用户名: 密码: 验证码:
春小麦抗麦长管蚜基因的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦蚜是世界范围内影响小麦生产的重要害虫之一。近年来,随着麦田水肥条件的改善和农业生态环境的变化,麦蚜虫害日趋加重。长期以来,麦蚜的防治主要依靠化学农药,由于化学农药的大量使用,导致蚜虫天敌杀伤严重,环境污染加剧。实践证明,选育和利用抗性品种是控制作物病虫害的最为经济有效的途径。在选育抗性品种的过程中,如能明确其抗性机理,进而定位和克隆抗性基因,对小麦及其它广受蚜科害虫危害的农作物都具有十分重要的理论意义和现实意义。从2003到2004连续两年,师桂英(2006)利用蚜量比值法进行田间抗蚜性鉴定,从521份春小麦品种(系)中筛选出两份抗麦长管蚜材料J-48和J-31,2005年,进一步以人工接虫鉴定法研究表明,两份材料表现出很高的抗生性。本研究以高抗蚜品系J-48、J-31和高感蚜品系J-69、J-39组配的杂交种(J-48 x J-69、J-48 x J-39、J-31 x J-39)及其分离F2世代为材料研究了抗蚜性的遗传特点,利用微卫星(SSR)标记方法寻找了与小麦抗麦长管蚜基因连锁的分子标记。主要研究结果如下:
     1、小麦抗麦长管蚜的遗传特点
     以抗蚜品系J-31和感蚜品系J-39组配的杂交种及其F2代为材料研究了小麦抗蚜性的遗传特点。结果表明,抗、感材料杂交的F1,表现高抗,抗蚜表现显性,F2分离世代中抗、感分离比符合3:1的孟德尔分离规律,表现为质量性状遗传的特征,说明J-31的抗麦长管蚜性由显性单基因控制。
     以抗蚜品系J-48和感蚜品系J-69、J-39组配的杂交种(J-48 x J-69、J-48 x J-39)及其F2代为材料研究了小麦抗蚜性的遗传特点。结果表明,抗、感材料杂交的F1,都表现高抗,抗蚜表现显性,F2分离世代中抗、感分离比均符合3:1的孟德尔分离规律,表现为质量性状遗传特征,说明J-48的抗麦长管蚜性由显性单基因控制。
     2、小麦抗麦长管蚜基因的SSR分子标记定位
     以抗蚜品系J-48和感蚜品系J-69为亲本组配的F2分离群体为材料,采用BSA分析法,选取均匀分布于小麦7D和1D染色体上的85对SSR标记在抗感亲本间进行多态性筛选,共筛选到在亲本间表现多态性的52对SSR引物,多态性频率为61%。用F2分离群体进一步对筛选出的52对引物进行分析,找到一对与抗蚜基因连锁的SSR标记Xbarc126,与抗蚜基因的遗传距离为15cM。由于这个标记位于小麦的7D染色体上,因此,将抗麦长管蚜基因初步定位于小麦的7D染色体上,并暂时命名为Ra。
     3、本研究在已经建立的与抗蚜基因连锁的SSR标记基础之上,利用筛选出的与抗麦长管蚜基因Ra连锁的SSR标记Xbarc126对J-48 x J-69杂交后的F3代分离基因个体进行跟踪鉴定,充分说明了所筛选出的SSR标记的稳定性、可靠性和准确性,为抗蚜品种的分子标记辅助选择及鉴定提供了可行性理论依据。
Wheat aphid(Homoptera: Aphididae) is one of the most important wheat (Triticum aestivium L.) pest all over the world. With the improvement of irrigation conditions on cornfield and changes of agricultural ecosystem, wheat aphid cause more losses than ever in wheat productivity. Nowadays, pest control and management heavily count on many chemical pesticides, however, the indiscriminate use of pesticides are toxic to beneficial insects, which act as predators or parasites to the pest species, and have a harmful effect on natural environment. It has been confirmed that the use of plant resistance as a pest management strategy is the most effective and economical method. It will be important theoretically and practically in the breeding processing if the Mechanism and Inheritance of the resistance to aphid were revealed and the resistant gene was further located and cloned.
     From 2003 to 2004, two resistance lines J-48 and J-31 to Macrosiphum avenae F. were screened out from 521 spring wheat germplasm by aphid field identification and aphid number ratio method (Shi guiying, 2006) and showed highly antibiosis by artificial infestation in 2005. Two lines J-48, J-31 and F1 hybrids resistance to aphid and two lines J-69, J-39 susceptible to aphid were employed in this experiment to study the Inheritance of the resistance to Macrosiphum avenae F., to look for molecular markers linked to aphid resistance gene through the analysis of F2 population. The main results are as follows:
     1. In heritance of wheat resistance to Macrosiphum avenae F.
     The analysis of F2 segregation population derived from the cross between J-31 and J-39 showed that the segregation ratio was corresponding with 3:1, the aphid resistance in J-31 is a quality inherit trait. The resistance to Macrosiphum avenae F. was controlled by a dominant major gene.
     The analysis of F2 segregation populations derived from the crosses ( J-48 x J-69 and J-48 x J-39) showed that both the segregation ratios were corresponding with 3:1, the aphid resistance in J-48 is a quality inherit trait. The resistance to Macrosiphum avenae F. was controlled by a dominant major gene.
     2. Molecular Marker linked with Wheat Resistance to Macrosiphum avenae F.
     BSA population constructed by cross of J-48 and J-69 was used in the experiment in order to look for markers linked with resistance gene. A total of 85 pairs of microsatellite primers uniform distribution on wheat chromosomes 7D and 1D were tested to detect polymorphisms between contrasting parents. 52 pairs of SSR primers were screened at the performance of polymorphism, polymorphism frequency is 61%. One SSR marker Xbarc126 linked with wheat resistance to Macrosiphum avenae F. had been found by BSA screening, the genetic distance was 15cM. Because this marker is located on chromosome 7D of wheat, therefore, Macrosiphum avenae F. resistance gene is located in the initial position on chromosome 7D of wheat and is named Ra temporarily.
     3. In the present study, a microsatellite (SSR) marker Xbarc126 linked to Macrosiphum avenae F. resistance gene Ra was identified using some F3 individuals derived from the cross of susceptible wheat cultivar J-48 and resistant source J-69, results showed the SSR marker Xbarc126 linked with resistance gene were existed. It provided microsatellite marker selected are stable, reliable and accurate molecular marker and reliable foundation for Molecular Marker Assisted Selection (MMAS).
引文
[1]曹骥,严小军,王剑雄,等.小麦抗蚜兼抗锈材料研究续报[J].作物品种资源,1987,(1):21~22
    [2]曹如槐,梁克恭,王晓玲.农作物抗病虫性鉴定方法[M].北京:农业出版社,1992
    [3]蔡青年,张青文,周明群.小麦旗叶和穗部叫噪生物碱含量与抗麦长管蚜关系研究[J].植物保护,2002,28 (2):11-13
    [4]陈海梅,李林志,卫宪云.小麦EST-SSR标记的开发、染色体定位和遗传作图[J].科学通报,2005,50(20)
    [5]陈巨莲.麦类作物抗蚜性研究[J].世界农业,1993,8:28-290
    [6]陈巨莲,孙京瑞,丁红建等.主要抗蚜小麦品种(系)的抗性类型及其生化抗性机制[J].昆虫学报,1997,40(增刊):190-194,
    [7]陈巨莲,丁红建,李志坚等.麦蚜在不同抗级小麦上刺吸行为的比较[J].昆虫学报,1997,40(增刊):196-202
    [8]陈巨莲,丁红建,倪汉祥,等.麦长管蚜的营养生理及主要次生物质的抗蚜性[J].植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会文集.北京,中国科学技术出版社,1998
    [9]陈巨莲,倪汉祥,孙京瑞.主要次生物质对麦蚜的抗性阈值及交互作用[J].植物保护学报,2002,29 (1):7~12
    [10]陈军方,任正隆,高丽锋.从小麦EST序列中开发新的SSR引物[J].作物学报. 2005 31(2):154-158
    [11]段灿星,王晓鸣,朱振东.小麦种质对麦长管蚜的抗性鉴定与评价[J].植物遗传资源学报,2006,7 (3) :297~300
    [12]段灿星,朱振东,王晓鸣等.小麦抗麦双尾蚜研究进展[J].植物保护,2003, 29(2):11-14
    [13]方嘉禾,刘旭.作物和林木种质资源研究进展[M].北京:中国农业科技出版社,2001
    [14]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2002
    [15]何敏,向志民.小麦植株化学成分与麦长管蚜和二叉蚜种群消长关联分析[J].甘肃农业科技,1998,(4):41~44
    [16]侯有明,沈宝成,刘绍友.小麦品种对麦长管蚜抗性的动态分析[J].西北大学学报(自然科学报),1996,26(5):427~430
    [17]高崇省.小麦品种抗性对麦长管蚜种群增长的影响[J].昆虫知识,1994,31 (4):201~205
    [18]胡想顺,赵惠燕. 3个新引进小麦品种对麦长管蚜抗性的初步研究[J].西北植物学报,2004,24 (7):1221~1226
    [19]胡英考,辛志勇.小麦合成种M53抗白粉病基因的RAPD和SSR标记[J].作物学报,2001,27(4):415-419
    [20]高崇省.小麦品种抗蚜性田间鉴别[J].天津农林科技,1995,(2):8~9
    [21]高崇省,刘绍友,候有明.冬小麦品种中的游离氨基酸种类及其与抗麦长管蚜的关系[J] .植物保护学报,1998,25 (1 ):1-50
    [22]郭贵明,苏芝业,扬伦伦,等.麦长管蚜蜜露分泌量与小麦品种的关系研究[J].初报山西大学学报(自然科学版),1993,16(2):228-231
    [23]郭洪年,侯汉娜,欧阳青,等.抗蚜基因及其转基因植物[J].中国生物工程杂志,2008, 28 (6) :118~124
    [24]郭良珍,刘绍友.小麦对禾谷缢管蚜抗性形成因素的分析[J].陕西农业科学,1999,(4):21-22
    [25]李光博.1986~1988小麦病虫害综合防治技术研究“七五”攻关进展概况[J].中国植物保护学会第五届年会会刊,1989,19~24
    [26]李庆,杨群芳.氧肟酸在植物抗虫性中的作用[J].四川农业大学学报,2000,18 (4):374~376
    [27]李素娟,张志勇,王兴远等.用模糊识别技术鉴定小麦品种(系)抗蚜性研究[J].植物保护,1998,24 (5):15-160
    [28]李贤庆,郭线茹,李克斌.不同小麦品种(系)对麦长管蚜的抗性[J].昆虫学报,2006,49(6):963~968
    [29]梁辉,朱银峰,朱祯,等.雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究[J].遗传学报,2004 , 31 (2) :189~194
    [30]刘绍有,侯有明,李定旭,等.小麦品种对麦长管蚜抗性机制的研究[J].西北农业学报,1993,2(3):76-80
    [31]刘保川,陈巨莲,倪汉祥,等.丁布的分离、纯化和结构鉴定及其对麦长管蚜生长、发育的影响[J].应用与环境生物学报,2002,8 (1):71~74
    [32]刘生祥,任月萍,李学军,等.春小麦蚜虫消长规律及与气象因素关系的初步研究[J].宁夏农学院学报,2002,23(2):22~23
    [33]刘新伦.小麦基因资源抗麦长管蚜特性研究[D].陕西:西北农林科技大学,2006
    [34]刘志勇,白玉亭,马盾.新疆小麦近缘野生植物染色体及抗病虫性研究进展[J].新疆农业科学,1997,(3):109~111
    [35]刘金元,刘大钧,陶文静,等.小麦白粉病抗性基因Pm4a的标记转化为STS标记的研究[J].农业生物技术学报,1999,7:113-116
    [36]罗彦长,王守海,李成荃,等.应用分子标记辅助选择培育抗稻白叶枯病光敏核不育系3418S[J].作物学报,2003,29(3):402~407
    [37]马盾.新疆小麦地方品种抗蚜性鉴定[J].作物品种资源,1986,2:33
    [38]马盾,陆峻,范兆田.新疆小麦族野生资源的抗蚜性鉴定[J].西北农业学,1994,3 (3):7~10
    [39]马渐新,周荣华,董玉琛等.用微卫星标记定位一个未知的小麦抗条锈病基因[J].科学通报,1999,44:1513-1517
    [40]马有志,徐琼芳,辛志勇,等.抗黄矮病小麦种质的分子标记[J].作物学报, 1999, 25:433-436
    [41]牛立元,茹振钢,石明旺,等.小麦叶片表面化学元素组分及其与抗蚜性关系研究[J] .麦类作物学报,2004,24(1):90-91
    [42]钱秀娟,梁俊燕,刘长仲.皋兰县麦长管蚜的田间消长规律及预测模型[J].甘肃农业大学学报,2004,39(2):183~185
    [43]钦俊德.昆虫与植物的关系—论昆虫与植物的相互作用及其演化.北京:科学出版社,1987:62-78
    [44]全国农技推广中心. 2003年全国重大农作物病虫害发生趋势分析[J].植保技术与推广,2003,23 (3):8~9
    [45]全国农技推广中心. 2004年全国主要农作物重大病虫害发生趋势预[J].中国植保导刊,2004,24 (3):21~22
    [46]师桂英.春小麦(Triticum aestivum L. )种质对麦长管蚜(Sitobion avenae F. )的抗性鉴定、评价及抗性机理研究[D].兰州:甘肃农业大学,2007
    [47]师桂英,尚勋武,王化俊.春小麦种质对麦长管蚜的抗蚜性鉴定[J].兰州大学学报(自然科学版),2008,44(5):40~43.
    [48]史忠良,郑王义,尹青云等.冬小麦抗蚜品种田间筛选技术研究[J].华北农学报,1999,14(1):98-101
    [49]孙建伟,王经伦,李素娟.小麦不同抗蚜性品种对麦蚜种群动态的影响[J].河南农业科学,1993,(1) :26~28
    [50]索广力,黄占景,何聪芬,等.利用RAPD-BSA技术筛选小麦耐盐突变位点的分子标记[J].植物学报,2001, 43:598-602
    [51]童平和,朱希孟,曹雅忠,等.冬小麦新品种抗蚜性田间鉴定研究初报[J].作物品种资源,1991,(2):29~30
    [52]田清震,李新海,李明顺,等.优质蛋白玉米的分子标记辅助选择[J].玉米科学,2004,12(2):108~110.
    [53]王春芝.3种小麦蚜虫的形态识别与防治技术[J].农技服务,2008,25 (3) :50-58
    [54]王美芳,原国辉,陈巨莲等.我国冬麦区小麦品种抗蚜性鉴定[J].河南农业科学,2008,8:87-90
    [55]王运兵,金德锐,王连泉.麦蚜混合种群数量自我调节机制研究[J] .河南职业技术师范学院学报.1994,22(3):5~8
    [56]武计萍,许钢垣,仇松英.远缘杂交冬小麦新品系临远28013的选育及其主要特征[J].小麦研究,1999,20 (3):15~16
    [57]仵均祥,沈宝成,姜金虎等.小麦品种对麦蚜主要生命参数影响的研究[J].应用生态学报,1999,10(4):447~451
    [58]夏云龙,杨奇华,萧红.冬小麦形态特征与抗麦长管蚜的关系[J].植物保护学报.1991,3 (1):5-80
    [59]谢皓,陈学珍,杨柳. EST-SSR标记的发展和在植物遗传研究中的应用[J].北京农学院学报. 2005,20(4):73-76
    [60]谢永寿,杨奇华,谢以铨,等.冬小麦品种中糖及氨基酸含量与抗麦长管蚜的关系[J].植物保护学报,1987,14 (1):37~38
    [61]解超杰,倪中福,孙其信,等.利用小麦微卫星定位一个来自野生二粒小麦的抗白粉病基因[J].遗传学报,2001,28(11):1034-1039
    [62]徐利敏,齐凤鸣,张建平等.麦长管蚜危害小麦产量损失的初步研究[J].内蒙古农业科技,1998,(5):27~28
    [63]徐琼芳,田芳,陈孝,等.转基因抗虫小麦中sgna基因的遗传分析及抗虫性鉴定[J].作物学报,2004,30(5):475~480.
    [64]杨益众,汪士新,王进强.禾谷缢管蚜蜜露的分泌节律与小麦品种、生育期关系的研究[J].昆虫知识,1992(2):73-75
    [65]杨益众,戴志一,黄东林.麦蚜的阶段性为害对小麦产量和品质影响的研究[J].昆虫知识,1995,32 (1) :10~13
    [66]尹青云,郑王义,刘铃铃.小麦对麦长管蚜抗性机制及相关种质资源研究进展[J].小麦研究,2003,24(3):30~36
    [67]张海松.温度对麦长管蚜种群存活率的特征参数的影响[J].华东昆虫学报,1994,3(2):66~68
    [68]张志勇,李素娟,张屹,等.小麦不同生育期抗蚜机制研究[J].华北农学报,2000,15 (1):57~61
    [69]张跃进,王建强,姜玉英等.2005年全国农作物重大病虫发生趋势预报[J].中国植保导刊,2005,(04)
    [70]张跃进,王建强,姜玉英等.2007年全国农作物重大病虫害发生趋势预测[J].中国植保导刊,2007,(02)
    [71]张跃进,王建强,姜玉英等.2008年全国农作物重大病虫害发生趋势预测[J].中国植保导刊,2008,(03)
    [72]浙江农业大学主编.植物营养与肥料[M].北京:农业出版社,1998,123-125
    [73]郑王义,尹青云,史忠良等.冬小麦品种对麦长管蚜抗性机制与抗性遗传研究进展[J].小麦研究,1999,(1):1~5
    [74]郑王义,谢瑞材,王东升等.冬麦新品种(系)抗蚜性的初步研究[J].作物品种资源,1989,(3):30~31
    [75]庄丽芳,宋立晓,冯高等.小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用[J].作物学报. 2008,34(6):926?933
    [76]周涵韬,郑文竹.不同作物间共用SSR引物的初步研究. 2002,41(1):88-93
    [77]周明奘,杨齐华,姚汝娴等.作物抗虫性的研究[J].北京农业大学1981年科研工作进展简报,1982,52
    [78]周明群主编.作物抗虫性原理及应用[M].北京:北京农业大学出版社. 1992
    [79]周明臧.作物抗虫性原理及应用[M].北京:北京农业大学出版社,1991:10-12
    [80] Acreman, T. M. The role of awns in the resistance of Cereals to the grain aphid, Sitobion avenae[J]. Ann. App1. Bio1. 1986, 109(2): 375-382
    [81] Anderson J A, Stack R W, Liu S, et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations[J]. Theor Appl Genet., 2001,102: 1164-1168
    [82] Anderson G R, Papa D, Peng J, et al. Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat[J]. Theor Appl Genet, 2003, 107 (7): 1297~1303
    [83] Atsushi Torada, Michiya Koike, Keiichi Mochida. SSR-based linkage map with new population of common wheat[J]. Theor Appl Genet. (2006) 112: 1042–1051
    [84] Ayala L, Henry M, Gonzalez L D, et al. A diagnostic molecular marker allowing the study of Th. intermedium- derived resistance to BYDV in bread wheat segregating populations[J]. Theor Appl Genet, 2001, 102: 942-949
    [85] Barloy D, Lemoine J, Dredryver F, et al. Molecular markers linked tothe Aegilops variabilis- derived root– knot nematode resistance gene Rkn - mn1 in wheat[J]. Plant Breeding, 2000, 118: 169-172
    [86] Bergman CJ, Fjellstrom RG, Mcclung AM. Association between amylose content and a microsatellite marker across exotic rice germplasm[J]. Rice Genetics Symposium,2000(,4): 22~27
    [87] Boczk JE, Plaskota &B. Bielak. Factors which afect aphid resistance in cereals[J]. Inmaterialy XX I I, XX X I I I Seysji NAukowej Instytutu Ochrony Roslin: 1982,219-213
    [88] Bohidar, K. S. D. Wraten and H. M. Niemeyer. Effect of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae[J]. Ann. Appl. Biol. 1986. 109”:193-198
    [89] Botstein D, White R L, Skolnick M, Construction of a genetic linkage map in man using rstriction fragment polymorphisms[J]. Am. J. Hum. Genet, 1980, 32: 314-331
    [90] Bougot Y, Lemoine J, Pavoine M T, et al. Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat[J]. Plant Breeding, 2002, 121: 325—329
    [91] Boyko E V, Starkey S R, Smith C M. Molecular genetic mapping of Gby, a new greenbug resistance gene in bread wheat[J]. Theor Appl Genet, 2004, 109 (6), 1230~1236
    [92] Browon P, Tanksley S D. Characterization and genetic mapping of simple repeat sequences in the tomato genome[J]. Mol Gen Genet, 1996, 250: 39-49.
    [93] Cadalen T, Sourdille P, Charmet G, et al. Molecular markers linked to genes affecting plant height in wheat using a doubled– haploid population[J]. Theor Appl Genet, 1998, 96: 933-940
    [94] Caillaud, C. M. et al. The effect of resistance wheat (Triticum monococcum) lines on development and reproduction of Sitobiona venae[J]. Bulletin OILB/SROP. 1993, 16 (5): 123-129
    [95] Cao W, Hughes G R, Ma H, et al. Identification of molecular markers for resistance to Septoria nodorum blotch in durum wheat[J]. Theor Appl Genet, 2001, 102: 551-554
    [96] Chada, H. L. Insectary technique for testing the resistance of small grains to the green bug[J]. Entomol. 1959, 52 (2): 276-279
    [97] Chague V, Fahima T, Dahan A, et al. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NITs and bulked segregant analysis[J]. Genome, 1999, 42: 1051—1056.
    [98] Chantret N. Location and mapping of the powdery mildew resistance gene MLRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat[J]. Theor. Appl. Genet. 2000, 100:1217-1224
    [99] Cho Y G, Ishii T, Temnykh S, N. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice ( Oryza sativa L1) [J]. Theor Appl Genet. 2000, 100: 713 - 722
    [100] Ciepiela A. Biochemical basis of winter wheat resistance to the grain aphid, sitobion avenae[J]. Entomol. Exp. Appl. 1989, (51): 269~275
    [101] Copaja S V, Nicol D, Wratten S D. Acummulation of hydroxamic acids during wheatgermination[J]. Phytochemistry, 1999, (50): 17~24
    [102] Dary J. Somers. Peter Isaac. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet . (2004) 109:1105–1114
    [103] Dewar, A. M. Assessment of methods for testing varietal resistance to aphids in cereals[J]. Ann. A ppl. Biol. 1977, 87: 1 83-190.
    [104] Dudley J W. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits[J]. Crop Sci, 1993,(33): 660~668.
    [105] Du Toit Fv, Wessele W Gv, Marais G Fv, et a1. The chromosome arm location of the Russian wheat aphid resistance genev. Dn5[J]v. Cereal Ras Communv, 1995v, 23v: 15-17
    [106] Boyko E., Starkey S.v, Smith M. Molecular genetic mapping of Gby, a new greenbug resistance gene in bread wheat[J]. Theor Appl Genet. 2004, 109: 1230–1236
    [107] Elena Boykov, Ruslan Kalendarv, Victor Korzun. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function[J]. Plant Molecular Biology. 2002, 48: 767–790
    [108] Eujayl I, Sorrells M E, Baum M. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet. 2002,104: 399 - 407
    [109]Garret R. Anderson·Dan Papa, et al. Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat[J]. Theor Appl Genet (2003) 107:1297–1303
    [110] Harjit S,Prasad M,Varshney R K, et al. STMS markers for grain protein content and their validation using near– isogenic lines in bread wheat. Plant Breeding, 2001, 120: 273-278
    [111] Hayden M., Stephenson J., P. A. M. Logojan. Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet. (2006) 113: 1271–1281
    [112] Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47[J]. Theor Appl Genet, 2000, 100: 1137-1143
    [113] Holton R A,Christopher J T,McClure L. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat[J]. Molecular Breeding, 2002, 9: 63 - 71
    [114] Holubec, V &H. Havlickovd. Interspecific difference in cereal aphid infestation of 20 Aegilops species[J]. Ge Netikaa glechteni, 1994 30 ( 2): 81-87.
    [115] Jefferies S P,Pallotta M A,Paull J G, et al. Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum) [J]. Theor Appl Genet, 2000, 101; 767-777
    [116] Jianxin Ma, Ronghua Zhou, Yusheng dong, et al. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L.using microsatellite markers[J]. Euphytica, 2001, 120(2): 219-226.
    [117] JohSon B. The injurious effects of the hooked eqidermal hair of french bean on aphid craccivora koch[J]. Bull Ent Pes. 1953, (44): 779-788.
    [118] Kantety R V, Rota M L, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat[J]. Plant Mol Bio. 2002, 48; 501– 510
    [119] Khan A A, Bergstrom G C, Nelson J C, et al. Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus (WSSMV) disease[J]. Genome,2000, 43: 477-482
    [120] Korzum V, Roder M S, Ganal M W,et al. Genetic analysis of the dwarfing gene (Rht8) in wheat Part1. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 1998, 96, 1104-1109
    [121] Korzun V, Roder M S, Worland A J, et al. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalination response (Vrn1) in wheat using RFLP and microsatellite markers[J]. Plant Breeding, 1997, 116: 227-232.
    [122] Lanfen Wang , Jianxin Ma, Ronghua Zhou, et al. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P. I. 178383 (Triticum aestivum L.)[J]. Euphytica, 2002, 124: 71-73.
    [123] Laroche A, Demeke T, Gaudet D A, et al. Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat[J]. Genome, 2000, 43: 217-223
    [125] Lee M. DNA marker sin plant breeding programs[J]. Adv Agron, 1995,(55): 265~344.
    [126] Leszczynski B, Bakowski T. Interaction between cereal phenolics and grain aphid ( Sitobion avenae) [J]. Bulletin OILB SROR, 1996, 19 (5):100~105
    [127] Li G, C F Quiros. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor. Appl. Genet. 2001, 103: 455-461
    [129] Liu X M, Smith C M, Gill B S, et a1. Microsatellite markers linked to six in Russian wheat aphid resistance genes winter wheat[J].Theo Appl Genet,2001,102: 504-510
    [130] Liu X M, C M Smith, B S Gill. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6[J]. Theor. Appl. Genet. 2002, 104: 1042-1048.
    [131] Liu Z H, Anderson J A, Hu J. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detectingquantitative trait loci[J]. Theor Appl Genet. (2005) 111: 782–794
    [132] Liu Zhiyoung, Qixin Sun, Zhongfu Ni, et al. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer[J]. Euphytica, 2002, 123: 21—29. [131] Lowe, H. J. B. Non—glaucousness, a probable aphid-resistance character of wheat [J]. Ann.App1. Bio1. 1985, 106(8): 555-560
    [133] Lowe, H. J. B. Development and practice of a glasshouse screening technique for resistance of wheat to the aphid Sitobion avnae[J]. Ann. A ppl. B iol. 1984, 104: 297-305
    [134] Luo M C, Dyorak J. Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat[J]. Euphytica, 1996, 91: 31-35
    [135] Maetal Z Q, Saidi A, Quick J S, et a1. Genetic mapping of Russian wheat aphid resistance gene Dn2 and Dn4 in wheat[J]. Genome, 1998,41: 303-306
    [136] Ma Z Q, Roder M S, Sorrells M S. Frquencies and sequence characteristics of di, tri-,and tetra-nucleotide microsatellites in wheat[J].Genome, 1996, 39:123—130.
    [137] Ma J X, Zhou R H, Dong Y S, et al. Molecular mapping and detectionof the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers[J]. Euphytica, 2001, 120:219-226
    [138] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked in specific genomic regions by using segregating populations[J]. Proc. Natl. Acad.Sci.USA, 1991, 88: 9828-9832.
    [139] Ming R,Brewbaker JL,Pratt RC,et al. Molecular mapping of a major gene conferring resistance to maize mosaic virus[J]. Theor Appl Genet,1997, (95):271~275.
    [140] Mohan M,Nair S,Bhagwat A,et al. Genome mapping,molecular markers and marker-assisted selection in crop plants[J]. Mol Breeding, 1997,(3): 87-103
    [141] Mohler V, Hsam S L K, Zeller F J. An STS marker distinguishing the rye-derived powdery mildewre sistance alleles at the Pm8/Pm1 7 locus of common wheat[J]. Plant Breeding, 2001, 120:448-450
    [142] Nicol D, Copaja S V, Wratten S D, et al. A screen of world wide wheat cultivars for hydroxamic acid levels and aphid an tixenosis[J]. Ann. Appl. Biol. 1992, (121): 11~18
    [143] Paillard S, Schnurbusch T, Winzeler M. An integrative genetic linkage map of winter wheat (Triticum aestivum L.) [J]. Theor Appl Genet. (2003) 107: 1235–1242
    [144] Parker G D,Langridge P. Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.) [J]. Molecular Breeding,2000,6: 169-174
    [145] Peng J H, Fahima T, Roder M S, et al. Microsatellite high– denesity mapping of the stipe rust resistance gene YrH52 region of chromosome 1B and evalution of its marker– assistedselection in the F2 generation in wild emmer wheat[J]. New Phytol. 2000, 146: 141-154.
    [146] Pestsova E, Ganal M W, Roder M S. Isolation and mapping of Microsatellite markers specific for the D genome of bread wheat [J]. Genome, 2000, (43): 689-6971
    [147] Pietro, J. P. Di et al. Stable resistance to the cereal aphids Sitobion avenae F. in the ancient diploid wheat Triticum monococcum L[J]. Bulletin OILB/SROP 1996, 19( 5): 8 8-94
    [148] Quarrie S A, Steed A, Calestani C. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring·SQ1 and its use to compare QTLs for grain yield across a range of environments[J]. Theor Appl Genet . (2005) 110: 865–880
    [149] R?der M S, Plaschke J, Susanne O K, et al. Abundance, variability and chromosomal location of microsatellites in wheat[J]. Mol. Gen.Genet. 1995, 246: 327-333.
    [150] R?der M S, Korzun V, Wendehake K. A microsatellite map of the wheat genome[J]. Genetics, 1998, 149: 2007–2023
    [151] R?der M S, Korzun V, Bikram S G , et al. The physical mapping of microsatellite markers in wheat[J].Genome,1998, 41:278-283.
    [152] Rychlik W. Optimization of the annealing temperature for DNA amplification in vitro[J]. Nucleic Acid Research, 1990, 18: 6409-6412.
    [153] Saidi A, Quick J S. Inheritance and allelic relationship among Russian wheat aphid resistance genes winter wheat[J].Crop Sic, 1996, 36:256-258
    [154] Sehroeder T S,Zemetra R S,Schotzko D J,et a1.Monosomic analysis of Russian wheat aphid (Diuraphis noxia)resistance in Triticum aestivum line PI137739 [J]. Euphytica,l994,74: 117-120
    [155] Seyfarth R, Feuillet C, Schachermayr G, et al. Molecular Mapping of the adult-plant leaf rust resistance gene Lr13 in wheat (Triticum aestivum L.) [J]. Journal of Genetics and Breeding, 2000, 54: 193-198
    [156] Shariflou M R,Hassani M E,Sharp P J. APCR– based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat[J]. Plant Breeding, 2001, 120: 121-124
    [157] Shi Z X, Chen X M, Line R F, et al. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust[J]. Genome, 2001, 44: 509-516
    [158] Xue Shulin, Zhang Zhengzhi, Lin Feng. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags[J]. Theor Appl Genet, (2008) 117:181–189
    [159] Smulders M J M. Use of short microsatellites from database sequence to gene rate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species [J]. Theor Appl Genet, 1997,97: 164-272.
    [160] Song Q J, Fickus E W, Cregan P B. Characterization of trinucleotide SSR motifs in wheat[J]. Theor. Appl. Genet, 200, 104: 286-293.
    [161] Sourdille P, Snape J W, Cadalen T, et al. Detection of QTLs for heading time and photo period response in wheat using adoubled– haploid population[J]. Genome, 2000, 43: 487-494
    [162] Stephenson P, Bryan G, Kirby J, et al. Fifty new microsatellite loci for the wheat genetic map [J ]. Theor. Appl. Genet., 1998, 97 (5-6): 946-949
    [163] Stoger E, illiams W, Christou P, et a1. Expression of the insecticidal lectin from snowdrop(Galanthus nivalis agglutinin: GNA)in transgenic wheat plant:effects on predation by grain Sitobion avenae[J]. Molecular Breeding, 1999, 5: 65-73
    [164] Tao W, Liu D, Liu J, et al. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis[J]. Theor Appl Genet, 2000, 100: 564-568
    [165] Thiel T, Michalek W, Varshney R K. Exploiting EST databases for the development and characterization of gene derived SSR markers in barley ( Hordeum vulgare L.) [J] . Theor Appl Genet, 2003, 106: 411 - 422
    [166] Tixier M H, Sourdille O, Charmet G, et al. Detection of QTLs for crossability in wheat using a double– haploid population[J]. Theor Appl Genet, 1998, 97: 1076-1082
    [167] Vagujfalvi A, Crosatti C, Galiba G, et al. Two locion wheat chromosome 5A regulate the differential cold– dependent expression of the cor1 4b gene in frost– tolerant and frost– sensitive genotypes[J]. Molecular and General Genetics, 2000, 263: 194-200
    [168] Varshney R Y, Prasad M, Roy J K, et al. Integrated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and pre - harvest sprouting tolerance in bread wheat[J]. Cereal Research Communications, 2001, 29: 33-40
    [169] Venter E, Botha A M. Development of markers linked to Diuraphis noxia resistance in wheat using a novel PCR-RFLP approach[J]. Theor Appl Genet, 2000, 100: 965-970
    [170] Weng Y, Lazar M D. Amplified fragment length polymorphism- and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat[J]. Plant Breed. 2002, 121: 218–223
    [171] Weng Y, Li W, Devkota R N, et a1. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat[J]. Theor Appl Gene . 2005, 110: 462–469
    [172] Westmen A L,Kresovich S. The potential for cross-taxa simple sequence repeat(SSR) amplification between Arabidopsis thaliana L.and crop brassicas[J]. Theor Appl Genet, 1998, 96: 272-281.
    [173] Wood, E. A. 1r. Description and results of a new greenhouse technique for evaluatingtolerance of small grains to the greenbug[J]. J. Econ. Entomol. 1961,54( 2): 303-305
    [174] Williams K J, Fisher J M, Langridge P. Development of a PCR-based Allele-specific assay from an RFLP probe linked to resistance to cerealcyst nematode in wheat[J]. Genome, 1996, 39:798-801
    [175] Young ND. A cautiously optimistic vision for marker-assisted breeding[J]. Mol breeding, 1999, (5): 505~510
    [176] Zhao X, KocherT G. Characterization and genetic mapping of a short highly repeated interspersed DNA sequence from rice(Oriza sativa)[J]. Mol Gen Genet, 1992, 231: 353-359
    [177] Zhu L C, Smith C M, Fritz A, et al. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii[J]. Theor Appl Genet,2005, (16): 1~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700