用户名: 密码: 验证码:
宽频带单层微穿孔板吸声体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微穿孔板(Micro-perforated panel, MPP)吸声体由我国著名声学专家马大猷教授于1975年提出,并建立了相关理论模型,称为马氏理论模型。微穿孔板吸声体自提出以来,就以其坚固、质轻、耐蚀和环境友好等诸多优点,被广泛应用于建筑物、船舶、飞机、消声器等众多领域,被誉为21世纪可以替代传统多孔吸声材料的最具吸引力的新一代吸声材料。
     然而,传统单层微穿孔板吸声体的一个显著缺点是吸声带宽较窄,一般为1-2个倍频程,作为一个通用的吸声结构这是远远不够的。此外,由于安装空间的严格限制,许多噪声控制问题都要求薄的降噪结构。因此,如何在不增加吸声体厚度的情况下拓宽单层微穿孔板吸声体的吸声带宽是目前的一个研究热点。
     本文重点围绕如何拓宽单层微穿孔板吸声体的吸声带宽,开发薄降噪结构展开相关研究。
     主要的研究内容包括以下几个方面:
     1.微穿孔板吸声体的吸声特性由其结构参数决定,如穿孔直径、板厚、穿孔率和空腔深度。本文通过MATLAB数值仿真对微穿孔板吸声体的吸声特性进行了参数化研究,得到了各结构参数与其吸声特性相互影响的规律。在充分理解微穿孔板吸声体吸声特性随其结构参数变化规律的基础上,设计了基于C++的面向微穿孔板吸声结构和吸声特性混合设计的软件平台,与以往微穿孔板吸声体设计平台不同,此平台综合考虑了结构参数和吸声特性参数两方面的限制,在实现微穿孔板吸声体按需设计的同时可兼顾最大吸声系数与吸收带宽之间的相互制约关系,提供满足混合设计要求的优化结构参数组合。
     2.实验探讨了超微孔微穿孔板吸声体的吸声性能。马氏理论模型预测穿孔直径小于100um的超微孔微穿孔板吸声体可达到单层微穿孔板吸声体的吸声带宽极限,但限于传统加工工艺如机械钻孔、针刺等对超微孔的加工难度,超微孔微穿孔板吸声体一直鲜见报道。本文对超微孔微穿孔板的加工工艺进行了探索研究,应用微机电系统(Micro-electronic Mechanical Systems, MEMS)工艺制作了超微孔微穿孔板。任何加工工艺都存在加工误差,对于传统的大孔径微穿孔板吸声体,数微米的加工误差基本可以忽略,然而对于孔径小于100um的超微孔微穿孔板,加工误差的影响可能不可忽略。本文建立了计及加工误差的MPP理论分析模型,率先从理论上探讨了加工误差对超微孔微穿孔板吸声体吸声性能以及马氏理论模型关于超微孔微穿孔板吸声体适用性的影响,数值仿真结果表明一定范围内的加工误差不影响超微孔微穿孔板吸声体的吸声性能以及马氏理论对其吸声性能预测的准确性(最大预测误差仍在6%以内)。最后,在驻波管中使用驻波比法测量得到超微孔微穿孔板吸声体的垂直入射吸声系数,实验验证了马氏理论模型关于单层微穿孔板吸声体带宽极限的理论预测以及计及加工误差的MPP理论分析模型关于加工误差对超微孔微穿孔板吸声体吸声性能影响得出的结论。
     3.理论与实验研究了多孔径微穿孔板吸声结构。基于MEMS工艺制作的超微孔微穿孔板吸声体可达到单层微穿孔板吸声体的带宽极限,且体积小,对有限吸声空间的降噪问题具有巨大吸引力,但随着孔径的减小,其吸声频带将移向高频,因而低频吸声性能变差,不利于中低频的降噪需求,且其制作成本相对于普通微穿孔板也较高。多孔径微穿孔板吸声结构具有优异的中低频吸声性能,其结构参数经过适当的设计可达到与多层MPP相当的吸声效果,且多孔径微穿孔板吸声结构更薄,适宜于狭小空间的降噪需求,不需要采用超微孔,制作成本较低。然而,多孔径微穿孔板吸声结构缺乏系统理论模型,因而无法对其吸声性能进行理论预测进而实现按需设计。本文基于体积流连续的原理,推导得到了声波垂直入射条件下多孔径微穿孔板吸声结构垂直入射吸声系数的理论计算公式,探讨了不同孔径微孔的排列及空腔中的隔板对多孔径微穿孔板吸声结构吸声性能的影响,最后通过实验验证了该理论模型的有效性,奠定了多孔径微穿孔板吸声结构的理论基础。
     4.相对于传统单层微穿孔板吸声体,多孔径微穿孔板吸声结构引入了更多的可变结构参数,大大增加了其设计复杂性,限制了其在实际降噪问题中的应用。为克服这一问题,本文提出了应用多种群遗传算法对多孔径微穿孔板吸声结构进行优化设计,在加工工艺允许的条件范围内,寻找最佳的参数组合,使其在设定的频带范围内平均吸声系数最高,达到宽频带高吸收的效果。最后,对该算法的有效性进行了实验验证,结果表明多种群遗传算法可作为一种直接、快速、高效的优化工具实现多孔径微穿孔板吸声结构的优化设计。
Micro-perforated panel (MPP) absorber was first proposed by professor Maa D-Y in1975, and in the meanwhile its basic theoretical model was built which was called Maa's theoretical model. Since Maa's pioneering works, MPP absorber has been successfully applied in a lot of fields, such as buildings, ships, airplanes, mufflers and so on, for it is sturdy, lightweight, erosion-resisting and environmentally friendly compared with the traditional porous sound-absorbing materials and ordinary perforated panel absorbers, which makes it offers an outstanding alternative to the traditional porous materials and is regarded as promising as a basis for the next-generation of sound-absorbing materials.
     However, as a resonant sound absorbing structure, an obvious disadvantage of traditional single-layer MPP absorbers is that they are effective only in a narrow sound absorption band around their respective resonance frequencies, usually1-2octaves, which preventing them becoming general sound absorbers for a practical application. In addition, due to the limitations for installation space, many noise control issues require small-size noise-reducing structures. Thus, how to broaden the sound absorption bandwidth of single-layer MPP absorbers without increasing the thickness becomes the main focus of current research.
     In this paper, in order to develop small-size noise-reducing structures, the author has started a relevant research on how to widen the sound absorption bandwidth of single-layer MPP absorbers and has made many useful results.
     The main contents of study in this paper are as follows:
     Firstly, sound absorption characteristics of an MPP absorber is determined by its structural parameters such as the perforation diameter, the panel thickness, the perforation ratio and the depth of the air cavity. The influence rule of the variation of the structural parameters on the absorption performance has been studied through numerical simulation with MATLAB software. On the basis of full understanding of the influence rule of the structural parameters on the sound absorption performance, from the perspective of hybrid design of micro-perforated panel absorption structure based on the structure parameters and absorption characteristic, a software platform is developed by the object-oriented programing language C++. It is different from the previous design method by taking restrictions of both structure parameters and absorption characteristic parameters into consideration and balancing the restriction relationship between maximum absorption coefficient and absorption bandwidth of micro-perforated panel absorption structure according to the practical application, aiming at obtaining more satisfactory absorption curve. This platform will offer a set of optimal structure parameters that meet requirements of hybrid design.
     Secondly, micro-perforated panel absorbers with ultra-micro perforations, namely ultra micro-perforated panel absorbers (ultra MPP absorbers), are experimentally studied in this paper. Although Maa D-Y pointed out that the absorption bandwidth limits of a single-layer MPP absorber can be obtained by reducing the perforation diameter to less than100um, however, it's difficult for traditional processing technology such as machining punching and needling skills to fabricate such small perforations, therefore MPPs with ultra-micro perforations have seldom been reported yet. This paper conducts an exploratory study of the processing technologies of ultra MPPs, and their trial production based on micro-electronic mechanical systems (MEMS) is carried out. Actually, the machining error exists in any processing technologies. For the traditional MPP absorbers with large perforations, the machining error range that is as large as several micrometers may has little or no effects on the sound absorption performance, but it could not be neglected for ultra MPPs. The theoretical analysis model of MPP absorbers on considering the effect of machining error is set up, and the effects of machining error on the absorption performance of ultra MPP absorbers and the accuracy of Maa's theory for them are discussed. Results show that the measurements and the predictions calculated by the theoretical analysis model on considering the effect of machining error compare well with the calculations based on Maa's theory with the maximum error being less than6%, which indicates that Maa's theory is still available on considering the effect of machining error and the machining error within a certain range does not affect the sound absorption performance of ultra MPP absorbers. In addition, the limitation of Maa's theory for machining error is discussed through numerical simulation, results reveal that it depends on the hole size of MPPs with ultra-micro orifices. Finally, the measurement of the normal sound absorption coefficients is carried out in impedance tube using standing wave ratio method and all the conclusions drawn above are experimentally validated.
     Thirdly, multi-size micro-perforated panel absorbers are theoretically and experimentally investigated. Ultra MPP absorber are of great potential to achieve the absorption bandwidth limits of single-layer MPP absorbers and with small size which make it strongly attractive to narrow space, however, its absorption band is shifted to high frequency as the perforation diameter decreases which will result a performance degradation in low frequency range. Moreover, ultra MPP absorbers have relatively high production cost compared with ordinary MPP absorbers with large size perforations. Therefore ultra MPP bsorbers are not suitable for reducing the low-frequency noise. Multi-size MPP absorber has the same absorption effect as multi-layer MPP absorbers provided that its structural parameters are proper designed and with thinner thickness. Since without using ultra micro-holes, multi-size MPP absorber is low-cost. All these advantages make it especially suitable for applications in the narrow space. However, due to the lack of theoretical model, it can not realize the needed design of multi-size MPP absorbers through theoretical analysis. Based on the flow continuity of air on both sides of MPP, the calculation of sound absorption coefficients of multi-size MPP absorbers is derived under normal incidence condition, and the effects of holes arrangements and the partition panels in the cavity on the sound absorption characteristics are discussed. Ultimately, the validity of the theoretical model is verified through experiments.
     Fourthly, multi-size MPP absorbers introduce more variable structure parameters compared to single-layer MPP absorbers with uniform-size holes, which greatly increases the design difficulty and thus limits their practical application. To overcome this problem, this work has applied the optimization design of multi-size MPP absorbers using multi-population generic algorithm (MPGA). It consists of finding the best combination of the structure parameters of a multi-size MPP absorber within given variation ranges that provides the maximum mean absorption for a specified frequency range. Ultimately, the correctness of the MPGA is experimentally validated. Results show that MPGA can be used as a straightforward, fast and effective technique to optimize multi-size MPP absorbers.
引文
[1]马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社,2002.
    [2]Jorge P. Arenas, Malcolm J. Crocker. Recent Trends in Porous Sound-Absorbing Materials [J]. Sound & Vibration,2010,44(7):12-18.
    [3]朱纪磊,汤慧萍,葛渊.多孔吸声材料的发展现状与展望[J].功能材料,2007,(38):3273-3276.
    [4]高玲,尚福亮.吸声材料的研究与应用[J].化工时刊,2007,21(2):63-69.
    [5]马大猷.微穿孔板吸声结构的理论和设计[J].中国科学,1975,(1):38-50.
    [6]Fuchs H V, Zha X. Acrylic-glass sound absorbers in the plenum of the Deutscher Bundestag [J]. Applied Acoustics,1997, (51):211-1997.
    [7]Fuchs H V, Zha X. Micro-perforated structures as sound absorbers-A review and outlook [J]. Acta Acustica united with Acustica,2006, (92):139-146.
    [8]Wu M Q. Micro-perforated panels for duct silencing [J]. Noise Control Engineering Journal,1997, (45):69-77.
    [9]Asdrubali F, Pispola G. Properties of transparent sound absorbing panels for use in noise barriers [J]. Journal of the Acoustical Society of America,2007,121(1):214-221.
    [10]Kang J, Brocklesby M W. Feasibility of applying micro-perforated absorbers in acoustic window systems [J]. Applied Acoustics,2005,(66):669-689.
    [11]Maa D Y. Practical single MPP absorber [J]. International Journal of Acoustics and Vibration,2007,12(1):3-6.
    [12]Maa D-Y. Micro perforated-panel wide band Absorbers [J]. Noise Control Engineering Journal,1987,29(3):77-84.
    [13]查雪琴,康健,张婷.微穿孔板的应用技术[J].声学学报,1994,19(4):258-265.
    [14]Kimihiro S, Tomohito N, Masayuki M. Double-leaf microperforated panel space absorbers:A revised theory and detailed analysis [J]. Applied Acoustics,2009, (70):703-709.
    [15]I Mada MIASA, MAsaaki OKUMA. Theoretical and experimental study on sound absorption of a multi-leaf microperforated panel [J]. Acoustic Science & Technology,2007, 1(1):63-72.
    [16]Wang C H, Huang L X. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths [J]. Journal of the Acoustical Society of America,2011,130(1):208-218.
    [17]Kimihiro S, Yoshiki N, Masayuki M. Polot study on wideband sound absorber obtained by combination of two different microperforated panel (MPP) absorbers [J]. Acoustic Science & Technology,2009,30(2):154-156.
    [18]Motoki Y, Kimihiro S, Kenichi T. Excess sound absorption at normal incidence by two different microperforated panel absorbers with different impedance [J]. Acoustic Science & Technology,2011,32(5):194-200.
    [19]盛胜我,赵松龄.加膜穿孔板声学特性的研究[J].声学学报,1994,19(1):45-52.
    [20]盛胜我.穿孔板背面紧贴吸声薄层时的声学特性[J].声学技术,2001,22(1):52-54.
    [21]蔺磊,王佐民,姜在秀.微穿孔板共振吸声结构中吸声材料的作用[J].声学学报,2010,35(4):385-392.
    [22]蔺磊,王佐民,姜在秀.吸声侧壁对微穿孔共振结构声学性能的影响[J].声学技术,2010,29(4):410-413.
    [23]Rolf Tore Randeberg. Perforated panel absorbers with viscous energy dissipation enhanced by orifice design[D]. Norwegian:Norwegian University of Science and Technology, 2000.
    [24]Kimihiro S, Masayuki M, Motoki Y. A pilot study on improving the absorptivity of a thick micro-perforated panel absorber[J]. Applied Acoustics,2008,69(2)-.179-182.
    [25]何立燕,扈西枝,陈挺.孔截面积变化对微穿孔板吸声性能的影响[J].噪声与振动控制,2011,31(1):141-144.
    [26]何立燕,徐颖,陈幸幸.孔中介质对厚微穿孔板吸声性能的影响[J].噪声与振动控制,2009,29(1):36-38.
    [27]徐颖,何立燕,陈幸幸.超细不锈钢纤维对厚微穿孔板吸声性能的影响[J].噪声与振动控制,2010,30(1):146-148.
    [28]Wang Chunqi, Li Cheng. Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity [J]. J. Acoust.Soc. Am,2010,127(1):238-246.
    [29]彭若龙,孙立春,贺才春.多频带变空腔微穿孔板的吸声性能研究[C].2010中国西部声学学术交流会论文集,北京:中国声学会,2010:1-3.
    [30]Toyoda M, Takahashi D. Sound transmission through a microperofrated-panel structure with subdivided air cavities [J]. Journal of the Acoustical Society of America,2008, 124(6):3594-3603.
    [31]Motoki Y, Kimihiro S, Masayuki M. Acoustical properties of microperforated panel absorbers with various configurations of the back cavity [J]. Proceeding of ICSV 12, Lisbon, 2005:1-3.
    [32]Liu J, Herrin D W. Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity[J]. Applied Acoustics,2010,71(2):120-127.
    [33]马大猷.微穿孔板的实际极限[J].声学学报,2006,31(6):481-484.
    [34]Lee Y Y, Sun H Y, Guo X. Effects of the panel and helmholtz resonances on a micro-perforated absorber [J]. International Journal of Applied Mathematics and Mechanics,2005, 4:49-54.
    [35]Lee Y Y, Lee E W M, Ng C F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity [J]. Journal of Sound and Vibration,2005,287:227-243.
    [36]Lee Y Y, Lee E W M. Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustics resonances [J]. International Journal of Mechanical Sciences,2007,49:925-934.
    [37]段秀华.拓展单层微穿孔板吸声体频带宽度的研究[D].合肥:中国科学技术大学,2013.
    [38]Ⅰ Made MIASA, Masaaki OKUMA, Gota KISHMOTO. An experimental study of multi-size microperforated panel absorber [J]. Journal of System Design and Dynamics,2007, 1(2):331-339.
    [39]Bolt R H. On the design of perforated facings for acoustic materials [J] Journal of Acoustical Society of America,1947,19(5):917-921.
    [40]Ingard U., Bolt R. H. Absorption characteristics of acoustics material with perforated facings [J].Journal of the Acoustical Society of America,1951,23(5):533-540.
    [41]Ingard U., On the theory and design of acoustic resonators [J]. Journal of the Acoustical Society of America,1953,25(1):1037-1061.
    [42]Rostand T., Philippe L. Holes Interaction Effects under high and medium Sound Intensities for Micro-perforated panels design [C].10eme Congres Francais d'Acoustique. France. 2010.
    [43]Rostand T., Dupont T., Leclaire P. Experimental investigation of holes interaction effect on the sound absorption coefficient of micro-perforated panels under high and medium sound levels [J]. Applied Acoustics,2010,72(10):777-784.
    [44]张斌,李林凌,卢伟健.计及孔间相互作用的微穿孔板吸声特性研究[J].应用声学,2010,29(2):134-140.
    [45]Hou K., Bolton J.S. Validation of micro-perforated panel models paper [C].INTER-NOISE2008, Shanghai,2008.
    [46]景晓东,孙晓峰.穿孔板切向流效应的理论和实验研究[J].航空学报,2002,23(5):405-410.
    [47]王佐民,蔺磊,姜在秀.切向流对微穿孔共振吸声结构声学性能的影响[J].声学学报,2009,34(4):350-354.
    [48]Toyoda M, Mu R L, Takahashi D. Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible micro-perforated-panel absorbers [J]. Applied Acoustics,2010,71(3):315-320.
    [49]Lebedeva I.V and Nesterov V. S. Acoustical parameters of a lightweight perforated membrane [J].Soviet Physics-acoustics,1965,10(3):269-275.
    [50]Takahashi D, Tanaka M. Flexural vibration of perforated plates and porous elastic materials under acoustic loading [J]. Journal of Acoustical Society of America, 2002,112(4):1456-91464.
    [51]Yoo T. The Modeling of Sound Absorption by Flexible Micro-Perforated Panels [D].West Lafayette, Indiana:Purdue University,2008.
    [52]Lee D.H, Kwon Y.P. Estimation of the absorption performance of multiple layer perforated panel systems by transfer matrix method [J].Journal of Sound and Vibration.2004, 278(3):847-860.
    [53]庞培森,汪鸿振.用传递矩阵法分析微穿孔板的声学特性[J].声学技术,2006,25(1):48-51.
    [54]张斌,陶泽光,丁辉.用传递矩阵法预测单层或多层微孔板的吸声性能[J].应用声学,2007,26(3):164-169.
    [55]Atalla N, Sgard F. Modeling of perforated plates and screens using rigid frame porous models[J].Journal of Sound and Vibration,2007,303(1):195-208.
    [56]Allard J.F. Propagating of sound in porous media:Modelling sound absorbing materials [M].London:Elsevier Applied Science,1993.
    [57]Hou K. Measurement and Modeling of Micro-Perforated Panels [D].West Lafayette, Indiana:Purdue University,2009.
    [58]查雪琴,Fuchs H V.透明的微穿孔吸声材料改善了新建议会大厅的音质[J].声学技术,1994,13(1):1-3.
    [59]朱从云,黄其柏.微穿孔板的主动吸声研究[J].机械设计与制造,2004,4:38-40.
    [60]陆凤华,籍仙蓉,王佐民.微穿孔板吸声结构在阶梯教室中的声反射和声吸收性能分析[J].声学学报,2006,31(3):222-227.
    [61]Rayleigh Lord. Theory of Sound [M]. Ⅱ, McMillan, London,1894, pp.323 and 487.
    [62]Crandall I.B. Theory of Vibrating Systems and Sound [M].Van Nostrand, New York,1926, pp.229.
    [63]杜功焕,朱哲民,龚秀芬.声学基础[M].第二版.南京:南京大学出版社,2001.
    [64]马大猷,刘克.微穿孔板吸声体随机入射吸声性能[J].声学学报,2000,25(4):289-296.
    [65]焦风雷,杨传成.微穿孔板吸声体的准确理论和计算机辅助设计[J].噪声与振动控制, 2000,20(1):18-23.
    [66]张德满,李舜酩.微穿孔板吸声结构的研究进展[J].机械科学与技术,2009,28(11):1526-1529.
    [67]彭小云,吴雪峰.微穿孔板空间吸声体的吸声特性[J].华东交通大学学报,2000,17(1):13-16.
    [68]孙文娟,孔德义,尤晖.微穿孔板吸声体声学性能的仿真研究[J].仪表技术,2012,3:10-16.
    [69]焦风雷,刘克,丁辉.关于微穿孔板吸声体频带宽度极限的讨论[J].应用声学,2001,20(6):36-40.
    [70]张明发,吴玉恒,张奎生.微穿孔板声学结构及其应用[J].噪声与振动控制,1996,16(4):24-30.
    [71]Crocker M J, Arenas J.P. Use of Sound-Absorbing Materials, Chapter 57 in Hand book of Noise and Vibration Control [M].M.J. Crocker Ed. New York:John Wiley and Sons,2007.
    [72]Bolt R.H. On the design of perforated facings for acoustic materials [J] Journal of Acoustical Society of America,1947,19(5):917-921.
    [73]Ingard U., Bolt R. H. Absorption characteristics of acoustics material with perforated facings [J].Journal of the Acoustical Society of America,1951,23(5):533-540.
    [74]朱大年,吴博威,樊小力.生理学[M].第八版.北京:人民卫生出版社,2013.
    [75]张敏良,俞悟周,张明发.无纤维超微穿孔薄膜加工技术探讨与实践[J].噪声与振动控制,2006,26(5):104-106.
    [76]赵小林.微机电系统应用[M].北京:机械工业出版社,2009.
    [77]ISO 10534-1. Acoustics-Determination of sound absorption coefficients and impedance in impedance tubes-Part 1:Method using standing wave ratio. Switzerland, Geneva,1998.
    [78]张智博.声学材料性能测试及评价实验研究[D].上海:上海交通大学,2007.
    [79]沈豪.声学测量[M].北京:北京出版社,1986.
    [80]ISO 10534-2. Acoustics-Determination of sound absorption coefficients and impedance in impedance tubes-Part 2:Transfer-function method. Switzerland, Geneva,1998.
    [81]车世光,项端祁.噪声控制与室内声学[M].北京:工人出版社,1981.
    [82]国标GBJ 47-83.混响室法吸声系数测量规范,1983.
    [83]李敏毅,孙海清.混响时间及其测量方法简介[J].中国测量技术,2005,31(1):18-20.
    [84]侯宏,徐士化.近代现场吸声测量技术[J].声学技术,2007,26(6):1209-1213.
    [85]Qian Y J, Kong D Y, Liu Y. Improvement of sound absorption characteristics under low frequency for micro-perforated panel absorbers using super-aligned carbon nanotube arrays[J]. Applied Acoustics,2014,82(2):23-27.
    [86]Lu Y D, Li X D, Tian J. The perforated panel resonator with flexible tube bundle and its acoustical measurements [C]. Proceedings of Inter-Noise 2001, Hague:2001.
    [87]Lu Y D, Tian J, Li X D. The perforated panel resonator with flexible tube bundle and its application in acoustical treatment of centrifugal blower'scasing [C].17Th ICA, Rome,2001.
    [88]吕亚东,魏文,李晓东.一种新型吸声结构—柔性管束穿孔板共振吸声结构[C].中国声学学会2002年全国声学学术会议论文集,北京:2002,342-344.
    [89]Sen M K, Dennis R M. Active noise control:A tutorial review [C]. Proceedings of the IEEE,1999,87(6):943-973.
    [90]Pedro C, Jaime P, Maria C. Hybrid passive-active absorption using micro-perforated panels [J]. Journal of Acoustcal Society of America,2004,116(4):2118-2125.
    [91]Pedro Cobo, Maria Cuesta. Hybrid passive-active absorption of a micro-perforated panel in free field conditions [J]. Journal of Acoustcal Society of America,2007,121(6):251-255.
    [92]Maria Cuesta, Pedro Cobo, Alejandro F. Using a thin acutator as secondary source for hybrid/passive absorption in an impedance tube[J].Applied Acoustics,2006,67:15-27.
    [93]朱从云,黄其柏,许志云.基于特性阻抗的半主动吸声研究[J].噪声与振动控制,2003,23(2):22-25.
    [94]Tao J C, Jing R X, Qiu X J. Sound absorption of a finite micro-perforated panel backed a shunted loudspeaker [J]. Journal of Acoustcal Society of America,2014,135(1):243-252.
    [95]王季卿,宋拥民,盛胜我.微穿孔板空间吸声体的实验研究[J].声学学报,2004,29(4):297-302.
    [96]赵晓丹,张晓杰,姜哲.三层微穿孔板的优化设计及特性分析[J].声学学报,2008,33(1):84-87.
    [97]Hillereau N, Syed A A, Gutmark E J. Measurements of the acoustic attenustion by single layer acoustic liners constructed with simulated porous honeycomb cores [J]. Journal of Sound and Vibration.2005,286(2):21-36.
    [98]张德满,李舜酩.面向工程的微穿孔板吸声结构设计方法[J].振动与冲击,2011,30(6):130-133.
    [99]陈曦,王西诚.一种改进的多种群遗传算法[J].辽宁科技大学学报,2009,32(2):160-163.
    [100]隋林强,赵晓丹,祝瑞银.遗传算法在双层微穿孔板结构优化设计中的应用[J].噪声与振动控制,2006,(2):49-50.
    [101]张晓杰.多层微穿孔板的优化设计及应用[D].镇江:江苏大学,2007.
    [102]Chang Y C, Yeh L J, Chiu M C. Optimization of double-layer absorbers [J]. Applied Acoustics,2005,66(3):341-352.
    [103]付旭辉,康玲.遗传算法早熟问题探究[J].华中科技大学学报,2003,31(7):53-54.
    [104]Chang Y C, Yeh L J, Chiu M C. Optimization of constrained composite absorbers using simulated annealing [J]. Applied Acoustics,2005,66(3):341-352.
    [105]Heidi Ruiz, Pedro Cobo, Finn Jacobsen. Optimization of multiple-layer micro perforated panels by simulated annealing [J]. Applied Acoustics,2011,10(4):1-5.
    [106]Andrew Schmitt. Bayesian characterization of micro-perforated panels and multi-layer absorbers [D]. New York:Rensselaer Polytechnic Institute,2013.
    [107]Andrew S, Ning X, Cameron F. Batesian parameter estimation of single-and double-layer micro-perforated panel absorbers [J]. Journal of Acoustcal Society of America,2013, 134(5):240-248.
    [108]Cameron F, Ning X, Andrew S. Batesian inference for practical design of multilayer microperforated panel absorbers [C]. ICSV 20, Thailand:2013.
    [109]周明,孙树栋.遗传算法原理和应用[M].北京:国防工业出版社,2005.
    [110]Holland J H. Outline for a logical theory of adaptive systems [J]. Journal of the Association for computing Machinery,1962,9(3):297-314.
    [111]陈长征,王楠.遗传算法中交叉和变异概率选择的自适应方法及作用机理[J].控制理论与应用,2002,19(1):41-43.
    [112]矿航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,42(12):93-99.
    [113]陶林波,沈建京,韩强.一种解决早熟收敛的自适应算法设计[J].微计算机信息,2006,22(12):268-270.
    [114]周洪伟,原锦辉,张来顺.遗传算法“早熟”现象的改进策略[J].计算机工程,2007,33(19):201-203.
    [115]李擎,张伟,尹怡欣.一种新的调节交叉和变异概率的自适应算法[J].控制与决策,2008,23(1):79-83.
    [116]王岚.基于自适应交叉和变异概率遗传算法收敛性研究[J].云南师范大学学报,2010,30(3):32-37.
    [117]史峰,王辉,郁磊MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2010.
    [118]马大猷.组合微穿孔板吸声结构[J].噪声与振动控制,1996,10(3):3-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700