-T boundary. Abstacts of 29th IGC, 1992, 566.
    5. Brandon A D, Hoopper P R, Goles G G and Lambert R J. Evaluating crustal contamination in continental basaits: the isotopic composition of the picture Gorge basalt of the Columbia River Basalt group. Contrib. ]Mineral. Petrol., 1993, 114 (4):452--464.
    6. Chemenda, A I, Burg, J P, Mattauer, M. Evolutionary model f the Himalaya-Tibet system: Geopoem based on new modeling, geological, and geophysical data. Earth Planet. Sci. Lett. , 2000, 74,397—409.
    7. Chen, J F, Jahn, B M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 1998, 284: 101-133.
    8. Chert P, Hua R, Zhang B, et al. Early Yanshanian post-orogenic granitoids in the Nanling region-petrological constraints and geodynamic settings. Science in China (D), 2002, 45: 755-768.
    9. Chung S L, Cheng H, Jahn BM, et al. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in south China prior to the south China sea opening, Lithos, 1997, 40:203-220.
    10. Clive R N and Taylor L A A.negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism?. Geochimica et Cosmochimica Acta., 1989, 53:1035—1040.
    11. Condie, K. Chimical composition and evolution of the upper continental crust; contrasting results from surface samples and shales. Chem. Geol., 1993, 104: 1-37.
    12. De Smet, JH, Van den Berg, A P Vlaar, N J. The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting. Lithos, 1999, 48: 153-170.
    13. Devey C W and Stephens WE. Tholeiitic dykes in the Seychelles and the original spatial extent of the Deccan. Journal of Geological Society (London), 1991, 148: 979-983.
    14. Engebreson, D C., Cox, A, Gordon, RG. Relative motions between oceanic and continental plates in the Pacific basins. Geol. Soc. Am. Spec. Paper, 1985, 206: 1-59.
    15. Esperanza S, Holloway J R. On the origin of some mica-lamprophyres: Experimental evidence from a mafic minette. Contrib. Min. Petrol., 1987, 95: 207-216.
    16. Fan, WM, Guo,, F, Wang, YJ, Lin, G, Zhang,. M. Post-orogenic bimodal volcanisrn along the Sulu orogenic.belt in eastern China. Physics and Chemistry of the Earth (A) , 2001, 26.. 733-746.
    17. Fan, WM, Zhang, HF, Baker, J,Jarvis, KE, Mason, PRD, Menzies, MA. On and offthe North China Craton: where is the Archaean keel? J. Petrol., 2000, 41 : 933-950.
    18. Francalanci F. Peccerillo A and Poli G. Partition coefficients for minerals in potassium-alkaline rocks:data from Roman province (central Italy), Geochem.J., 1987, 21:1-10.
    19. Francalanci L, Taylor SR, McCulloch MT, et ai. Geochemical and isotopic variations in the
    
    calc-alkaline rocks of Aedian arc, southern Tyrrhenian sea, Italy; Constraints on magma genesis. Contrib. Mineral. Petrol., 1993, 113:300-313.
    20.Frey F A.and Roden M F.The mantle source for the Hawaiian islands, constrains from the lavas and ultramafic inclusions. In: Menzies M A and Hawkesworth C J eds. Mantle metasomatism. England: Academic press,1987,423-464.
    21. Gao, S, Ling, WL, Qiu, Y, Lian, Z,Hartmann, G,Simon, K. Contrasting geochemical and Sm-Nd isotopic compositions of Arehean metasediments from the Kongling high-grade terrain of the Yangtze craton:.Evidence forcratonic.evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta, 1999, 63.: 2071-2088.
    22. Gao, S, Luo, TC, Zhang, BR, Zhang, HF, Han, YW, Zhao, ZD, Hu, YK. Chemical composition of the continental crust as revealed by studies in Eastern China. Geochim. Cosmochim.Acta, 1998, 62: 1959-i975.
    23. Gill J B. Early geochemical evolution of an oceanic island arc and backarc: Eiji and the south Fiji basin.Journal of Geology, 1987,95:589-615.
    24. Green DH. Composition of basaltic magmas as indicators of origin: application tO oceanic volcanism.Phii Trans R Soc Land, 1971, 268:707—725.
    25. Griffin, WL, O'Reilly,.SY, Ryan, CG.,Composition and thermal structure of the lithosphere beneath south Africa, Siberia, and China: Proton microprobe studies: Beijing, China: International Smposium on Cenozoic volcanic rocks and deep-seated Xenoliths 0fChina and its Environs, 1992, 1-20.
    26. Griffin,WL, Zhang, AD, O'Reilly, SY, Ryan, CJ. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dynamics and plate interactions,in East Asia (Flower, M.F.J.,Chung, S.L.,Lo, C.H.,and Lee, T.Y., eds.). Am. Geophys. UnionGeodyn. Ser., 1998, 27: 107-126.
    27. Guo, F, Fan, WM, Wang, Y J, Lin, G. Late Mesozoic mafic intrusive complexes in the North China Block: Constrains on the nature ofsubcontinental lithospheric mantle. Phys. Chem. EaCh, 2001, 26:759-771.
    28. Guo, F, Fan, WM, Wang, Y J, Lin, G. Geochemisty of late Mesozoic mafic magmatism in west Shandong province, eastern China: Characterizing the lost lithospheric mantle beneath the North China Block. Geochem. J., 2003, 37: 63-77.
    29. Gurenko AA, Chaussidon M. Enriched and depleted primitive melts included in olivine fom Icelandic tholeiites: Origin by continuous melting of a single mantle column. Geochimica et Cosmochimica Acta. ,1995, 59(14):2 905—2 917.
    30. Hall HC.The importance and potential of marie dyke: swarm in .studies of geodynamic process. GeoSciences Canada, 1982, 9:145-154:
    31 Hall H C,Fahrig WF.Maric dyke swarms. Geological, Association Canada. Special Paper, 1987, 34: 1-503.
    32. Hart,SR, A large-scale isotope anomaly in the southern Hemisphere mantle. Nature,1984, 309: 753-757.
    33. Hergt JM, Peate,DW and Hawkesworth CJ. The petrogenesis of Mesozoic Gondwanana Low-Ti flood basalts. EaCh Pipet Sci.Lett.,1991,105:134-148.
    34. Hoek JD, Seitz HM. Continental mafic dykes swarms as tectonic indicators: an example from the vestfold hills, East Antarctica, Precambrian,Research, 1995, 75: 121-139.
    35. Ivrine TN,Baragar WPA. A guide to the chemical classification of the common volcanic rocks.Can J EaCh Sci, 1971, 8:532-548.
    36. Jacohson SB and Wasserburg JG. Sm-Nd isotopic evolution of chondrites.. Earth Planet. Sci. Lett.,
    
    1980,50:315-331.
    37. Jagoutz E. The abundances of major, minor and trace elements in the Earth's as derived from primitive ultramafic nodules. Proc Lunar Sci Conf, 1979, 10:2 031 —2 050.
    38. Jahn, BM, Wu, FY, Lo, CH, Tsai, CH. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr,Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem, Geol., 1999, 157:119-146.
    39. Jahn, BM, Zhang, ZQ. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications, Contrib. Mineral. Petrol., 1984, 85: 224-243.
    40. Kelemen, PD, Johnson, KTM., Kinzler, R J, Irving, AJ, High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature, 1990, 345: 521-524.
    41. Kumarapeli S. Geological significance and origin of the Grenville dyke swarm Ontario-Quebec, Canada. Abstracts of 29th, 1992, IGC, 567.
    42. Lan CY., Chung SL, Merzman SA, et al. Mafic dikes from Chinmen and Liehyu off southeast China:Petrochemical characteristics and tectonic implications. Journal of Geological Science China,1995,38:183-213.
    43. Le Bas N J, Le Maitre RW, Streckeisen A, et al.A chemical classification of volcanic rocks based on the total alkalisilica diagram.J Petrol., 1986,27:745-750.
    44. Le Roux, AP. Geochemical correlation between southern African kimberlites and south Altantic hotspots. Nature, 1986, 324: 243-245.
    45. Li Xianhua. Cretaceous magmatism and lithospheric extension in southeast China. Journal of Asian Earth Sciences, 2000, 18:293-305.
    46. Li XH, McCulloch MT. Geochemical characteristics of .Cretaceous mafic dikes from northern Guangdong, SE China: Age, origin and tectonic significance. Flower M. F. J., Chung S.L,, Lo C.H., et al. Mantle dynamics and plate interaction in East Asia, Washington: AGU, Geodynamics, 27: 405-419.
    47. Liu, .DY, Nutman, AP, Compston, W, Wu, JS, Shen, .QH. Remnants of 3800Ma crust in the Chinese part of the Sine-Korean craton. Geoglogy, 1992, 20: 339-342.
    48. Ma, CQ, Ehlers, C, Xu, CH, Li, ZC, Yang, KG. The roots of the Dabieshan ultrahigh-pressure metamorphic terrance: Constraints from geochemistry and Nd,Sr isotope systematics. Precambrian Research, 2000, 102: 279-301.
    49. Maalφe S.and.Pedersen R B. Two methods for estimating the degree of melting and trace element concentrations:in the sources of primary magmas. Chemical Geology, 2003, 193:155 - 166.
    50. Maruyama S, Isozaki Y, Kimura G, Terabayashi M. Paleogegraphic maps of the Japanese Islands: Plate tectonic systhesis from 750Ma to the present. Island Arc, 1997, 6:121-142.
    51. McNeil A M, Kerrich R. Archean lamprophyre dykes and mineralization, Matheson, Ontario: the conjunction of LILE-enriched mafic magmas, deep.crustal: structures, and Au concentration Can. J. Earth Sci.,:1986,23:324-343. . ::,
    52. Menzies, MA, Fan, WM, Zhang, M. Paleozoic and Cenozoic lithoprobes and the los,.; of > 120Km of Archaean .lithosphere, Sine-Korean Craton, China: Geological Society of London special Publication, 1993, 76: 71—78.
    53. Meschede MA method of discriminating between different types of mid,ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 1986,56:207-218.
    54. Miao Laicheng, Zircon Sensitive High Resolution Ion Microprobe (SHRIMP) study of granitoid intrusions in Zhaoye gold belt of Shandong Province and its implication. Science in China (Series D), 1997, 40 (4): 361-369.
    
    
    55. Miller C, Schuster R, Klotzli U, et al.Post-collisional potassic and uitrapotassic magmatie in SW Tibet: Geochemicat and: Sr-Nd-O isotopic :constraints for mantle source characteristics and petrogenesis. J Petrol., 1999,40 (9): 1 399-1 424.
    56. Mitehell C, Ellam RM, Cox KG. Mesozoic dolerite dykes of the Falkland islands: Petrology, petrogenesis and implications for geochemical provineiality in Gondwanaland low Tibasaitic rocks. Journal of Geological Society (London), 1999, 156: 901-916.
    57. Morse, SA. Basalts and phase diagrams. Springer-Verlag,1980.
    58. Muller D, Stumpfl E F, Taylor W R. Shoshonitic and alkaline lamprophyres with eleva.ted AU and PGE concentrations from the Kreuzeck Mountains, Eastern Alps, Astralia. Mineral. Petrol., 1992, 46:23-42.
    59. Munker C. Nb/Ta fractionation in a Cambrian arc/back system, New Zealand: source constraints and application of refinedICPMStechniques. Chem. Geol., 1998, 144: 23—45.
    60. Mussett AE and Taylor GK. ~(40)Ar-~(39)Ar ages for dykes from the Falkland islands with implications for the break-up Of south Gondwanaland. JOurnal of Geological Society (London), 1994, 151:79-81.
    61. Ouma-N, Ninomiya S and Nagasawa H..Mineral/groundmass partition coefficients for nepheline, melilite, clinopyroxene and perovskite in melilite-nepheline basalt, Nyiragongo, Zaire. Geochem. J., 1981, 15:221 —228.
    62. Parker A J, Rickwood PC, Tucker DH. Mafic dykes and' emplacement mechanisms. Rotterdam, Neth:alkema, 1990, 1-541.
    63. Peacock SM., Tracy R and Thompson A B. Partial melting of subducting oceanic crust. Earth Planet Sci Let.,1994, 121: 227—244.
    64. Pearce, JA. Trace element characteristics of lavas from destructive plate boundaries. Thorpe, R.S.(eds.), AndesiteS: Orogenic andesites and related rocks?New York: John Wiley and Sons, 1982;525-548.
    65. Pearce JA. Role of the sub-continental lithosphere in magmagenesis at activecontinental margins. In:Hawkesworth CJ, Norry MJ Eds. Continental basalts and Mantle Xenoliths. NaraWich: Shiva publishing, 1983,158-185.
    66. Pearee JA and Norry MJ. Petrogenetic implicati0ris of Ti, Zr, and Nb variationS in volcanic rocks. Contrib. Mineral. Petrol., 1979, 69: 33-47.
    67. Pe-Piper G and Reynolds PH. Early Mesozoic alkaline marie dykes, southwestern Nova scotia, Canada, and their bearing on Triassic-Jurassic magmatism. Canada Mineralogist, 2000,38:217-232.
    68. Qi L, Hu J, and Greg0ire DC.Determination of traCe elements in granite by inductively coupled plasma mass spectrometry.Talanta,2000, 51:507-513.
    69. Rickwood PC. Boundary lines within petrologic diagrams Which using oxides of major and minor elements.Lithos,1989;22:247-263.
    70. Rock NMS, Bowes DR, Wright AE.Lamprophyres. Glasgow and London, Blackie and Son Ltd, 1991.
    71. Rock NMS and Groves DI. Do lamprophyres carry gold as well as diamond? Nature; 1988a, 332:253-255.
    72. Rock NMS and Groves DI.Can Iamprophyres resolve the genetic controversy over mesothermal gold deposits ? Geology, 1988b, 16: 538-541.
    73. Rock NMS, Groves DI, Perring CS, Golding SD. Gold, lamprophyres,and porphyries:what does their association mean? Econ.Geol.,Monograph, 1989, 6:609-625.
    74. Salters, VJM. Shimizu, N. World-wide occurrence of hFSE-depleted mantle. Geochim.Cosrtiochim.Acta,1988, 52: 2177-2182.
    75. Skjerlie, KP, Douge, AE. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0
    
    to 3.2 Gpa; implication for melting in thickened continental crust and for subduction-zone processes. J Petrol., 2002, 43: 291-314.
    76. Song, Y and Frey, RF. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity. Geochim. Cosmochim. Acta, 1989, 53: 97-113.
    77. Spath A, Le Roes AP and Opiyo-Akech N. Plume-lithosphere interaction and the origin of continental rift-related aldaline volcanism—the Chyulu Hills Volcanic Province, Southern Kenya. Jour.. Petrol. , 2001, 42 (4):765—787.
    78. Stolz A J, Jochum KP, Spettel R, et al. Fluid and melt-related enrichment in the sub-arc mantle:Evidence from Nb/Ta variations in island-arc baalts.Geology, 1996,24 (7):587-590.
    79. Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.In:Saundern A D and Norry M J(eds.).Magmatism in the ocean basins. Geol.Soc. Spec.Publ. 1989,42:313-345.
    80. Taylor WR, Rock NMS, Groves DI, Perring CS. Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and association with gold mineralization. Applied Geochem., 1994, 9 (2): 197~222.
    81. Turner, S, Foden, J. U, Th, and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: Predominance of a subducted sediment component. Contrib. Mineral. Petrol. ; 2001, 142: 43-57.
    82. Ujike Osamu and Tsachiya Mobuyuki. Geochemistry of Miocene basaltic rocks temporally straddling the rifting of lithosphere at the Akita Yamagata area, northeast Japan. Chemical Geology, 1993, 104: 61-74.
    83. Vollmer R, Norry MJ. Possible origin of K-rich volcanic rocks from Virunga, East Africa, by metasomatics of continental material: Pb, Nd and Sr isotopic evidence. Earth Planet Sci.Lett., 1983,64:374-386.
    84. Wang D., Yang JM, and Yan SJ. A special orogenic type REE deposit in Maoniuping Sichuan,China:geology and geochemistry. Resource Geology, 2001, 51: 177-188.
    85. Wang, WY, Takahashi, E, Sueno, S. Geochemical properties of lithospheric mantle beneath the Sino-Korean Craton: Evidence from garnet xenocrysts and diamond inclusions. Phys. Earth Planet. Inter., 1998, 107: 249-260.
    86. Wang Y and Dou LR. Formation time and dynamic characteristics of the northeren part of Tanlu fault zone in eastern China. Seismology and Geology, 1997, 19(2): 186-192.
    87. Wilson M. Igneous petrogenesis.London: Unwin Hymann, 1989.
    88. Wilson M.lgneous petrogenesis:A Global tectonic approach.London:Unwin Hyman, 1989,1-466.
    89. Winchester JA and Floyd PA. Geochemical magma type diserimination: application to altered and metamorphosed basic igneous rocks. Earth Planet.Sci.Lett., 1976, 28:459-469.
    90. Winchester JA and Floyd PA.Geochemical discrimination of different magmas series and their differentiation produts using immobile elements. Chem.Geol., 1977, 20:325—343,
    91. Wood DA. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology, 1980, 7:499—503.
    92. Wyman DA, Kerrich R. Alkaline magmatism, major structures, and gold deposits: Implications for greenstone belt gold metaliogeny. Econ. Geol., 1988, 83 (2): 454—461.
    93. Wyman DA, Kerrich R. Archean shoshonitic lamprophyres associated with superior province gold deposit:Distribution, tectonic setting, noble metal abundances, and significance for gold mineralization. Econ. Geol., 1989, 6:651—667.
    
    
    94. Xu Jiawei. Basic characteristics and tectonic evolution for the Tancheng-Lujiang fault zone. In the Tancheng-Lujiang wrench Fault system (Ed. By Xu J. W), John Wiley & Sons Ltd., 1993,17-50.
    95. Xu, JW, Ma, G, Tong, X, Zhu, G, Lin, S. Displacement of Tancheng-Lujiang Wrench fault system and its geodynamic setting in the northwestern Circum-pacific. The Tancheng-Lujiang Wrench system, Xu, J. (ed.), John Wiley & Sons, 1993, 51-74.
    96. Xu, ST, Okay, A J, Ji, S, Sengor, AMC, Su, W, Liu, Y, Jiang, L. Diamond from Dabie Shan metamorphic rocks and its implication for tectonic setting. Science , 1992, 256, 80—82.
    97. Xu, YG, Fan, WM, Lin, G. Lithosphere-asthenosphere interaction: A comparative study on Cenozoic and Mesozoic basalts around BohaiArea. Geotectonica et Metallogenia, 1995, 19:1-13.
    98. Yon Jun, Chen Jiangfeng, Xie Zhi, et al. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chinese Science Bulletin, 2003, 48(19): 2 139-2 144.
    99. Yang, JH, Chung, SL, Zhai, MG and Zhou, XH. Geochemical and Sr-Nd-Pb isotopic compositions of marie dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73:145-160.
    100. Ye, K, Cong, BL, and Y~, DN. The possible subduction of continental material to depths greater than 200Kin. Nature, 2000, 407, 734-736.
    101. Zartman, RE, Doe, BR. Plumbotectonics-the model. Tectonophysics, 1981, 75.. 135-162.
    102. Zhang, HF, Sun, M. Geochemistry of Mesozoic basalts and marie dikes, Southeastern North China Croton, and tectonic implications. International Geology Review, 2002, 44: 370-382.
    103. Zhang, HF, Sun, M, Zhou, XH, Fan, WM, Zhai, MG., Yin, JF. Mesozoic lithosphere destruction beneath the North China Croton: Evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol., 2002, 144: 241-253.
    104. Zheng, CQ, Xu, WL, Wang, DY. The petrology and mineral chemistry of the deep-seated xenoliths in Mesozoic basalt in Fuxin district from western Liaoning, Acta Petrologica Sinica, 1999, 15(4): 616—622.
    105. Zheng, JP, O'Reilly, SY, Griffin, WL, Lu, FX, Zhang, M and Pearson, NJ. Relict refractory mantle beneath the North China Block:significaee for lithospheric evolution. Lithos, 2001,57:43-66.
    106. Zou, HB and Zindler A. Constraints on the degree of dynamic partial melting using concentration ratios. Geochim. Cosmoehim. Aeta , 1996, 60:711—717.
    107. Zou, HB, Zindler, A, Xu, XS, Qi, Q. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations and tectonic significance. Chem. Geol., 2000, 171 : 33-47.
    108.曾华霖,万天丰,Teyssier C.,等.山东玲珑花岗质杂岩体三维形态的重力模拟.地球科学.中国地质大学学报,1999,24(6):607-612.
    109.陈德兵,范玉杰,赵宏武.中国北东部及邻区中生代火山岩成因分析.地质与资源,2001,10(2):65-70.
    110.陈德潜,陈刚.实用稀土元素地球化学.北京冶金工业出版社,1990,81-83,144-151.
    111.陈光远,孙岱生,周洵若,等.胶东郭家岭花岗闪长岩成因矿物学与金矿化.武汉:中国地质大学出版社, 1993.
    112.陈培荣,华仁民,章邦桐,等.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学(D),2002,32:279-289.
    113.陈丕基.郯庐断裂巨大平移的时代和格局.科学通报,1989,4:289-291.
    114.陈文寄,李大明,周新华,等小辽河裂谷盆地的年龄和地球化学.中国新生代火山岩年代学和地球化学(刘若新主编).北京:地震出版社,1992,44-80.
    
    
    115.陈孝德,史兰斌.五台-太行辉绿岩墙群的初步研究.科学通报, 1983, 16:1 002-1005.
    116.陈孝德,史兰斌.伸展构造中的基性岩墙群.钱祥麟主编,伸展构造研究.北京:地质出版社,1994,71-74.
    117.陈宣华,王小凤,张青,等.郯庐断裂带形成演化的年代学研究.长春科技大学学报,2000,30(3):215-220.
    118.陈志刚,李献华,李武显.全南正长岩的地球化学特征及成因.地质论评,2002,48(增刊):77-83.
    119.池际尚主编.中国东部新生代玄武岩及上地幔研究.武汉;中国地质大学出版社,1988.
    120.从柏林,张雯华,郑学正.我国东部中生代火山岩岩石化学及其地质意义.中国科学,1977,3:245-259.
    121.崔天顺.胶东上庄郭家玲花岗闪长岩中普通角闪石的成因矿物学.桂林冶金地质学院学报,1994,14(4):396-400.
    122.邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用与大陆“活化”.现代地质,1994,8:349-356..
    123.程小久,程景平,王江海.胶东蓬家夼金矿区钾幺质煌斑岩的元素地球化学研究.地球化学,1998,27(1):91-99.
    124.邓晋福,赵海玲,莫宣学,等.中国大陆根.柱构造—大陆动力学的钥匙.北京:地质出版社,1996,1-160.
    125.杜杨松,王德滋,陈克荣.浙东南沿海中生代火山-侵入杂岩.北京:地质出版社,1989.
    126.范春方,陈培荣.赣南陂头A型花岗岩体地质地球化学特征及其形成的构造环境.地球化学,2000a,29:358-366.
    127.范春方,陈培荣.赣南陂头花岗岩体Nd-Sr同位素特征及其意义.地质找矿论丛,2000b,15(3):282-287.
    128.葛小月,李献华,周汉文.琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr、Nd同位素研究.地球化学,2003,32(1):11-19.
    129.郭令智,施央申,马瑞士.西太平洋新生代活动大陆边缘和岛弧构造成因和演化.地质质学报,1983,5(1): 11-21.
    130.郭文魁.山东招远玲珑金矿区岩石及构造之生成.地质论评,1951,16(1):64-65.
    131.侯贵廷,李江海,钱祥麟.晋北地区中元古代岩墙群的地球化学特征和大地构造背景.岩石学报,2001,17:352-357.
    132.胡瑞忠,毕献武,苏文超,等.华南白垩-第三纪地壳拉张与铀成矿的关系.2003(投稿中).
    133.胡瑞忠,金景福.贵东花岗岩中煌斑岩的成因.矿物岩石,1990,10(4):1-7.
    134.胡世玲,王松山,桑海清,等.山东玲珑和郭家岭岩体的同位素年龄及其地质意义.岩石学报,1987,3:83-89.
    135.胡受奚,郭抗衡.华北地台南缘金的成矿区(带)的划分及成矿规律.黄金科技动态,1991,4:1-8.
    136.胡受奚,胡志宏,郭继春.从我国地质构造看欧亚板块的形成、演化及其与冈瓦纳和劳亚古陆的关系.北京:地质出版社,1993,15-16.
    137.胡受奚,孙景贵,凌洪飞,等.中生代苏鲁活动大陆边缘榴辉岩、煌斑岩、金矿及富集地幔间的成因联系.岩石学报,2001,17(3):425—435.
    138.胡受奚,王鹤年,王德滋,等冲国东部金矿地质学及地球化学.北京:科学出版社,1998,1-343.
    139.胡受奚,赵乙英,胡志宏,等.中国尔部中.兴盛带活动大陆边缘构造-岩浆作用演化和发展.岩石学报,1994,10(4):370-381.
    140.胡受奚,赵乙英,卢冰,等.胶北地体金矿富集的构造环境.地质找矿论丛,1993,8(1):1-9.
    141.黄智龙,刘丛强,朱成明,等.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质
    
    出版社,1999,30-112.
    142.黄智龙,颜以彬,吴静.云南禄丰鸡街杂岩体中碱性超基性岩地球化学特征及成因探讨.地球化学,1995,24(3):276—286.
    143.季海章,赵懿英,卢冰,等.胶东地区煌斑岩与金矿关系初探.地质与勘探,1992,2:15-18.
    144.贾大成,胡瑞忠,谢桂青.湘东北中生代基性脉岩的地球化学及构造意义.大地构造与成矿学,2002,26:179-184.
    145.姜常义,苏生瑞,任名华,杨志华.北秦岭柞水.太白区段两类活动陆缘型幔源演化活动与演化过程.岩石矿物学杂志, 1997,16(4):314—323
    146.孔兴功,陈培荣,章邦桐.江西南部白面石.东坑盆地A型火山岩的确定及其地质意义.地球化学,2000,29(6):521.524.
    147.李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992,79-89.
    148.李德威.再论大陆构造与动力学.地球科学.中国地质大学学报,1995,20(1):19-26.
    149.李华芹.胶东金矿床石英流体包裹体Rb-Sr等时线年龄测定.欧阳自远.中国矿物学岩石学地球化学研究新进展.兰州:兰州大学出版社,1994,340-341.
    150.李江海,何文渊,钱祥麟.元古代基性岩墙群的成因机制、构造背景及其古板块再造意义.高校地质学报,1997,3(3):272-280.
    151.李守军.山东侏罗.白垩纪地层划分与对比.石油大学学报(自然科学版),1998,22(1):1-5.
    152.李守军,何文渊.山东省中生代地层划分与对比.高校地质学报,1997,3(1):87-93.
    153.李伍平,路凤香.钙碱性火山岩构造背景的研究进展.地质科技情报,1999,18(2):15-18.
    154.李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,1997,26(2):14-31.
    155.李献华,李寄山禺,刘颖,等.华夏古陆元古代变质火山岩的地球化学特征及其构造意义.岩石学报,1999,15(3):364-371.
    156.李献华,孙贤金术.“煌斑岩”与金矿的实际观察与理论评述.地质论评,1995,41(3):252-260.
    157.李献华,周汉文,韦刚健,等.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及对岩石圈地幔组成的制约.地球化学,2002,31(1):26—34.
    158.李兆龙,杨敏之.胶东金矿床地质和地球化学.天津科技出版社,1993,1-300.
    159.梁细荣韦刚健,李献华,等.利用 MC-ICPMS精确测定~(143)Nd/~(144)Nd和Sm/Nd比值.地球化学,2003,32,91-96.
    160.林景天,谭东娟,金烨.鲁西地区中生代火成活动的~(40)Ar/~(39)Ar年龄.岩石矿物学杂志,1996,15(3):213-220.
    161.刘辅臣等.玲珑:金矿中基性岩脉与矿化关系探讨.胶东金矿地质科研讨论论文选编,国家黄金管理局,冶金部天津地质研究院,1991,198-203.
    162.刘洪文,刑树文孙景贵.胶西北两类金矿床暗色脉岩的碳、氧同位素地球化学研究.吉林大学学报(地球科学版),2002,32(1):11-15.
    163.陆松年,李惠民,李怀坤,等.成矿过程同位素体系的时代信息.地质找矿论丛,1995,10(3):14-23.
    164.罗天明.煌斑岩与金矿的关系.黄金科技动态,1991,2:19-21.
    165.罗天明.脉岩与热液脉状金矿化的时空伴生及其地质意义.矿产与地质,1992,5(2):118-125.
    166.罗天明.脉岩与热液脉状金矿化的时空伴生及其地质意义.矿产与地质,1992,6(28):118-125.
    167.骆万成,吴勤生.应用蚀变矿物测定胶东金矿的成矿年龄.科学通报,1987,1245-1248.
    184.吕古贤,孔庆存.胶东玲珑-焦家式金矿地质.北京:科学出版社,1993.
    168.马芳,穆治国,李江海.前寒武纪基性岩墙群的地球化学特征与岩石成因讨论.地质地球化学,2000,28(4):58-64.
    
    
    169.马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学.理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社,1994,38-48.
    170.苗来成,罗镇宽,关康,等.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义.岩石学报, 1998,14(2):198-206.
    171.倪师军.小秦岭基性岩脉与金矿成因关系新模式.成都:西南交通大学出版社,1994,12-45.
    172.倪师军,李朝阳,张诚,等.中基性脉岩对金矿成矿的贡献-以小秦岭金矿区为例.成都理工学院学报,1994,21(3):70-78.
    173.牛漫兰,朱光,刘国生,等.郯庐断裂带中南段中生代岩浆活动的构造背景与深部过程.地质科学,2002,37(4):393-404.
    174.牛树银.幔柱构造及其成矿规律.地质出版社,1996.
    175.邱家骧.岩浆岩岩石学(第二版).北京:地质出版社,1990,207-220.
    176.邱检生,王德滋,任启江,等.郯庐断裂带及其临区中生代地幔交代作用及钾质岩浆成因.IGCP32l 工程中国工作组,亚洲增生.北京:地震出版社,1993,139-142.
    177.邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质地球化学特征及岩石成因.地球科学.中国地质大学学报,1996,21(5):546-551.
    178.邱检生,王德滋,曾家湖,等.鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素地球化学.高校地质学报,1997,3(4):384-395.
    179.邱检生,徐夕生,罗靖华.鲁西富钾火山岩和煌斑岩的~(40)Ar-~(39)Ar定年及源区示踪.科学通报,2001,46(8):1500-1508.
    180.瞿友兰.山东省构造体系的成生发展历史.山东地质,1991,7(1):52-66.
    181.任纪舜.中国大地构造及演化.北京:科学出版社,1990.
    182.任纪舜主编.中国及邻区大地构造图(1:5 000 000).北京:地质出版社,1999.
    183.Rock N M S.与金和金刚石等矿产有关的煌斑岩类.江苏地质科技情报,1991,4:10-14.
    184.桑陲康.玲珑花岗岩及其有关岩石的岩石学研究.地球科学,1985,1:101-114.
    185.山东省地质矿产局.山东省区域地质志.地质出版社,1991,249-252.
    186.山东地质矿产局第七地质队,方城幅区域地质调查报告(1:50000),1990.
    187.山东地质矿产局第六地质队.赵格庄幅区域地质调查报告(1:50000),1990.
    188.山东省物化探勘查院.山东省重磁资料综合解释成果报告(1:50万).1997.
    189.邵济安,李献华,张履桥,等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,2001,30:517-524.
    190.苏尚国,周若,顾德林,等.山东沂水紫苏花岗岩特征、形成时代及成因探讨.地球科学-中国地质大学学报,1999,24(1):57-62.
    191.孙丰月.胶东地区中.新生代区域构造演化和成矿.长春地质学院学报,1994,24(4):378-384.
    192.孙丰月,石准立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,1995,12-65.
    193.孙景贵,胡受奚,凌洪飞.胶东金矿区高钾-钾质脉岩地球化学与俯冲.壳幔作用的研究.岩石学报,2000a,16(3):401-412.
    194.孙景贵,胡受奚,凌洪飞,等.胶西北两类金矿田的高钾.钾质脉岩元素地球化学与成岩作用研究.地球化学,2000b,29(2):143-152.
    195.孙景贵,胡受奚,沈昆,等.胶东金矿区矿田体系中基性-中酸性脉岩的碳、氧同位素地球化学研究.岩石矿物学杂志,2001,20(1):47-56.
    196.谭东娟、林景天主编.华北地中生代钾质岩浆区.地震出版社,1994.
    197.万天丰,Teyssier C.,曾华霖,等.山东玲珑花岗质岩体侵位机制.中国科学,2000,30(4):337-344.
    198.王碧秀,汤永安,夏铁军,等.聊城—荣城地壳二维速度结构—初探“泰山震之密”.中国地震,
    
    1996 12(2):141-146.
    199.王炳成.玲珑花岗岩的岩石化学与地球化学特征.山东地质,1986,2(1).54-73.
    200.王东方.中国东部中亚构造带及向环太平洋构造带的转化.华北地质矿产杂志,1995,10(2):135-142.
    201.王锡亮.关于山东岩浆岩同位素年龄数据的应用和讨论.山东地质情报,1985,4:15-25.
    202.王强,赵振华,熊小林,等.华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探.地球化学,2002,31:433-422.
    203.王希渠.一种确定火成岩系列碱度的新方法.岩石矿物学杂志,1986,5(4).376—378.
    204.王小凤,李中坚,陈柏林,等.郯庐断裂带.北京:地质出版社,2000,1-374.
    205.王学成,倪琦生.暗色岩脉的研究现状.南京大学学报(地球科学),1992,4(2):52-59.
    206.王学成,倪琦生,章邦桐,等.贵东花岗岩体内基性岩脉:岩浆包裹体特征及成因机制研究.南京大学学报(地球科学),1994,6:37-43.
    207.王学成.章邦桐,张祖还.暗色岩脉与铀成矿关系研究.矿床地质,1991,10:359-370.
    208.王学成.华南产铀花岗岩体内暗色岩脉的成因及其与铀成矿关系研究[博士论文].南京:南京大学,1989.
    209.王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989,133-190.
    210.韦刚健,梁细荣,李献华,等.(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成,地球化学,2002,31:295-299.
    211.文子中.玲珑花岗岩同位素年代学问题讨论.山东地质,1985,1(2):1-8.
    212.吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,1999,29(4):313-318.
    213.吴福元,S Wilde,孙德有.佳木斯地块片麻花岗岩的锆石离子探针U-Pb年龄.岩石学报,2001,17(3):443-452.
    214.吴根耀,陈焕疆,马力,等.苏皖地块—特提斯演化阶段独立的构造单元.古地理学报,2002a,5(2):77-87.
    215.吴根耀,陈焕疆,马力,等.中国东部燕山期高原的发育及对矿产和油气资源评价的启示.石油实验地质,2002b,24(1):3-12.
    216.吴利仁.华东及邻区中、新生代火山岩.北京:科学出版社,1984.
    217.谢桂青.中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探-以江西省为例.博士论文:中国科学院地球化学研究所,2003.
    218.谢桂青,胡瑞忠,贾大成.赣西北地区基性岩脉的地质地球化学特征及其意义.地球化学,2002,31:329-337.
    219.徐贵忠,周瑞,闫臻,等.论胶东地区中生代岩石圈减薄的证据及其动力学机制.大地构造与成矿学,2001,25(4):368-380.
    220.徐贵忠,周瑞,王艺芬,等.胶东和鲁西地区中生代成矿作用重大差异性的内在因素.现代地质,2002,16(1):9-18.
    221.徐红.胶东乳山金矿床及有关黑色脉岩的氧同位素研究:成岩过程中壳幔演化和同位素地球化学.北京:地震出版社,1993,157-158.
    222.徐嘉炜,马国锋.郯庐断裂带研究的十年回顾,地质论评,1992,38(4):316-324.
    223.徐嘉炜,朱光,吕培基,等.郯庐断裂带平移年代学研究的进展.安徽地质5(1):1-12.
    224.徐金方,沈步云,牛良柱,等.胶北地块与金矿有关的花岗岩类的研究.山东地质,1989,5(2):1-125.
    225.徐金芳.玲珑复式岩基的构成及其形成时代,岩石学报.1991,2:43-49.
    226.许志琴.扬子板块北缘的大型深层滑脱构造及动力学分析.中国区域地质,1987,6(4):289-300.
    
    
    227.薛志忠.胶北臧家庄盆地中生代火山岩及火山活动特征.山东地质,1999,15(4):11-17.
    228.杨进辉.中国东部胶东半岛金成矿的年代学和成矿学—对壳幔相互作用和岩石圈演化与成矿学相互作用的制约:博士论文,中国科学院地质与地球物理研究所,2000.
    229.杨进辉,周新华.胶东地区玲珑金矿矿石载金矿物Rb-Sr等时线年龄与成矿时代.科学通报,2000,14:1 547-1 552.
    230.杨进辉,周新华,陈立辉.胶东地区破碎带蚀变岩型金矿时代的测定及其地质意义.岩石学报,2000,16(3):454-457.
    231.杨敏之.胶东矿带金矿床类型.成矿特征、区域—地史演化模式(七.五)地质科技重要成果学术讨论会论文选集.北京科学技术出版社,1992,351-354.
    232.姚凤良,刘连登,孔庆存,等.胶东西北部脉状金矿.吉林科学技术出版社,1990.
    233.叶瑛,蓝玉琦.浙江晚元古代火山岩系形成环境的稀土元素证据.地球化学,1993,22(3):269-274.
    234.应汉龙.胶东金青顶、邓格庄金矿床含金石英的~(40)Ar/~(39)Ar快中子活化年龄测定.黄金科学技术,1994,2(4):24-28.
    235.应汉龙.胶东邓格庄和金青顶金矿区煌斑岩特征及其与金成矿关系.岩石矿物学杂志,1996,15(3):221-227.
    236.余汉茂.胶东西北部地区岩石同位素地质年代学研究.山东地质,1987,3(1):75-88.
    237.余金杰,徐志刚,徐凤山.小兴安岭西北部奥陶系火山岩形成环境.地球学报,1996,17(1):54-64.
    238.袁学诚.中国地球物理学投影.中国地球物理图集(袁学诚主编).北京:地质出版社,1996,59-62.
    239.翟建平,胡凯,陆建军.有关煌斑岩与金矿化新成因模式的讨论.矿床地质,1996,15(1):80-85.
    240.翟明国,杨进辉,刘文军.胶东大型黄金矿集区及大规模成矿作用,中国科学(D),2001,31(7):545-552.
    241.张成立,高山,张国伟,等.南秦岭早古生代碱性岩墙群的地球化学及其地质意义.中国科学(D辑),2002,32:819-829.
    242.张成立,周鼎武,金海龙,等.武山地块基性岩墙群及耀岭河群基性火山岩的.Sr、Nd、Pb、O同位素研究.岩石学报,1999a,15:430-437.
    243.张成立,周鼎武,刘颖宇.武当山地块基性岩墙群地球化学研究及其大地构造意义.地球化学,1999b,28:126-135.
    244.张旗,赵太平,王焰,等.中国东部燕山期岩浆活动的几个问题.岩石矿物学杂志,2001,3:273-280.
    245.张云湘(主编).攀西裂谷.北京:地质出版社,1988,1—352.
    246.张振海,张景鑫,叶素芝.胶东金矿同位素年龄厘定.北京:地震出版社,1994.
    247.赵振华.微量元素地球化学原理.北京:科学出版社,1997,1-169.
    248.赵振华,包志伟,张伯友.湘南中生代玄武岩类地球化学特征.中国科学,1998 (增刊):7-14.
    249.郑健平.中国东部中-新生代地幔交换与岩石圈减薄.武汉:中国地质大学出版社, 1999,125.
    250.周建波,胡克,申宁华,等.郯庐断裂中段石场-中楼拉分盆地的确定.地质科学,1999,34(1):18-28.
    251.周鼎武,张成立,刘颖宇,等.大陆造山带基底岩块中的基性岩墙群研究.以南秦岭武山地块为例.地球科学进展,1998,13:151-156.
    252.朱光,刘国生,王道轩,等.郯庐断裂带脉动式伸展活动.高校地质学报,2000,6(3):396-404.
    253.朱光,牛漫兰,刘国生,等.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件.地质学报,2002,76(3):323-334.
    254.朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据.地质论评,1995,41(5):452-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700