用户名: 密码: 验证码:
基于DEM的流域地形分析并行算法关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于DEM的流域地形分析是数字地形分析的重要组成部分,也是GIS空间分析不可或缺的内容,在地貌、土壤、水文和生态学等科学研究及生成建设中发挥着重要的作用。目前,随着空间数据获取技术的发展,大区域高精度地形数据的快速获取成为现实,为流域地形分析提供了丰富的数据源。在这种大数据背景下,如何对海量规模的地形数据进行快速有效地处理和分析,使之转化为所需的地学知识,成为目前GIS遇到的一大难题。并行计算技术为解决这一难题带来了机遇。本论文以数字地形分析理论与方法为基础,从流域地形分析高性能计算出发,系统研究了流域地形分析并行计算的关键技术及流域地形分析算法并行化方法,以期丰富数字地形分析理论与方法体系,完善地学知识挖掘和知识转化平台,推动大区域高精度地形分析技术在数字流域等领域的有效应用。研究成果可望为大数据时代高性能GIS空间分析提供理论、方法上的借鉴。本论文的主要内容和研究成果如下:
     (1)综合流域地形分析问题所涉及的数据、任务、结构三大元素,研究提出了流域地形分析并行算法设计的量化模型——并行粒度模型,并从数据的属性和数据体、任务的参数和负载、及计算平台的有效内存等方面对并行粒度模型三大元素进行了有效的量化统一,为流域地形分析并行算法设计中任务分解提供了量化依据。
     (2)从数据划分策略、结果融合策略及数据通信策略等方面,研究了流域地形分析并行策略。根据数据冗余复制思想和并行粒度模型,构建了基于并行粒度模型的行划分策略和流域式划分策略——以并行粒度为控制参数将全局数据划分为多个并行子块,同时,每个并行子块包含与进程数相同的进程子域。以此为基础,研究了相应的结果融合策略:对于行划分策略,可采用进程子域的数据锚点进行融合,而流域式划分策略则采用三元组机制进行融合。分别从通信方式和数据压缩两方面,研究了流域地形分析并行计算的数据通信策略。分析了MPI中点对点通信和组通信的效率,并从转换压缩和编码压缩两方面,设计了DEM数据内存压缩方法。
     (3)基于流域地形分析并行策略,系统研究了顾及并行粒度控制的流域地形分割并行算法。面向基于并行粒度模型的行划分策略,提出了两阶段并行方法。以此两阶段并行方法为基础,研究了流域地形分割并行算法:设计了流域边界生成方法并行算法;分析了基于坡面径流模拟的子流域划分方法所存在的问题,针对该问题提出了子流域划分并行算法;提出了一种顾及子流域拓扑关系和面积的改进流域编码方法,并实现了流域编码并行算法。实验结果表明,在并行粒度控制条件下,流域地形分割并行算法能够有效提高计算效率和处理数据规模。
     (4)利用流域结构特征,研究了顾及并行粒度控制的流域地形特征提取并行算法。基于流域式划分策略的两阶段并行方法,以构建的无DEM预处理过程水流方向生成方法为基础,设计了流域河流网络提取并行算法,并详细研究了并行计算过程中子流域合并、负载平衡与任务分配,及子流域间的信息传递等关键问题;在此基础上,研究了基于子流域的流域河网密度计算方法,设计了河网密度计算并行算法,并重点分析了并行计算过程中“双层”子流域间的信息传递方法。通过实验证明,基于流域式划分策略的并行算法充分利用了子流域可作为独立计算单元的特征,大幅度缩短了算法执行总时间,同时,并行算法可顾及并行粒度控制并具有较好地并行性能。
Watershed topographic analysis based on DEMs, an indispensable tool of spatial analysis in GIS applications, is a core part of digital terrain analysis. It plays an important role in many research fields such as landform, soil, hydrology and ecology. At present, with the development of spatial data acquisition technology, the quick acquisition of terrain data with large areas and fine scales becomes a solid reality; it provides rich data sources for watershed topographic analysis. Under the background of big data, it becomes a great difficulty in GIS that how to process and analyze these massive datasets quickly and efficiently to turn it into the required geological knowledge. Parallel computing brings an opportunitie to meet this challenge with the development of computer technology. In this paper, aiming at high performance computation in watershed topographic analysis, the key techniques of parallel computing in watershed topographic analysis have been deeply researched on the basis of the theories and methods of digital terrain analysis. This study has the practical significance for us to enrich the theoretical and methodological system of digital terrain analysis, to improve the platforms of geological knowledge mining and knowledge conversion, and to promote the effective application of terrain analysis techonology with large scopes and fine scales into many research fields such as digital watershed. The research findings can be as the theoretical and methodological references to high-performance computation in GIS spatial analysis under the age of big data.
     The mainly contents and research achievements of this paper are as follows:
     (1) A quantitative model for parallelizing algorithms of watershed topographic analysis, namely, parallel granularity model, is presented. The model integrates the elements of data, task and structure. These elements are involved by a problem of watershed topographic analysis. From the data attributes and data volume, parameters and load in a task, and the effective memory of a computing platform, the model carries on the effective quantitative unification to these three elements. The parallel granularity model provides a quantitative foundation to task decomposition in the design of parallel algorithm for watershed topographic analysis.
     (2) From the aspects of data decomposition, resulting fusion and data communication, the strategies of parallel computing for watershed topographic ananlysis are presented. According to the thought of data redundancy replication and parallel granularity model, the row-decomposition strategy and subwatershed-decomposition strategy based on parallel granularity model are designed. Using the parallel granularity as a control parameter, the global data is divided into multiple parallel blocks, and each parallel block contains multiple process subdomains as the same as the number of processes. On this basis, the corresponding resulting fusion strategy is studied. For the row-decomposition strategy, the resulting fusion is processed by the data anchor point of the process subdomain and a triple approach is adopted to merge the subresult of each process subdomain for subwatershed-decomposition strategy. The strategy of data communication is also presented in the view of communication mode and data compression. The efficiencies of point-to-point communication and group communication in MPI are analized, and the method of memory compression for DEM dataseets is designed from the aspects of transform compression and coding compression.
     (3) Based on the parallel strategies of watershed topographic analysis, parallel algorithms with parallel granularity control of watershed topographic partition are proposed. Facing to the row-decomposition strategy based on parallel granularity model, a two-phase parallelizing strategy is put forward. Based on the two-phase parallelizing strategy, parallel algorithms are respectively designed to calculate a basin with an outlet, subwatersheds with a watershed-area threshold, and watershed coding with an improved coding method considering topological relations and areas of subwatersheds. The experiment reulsts show that, with parallel granularity control, the parallel algorithms of watershed topographic partition can effectively improve the computaional efficiency and the processing-data scale.
     (4) According to the watershed structure, patallel algorithms with parallel granularity control of watershed topographic characteristics extraction are studied. On the basis of the two-phase parallelizing approach of the subwatershed-decomposition strategy, parallel algorithms are designed to extracte the stream network of a watershed and calculate drainage densities based on subwatersheds in a watershed. In the process of parallel computing, the key issues are researched in detail, such as subwatershed merger, load balancing and task allocation, and information transmission between subwatersheds. Experimental results prove that, the parallel algorithms based on the subwatershed-decomposition strategy can make full use of the characteristic that subwatershed can be considered as an independent computing unit, which makes the totoal execution time greately decrease; meanwhile, the parallel algorithms are under the condition of parallel granularity control and achieve a good parallel performance.
引文
[1]Barney B. Introduction to parallel computing [Online]. Available from: https://computing. llnl.gov/tutorials/parallel_comp/[Accessed December 10, 2013].
    [2]Clematis A, Coda A, Spagnuolo M. Developing Non-Local Iterative Parallel Algorithms for GIS on a Workstation Network[C]. In:Proceedings of the Sixth Euromicro Workshop on Parallel and Distributed Processing, Madrid, Spain,1998, 250-256.
    [3]Costa-Cabral M C, Burges S J. Digital elevation model networks (DEMON):A model of flow over hillslopes for computation of contributing and dispersal areas[J]. Water Resources Research,1994,30(6):1681-1692.
    [4]Dietrich W E, Wilson C J, Montgomery D R, et al. Analysis of erosion thresholds, channel networks and landscape morphology using a digital terrain model[J]. The Journal of Geology,1993,101:259-278.
    [5]Do H T, Limet S, Melin E. Parallel Computing Flow Accumulation in Large Digital Elevation Models[J]. Procedia Computer Science,2011, (4):2277-2286.
    [6]Do H T, Limet S, Melin E. Parallel Computing of Catchment Basins of Rivers in Large Digital Elevation Models[C]. In:2010 International Conference on High Performance Computing and Simulation (HPCS), Caen, France,2010,39-47.
    [7]Ehlschlaeger C. Using the AT Search Algorithm to Develop Hydrologic Models from Digital Elevation Data[C]. Proceedings of International Geographic Information Systems (IGIS) Symposium'89,1989, pp 275-281.
    [8]Fadlallah G, Lavoie M, Dessaint L. Parallel computing environments and methods[C]. Parallel Computing in Electrical Engineering,2000. PARELEC 2000. Proceedings,2000:2-7.
    [9]Fairfield J, Leymarie P. Drainage networks from grid digital elevation models[J]. Water Resources Research,1991,27(5):709-717.
    [10]Fang C, Yang C J, Chen Z, et al. Parallel algorithm for viewshed analysis on a modern GPU[J]. International Journal of Digital Earth,2011,4(6):471-486
    [11]Fortin J, Turcotte R, Massicotte S, et al. Distributed Watershed Model Compatible with Remote Sensing and GIS Data. I:Description of Model[J]. Journal of Hydrologic Engineering,2001,6(2),91-99.
    [12]Freeman T G. Calculating catchment area with divergent flow based on a regular grid[J]. Computer & Geosciences,1991,17(3):413-422.
    [13]Gao Y, Yu H, Liu Y, et al. Optimization for viewshed analysis on GPU[C]. In: 19th International Conference on Geoinformatics, Shanghai, China,2011, pp. 1-5
    [14]Garbrecht J, Martz L W, Syed K H, et al. Determination of representative catchment properties from digital elevation models [A]. In:Proceedings of the 1999 International Water Resources Engineering Conference[C]. Seattle, Washington,1999.
    [15]Garbrecht J, Martz L W. The assignment of drainage direction over flat surface in raster digital elevation moels[J], Journal of Hydrology,1997,193:204-213.
    [16]Garbrecht J. Determination of the execution sequence of channel flow for cascade routing in a drainage network. Hydrosoft,1988,1 (3):129-138.
    [17]Gaster B R, Howes L, Kaeli D, Mistry P, Schaa D (Eds.). Heterogeneous Computing with OpenCL[M]. New York:Elsevier,2011:10 pp.
    [18]Germain D, Laurendeau D, Vezina G. Visibility analysis on a massively data-parallel computer[J]. Concurrency:Practice and Experience,1996,8 (6): 475-487.
    [19]Gong J, Xie J. Extraction of drainage networks from large terrain datasets using high throughput computing[J]. Computers & Geosciences.2009,35(2):337-346.
    [20]Grama A, Gupta A, Karypis G, et al. Introduction to Parallel Computing[M]. Beijing:China Machine Press,2003.
    [21]Grimaldi S, Nardi F, Benedetto F D, et al. A physically-based method for removing pits in digital elevation models[J]. Advances in Water Resources,2007, 30(11):2151-2158.
    [22]Gyasi-Agyei Y, de Troch F P, Troch P A. A dynamic hillslope response model in a geomorphology based rainfall-runoff model [J]. Journal of hydrology,1996,178: 1-18.
    [23]Hart P E, Nilsson N J, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE TRANSACATIONS OF SYSTMES AND CYBERNETICS,1968,4:100-107.
    [24]Hazra T K. Parallel computing[J]. IEEE Potentials,1995.14(3):17-20.
    [25]Jain M K, Singh V P. DEM-based modelling of surface runoff using diffusion wave equation[J]. Journal of Hydrology,2005,302(1-4):107-126.
    [26]Jenson K, Dominique F O. Extracting topographic structure from digital elevation data for geographical information system analysis[J]. Photogrametric Engineering and Remote Sensing,1988,54(11):1593-1600.
    [27]Jones K H. A comparison of algorithms used to compute hill slope as a property of the DEM[J]. Computer and Geosciences,1998,24(4):315-323.
    [28]Kenneth A. Hawick, P.D. Coddington, H.A. James. Distributed frameworks and parallel algorithms for processing large-scale geographic data [J], Parallel Computing,2003,29:1297-1333.
    [29]Kinner D, Mitasova H, Harmon R S, et al. GIS-based Stream Network Analysis for The Chagres River Basin, Republic of Panama[C]. In:Harmon R (ed). The Rio Chagres:A Multidisciplinary Profile of a Tropical Watershed Springer/Kluwer,2005:83-95.
    [30]Lea N L. An aspect driven kinematic routing algorithm in overland flow: Hydraulics and erosion mechanics[M]. New York:Chapman & Hall,1992.
    [31]Liang C, Mackay D S. A general model of watershed extraction and representation using globally optimal flow paths and up-slope contribution areas [J]. International Journal of Geographical Information Science,2000,14(4): 337-358.
    [32]Maccormick P, Aherns J. Large-Scale Data Visualization and Rendering:A problem-driven Approach. In:Hansen C D, Johnson C R. The Visualization Handbook, Elsevier,2005.
    [33]Martz L W, De Jong E. Catch:A Fortran program for measuring catchment area from digital elevation models[J]. Computer & Geosciences,1988,14(5): 627-640.
    [34]Martz L W, Garbrecht J. Automated recognition of valley lines and drainage network from digital elevation models:A review and a new method-Comment[J]. Journal of Hydrology,1995,167(1-4):393-396.
    [35]Martz L W, Garbrecht J. Numerical definition from drainage network and subcatchment areas from digital elevation models[J]. Computers and Geosciences,1992,18(6):747-761.
    [36]Martz L W, Garbrecht J. The Treatment of Flat Areas and Depressions in Automated Drainage Analysis of Raster Digital Elevation Models[J]. Hydrological Processes,1998, (12):843-855.
    [37]Metz M, Mitasova H, Harmon R S. Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search[J]. Hydrology and Earth System Sciences,2011,15:667-678.
    [38]Mills K, Fox G, Heimbach R. Implementing an intervisibility analysis model on a parallel computing system[J]. Computers & Geosciences,1992,18(8): 1047-1054.
    [39]Mineter M J, Dowers S, Caldwell D R, et al. High-throughput Computing to Enhance Intervisibility Analysis[A]. Proceedings of 7th International Conference on GeoComputation[C]. Southampton, United Kingdom,2003.
    [40]Molnar S, Cox M, Ellsworth D, et al. A sorting classification of parallel rending[J]. IEEE Computer Graphics and Applications,1994,14(4):23-32.
    [41]Moore I D. Hydrological modeling and GIS In:GoodchildL T, Steyaert B O, Parks C, et al. GIS and Environmental Modeling, Progress and Research Issues. Hoboken, NJ, USA:John Wiley & Sons, Inc,1996.
    [42]Moran C J, Ve'zina G. Visualizing Soil Surfaces and Crop Residues[J]. IEEE Computer Graphics and Applications,1993(2):40-47.
    [43]Mower J E. Data-parallel procedures for drainage basin analysis[J]. Computers& Geosciences,1994,20(9):1365-1378.
    [44]Mower J E. Implementing GIS Procedures on Parallel Computers:A Case Study[C]. In:Proceedings of the Eleventh International Symposium on Computer-Assisted Cartography (Auto-Carto 11), Minneapolis, USA,1993, 424-433.
    [45]Neal J C, Fewtrell T J, Trigg M. Parallelization of storage cell flood models using OpenMP[J]. Environmental Modelling & Software,2009,24(7):872-877.
    [46]O'Callaghan F, Mark D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision, Graphics and Image Processing,1984,28(3): 323-344.
    [47]Ortega L, Rueda A. Parallel drainage network computation on CUDA[J]. Computers & Geosciences,2010,36(2):171-178.
    [48]Pan, F F. A comparison of geographical information system-based algorithms for computing the topmodel topographic index[J]. Water Resource Research, 2004,40:W06303.
    [49]Planchon O, Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models [J]. Catena,2001,46(2-3):159-176.
    [50]Qin C Z, Zhan L J. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm[J]. Computers & Geosciences,2012,43:7-16.
    [51]Quinn P F, Beven K J, Chavallier P. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models[J]. Hydrological Processes,1991,5(1):59-79.
    [52]Rallings P J, Ware J A, Kidner D B. Parallel Distributed Processing for Digital Terrain Analysis[C]. In:Proceedings of the 3rd International Conference on GeoComputation, Bristol, United Kingdom,1998.
    [53]Saadat H, Bonnell R, Sharifi F, et al. Landform classification from a digital elevation model and satellite imagery[J]. Geomorphology,2008,100:453-464.
    [54]Samanta R, Funkhouser T, Li K, et al. Hybrid sort-first and sort-last parallel rendering with a cluster of PCs[C]. In:Proceedings of the ACM SIGGRAPH/ EUROGRAPHI-CS workshop on Graphics hardware,2000:97-108.
    [55]Skidmore A K. Terrain position as mapped from a gridded digital elevation model[J]. International Journal of Geographical Information Systems,1990,4(1): 33-49.
    [56]Song X D, Tang G A, Jiang L, et al. A Novel Parallel Depression Removing Algorithm for Hydrology Analysis in Digital Elevation Models[C]. In:20th International Conference on Geoinformatics, Hong Kong, China,2012.
    [57]Strahler A N. Quantitative analysis of watershed geomorphology [J]. Transactions of the American Geophysical Union,1957,38(6):913-920.
    [58]Strnad D. Parallel terrain visibility calculation on the graphics processing unit[J]. Concurrency and Computation:Practice and Experience,2011,23(18): 2452-2462.
    [59]Tang G A, Hui Y H, Josef S. The impact of resolution on the accuracy of hydro logic data derived from DEMs[J]. Journal of Geographical Sciences,2001, 11(4):393-401.
    [60]Tarboton D G. A new method for the determination of flow direction and unslope areas in grid digital elevation models[J]. Water Resources Research,1997,33(2): 309-319.
    [61]Tarboton D G, Bras R L, Rodriguez-Iturbe I. On the Extraction of Channel Networks from Digital Elevation Data[J]. Hydrologic Processes,1991,5(1): 81-100.
    [62]Teng Y A, DeMenthon D, Davis L S. Stealth Terrain Navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics,1993,23(1):96-110.
    [63]Tribe A. Automated recognition of valley lines and drainage networks from grid digital elevation models:A review and a new method[J]. Journal of Hydrology, 1992,139:263-293.
    [64]Verdin K L, Verdin J P. A topological system for delineation and codification of the Earth's river basins[J]. Journal of Hydrology,1999,218:1-121.
    [65]Vivoni E R, Mascaro G, Mniszewski S, et al. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment J]. Journal of Hydrology,2011,409(1-2):483-496.
    [66]Wallis C, Wallace R, Tarboton D G, et al. Hydrologic Terrain Processing Using Parallel Computing[C]. In:18th World MACS/MODSIM Congress, Cairns, Australia,2009a.
    [67]Wallis C, Watson D, Tarboton D G, et al. Parallel Flow-Direction and Contributing Area Calculation for Hydrology Analysis in Digital Elevation Models[C]. In:The 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, USA,2009b.
    [68]Wang H, Fu X D, Wang G Q, et al. A common parallel computing framework for modeling hydrological processes of river basins[J]. Parallel Computing,2011, 37,302-315.
    [69]Wang L, Liu H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modeling[J]. International Journal of Geographical Information Science,2006,20(2): 193-213.
    [70]Ware J A, Kidner D B, Rallings P J. Parallel Distributed Viewshed Analysis[C]. In:Proceedings of the 6th ACM international symposium on Advances in geographic information systems, Washington, USA,1998.151-156.
    [71]Wheatley J M, Wilson J P, Redmond R L, et al. Automated land cover mapping using Landsat Thematic Mapper images and topographic attributes[M]. In: Wilson J P, Gallant J C (eds.). Terrain Analysis:Principles and Applications, New York:John Wiley & Sons,2000:355-389.
    [72]Wilson J P, Gallant J C. Terrain analysis:principles and applications. New York: John Wiley & Sons, Inc.,2000.
    [73]Winchell M F, Jackson S H, Wadley A M, et al. Extension and validation of a geographic information system-based method for calculating the revised universal soil loss equation length-slop factor for erosion risk assessments in large watersheds[J]. Journal of Soil and Water Conservation,2008,63(3): 105-111.
    [74]Xavier C, Iyengar S S. Introduction to Parallel Algorithms[M]. Wiley-Interscience,1998.
    [75]Xia Y, Li Y, Shi X. Parallel Viewshed Analysis on GPU using CUDA[C]. In: Third International Joint Conference on Computational Science and Optimization, Huangshan, China,2010,373-374.
    [76]Xue Y, Chen Z, Xu H, et al. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study. International Journal of Applied Earth Observation and Geoinformation,2011,13(6):902-911.
    [77]Xu R, Huang X X, Luo L, et al. A new grid-associated algorithm in distributed hydro logical model simulations[J]. Science in China (Technological Sciences), 2010,53(1),235-241.
    [78]Yalew S, van Griensven A, Ray N, et al. Distributed computation of large scale SWAT models on the Grid[J]. Environmental Modelling & Software,2013,41: 223-230.
    [79]Yin Z Y, Wang X H. A cross-scale comparison of drainage basin characteristics derived from digital elevation models [J]. Earth Surface Processes and Landforms, 1999,24(6):557-562.
    [80]Yoeli P. Computer-assisted determination of the valley and ridge lines of digital terrain models[J]. International Yearbook Cartographica,1984,24:197-205.
    [81]Yu D P. Parallelization of a two-dimensional flood inundation model based on domain decomposition J]. Environmental Modelling & Software,2010,25(8): 935-945.
    [82]Zhao Y, Padmanabhan A, Wang S W. A parallel computing approach to viewshed analysis of large terrain data using graphics processing units[J]. International Journal of Geographical Information Science,2012,27(2):363-384.
    [83]Zhou Z G, Cai B, Zhang D Y, et al. Paged cache based massive terrain dataset real-time rendering algorithm[C]. In:International Conference on Information Engineering and Computer Science, Wuhan, China,2009.
    [84]Ziv J, Lempel A. A Universal Algorithm for Sequential Data Compression[J]. IEEE Transactions on Information Theory,1997,23(3):337-343.
    [85]毕如田,杜佳莹,柴亚飞.基于DEM的涑水河流域土壤多样性研究[J].土壤 2013,44(2):266-270.
    [86]毕晓丽,王辉,周睿,等.黄土高原泾河流域牲畜承载力分析[J].生态学报,2006,26(12):4219-4224.
    [87]曾燕,丘新法,刘昌明,等.基于DEM的黄河流域天文辐射空间分布[J].地理学报,2003,58(6):810-816.
    [88]陈景广,佘江峰,宋晓群,等.基于多核CPU的大规模DEM并行三维渲染[J].武汉大学学报(信息科学版),2013,38(5):618-621.
    [89]陈永良,刘大有,虞强源.从DEM中自动提取自然水系[J].中国图像图形学报,2000,(7A):92-96.
    [90]承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1986.
    [91]都志辉,高性能计算之并行编程技术—MPI并行程序设计[M].2001.
    [92]冯杰,解河海,成丽婷.基于子流域的TOPMODEL模拟研究[J].长江科学院院报,2009,26(4):4-8.
    [93]郝振纯,池宸星.空间分辨率与取样方式对DEM流域特征提取的影响[J].冰川冻土,2004,26(5):610-616.
    [94]郝振纯,王加虎,李丽,等.ChannelNetwork Tool-I的原理与功能[J].水文,2005,25(2):15-19.
    [95]黄金良,洪华生,张珞平,等.GIS在九龙江流域农业非点源污染信息数据库建立中的应用—以五川小流域为例[J].厦门大学学报(自然科学版),2004,43(1):93-97.
    [96]贾旖旎.基于DEM的黄土高原流域边界剖面谱研究[D].南京:南京师范大学,2010.
    [97]靳海亮,卢小平,刘慧杰.利用可编程GPU硬件进行大规模真实感地形绘制[J].武汉大学学报(信息科学版),2010,35(2):143-146.
    [98]孔凡哲.基于数字化平台的分布式水文模型和流域汇流研究[D].南京:河海大学,2003.
    [99]孔凡哲,李莉莉.利用DEM提取河网时集水面积阈值的确定[J].水电能源科学,2005,23(4):65-67.
    [100]李精忠,艾廷华,柯舒.DEM提取谷地线的有效汇水量阈值范围[J].武汉大学学报(信息科学版),2012,37(10):1244-1247.
    [101]李俊,汤国安,张婷,等.利用DEM提取陕北黄土高原沟谷网络的汇流阈值研究[J].水土保持通报,2007,27(2):75-78.
    [102]李铁键,刘家宏,和杨,等.集群计算在数字流域模型中的应用[J].水科学进展,2006,17(6):841-845.
    [103]李硕.GIS和遥感辅助下流域模拟的空间离散化与参数化研究与应用[D]. 南京:南京师范大学,2002.
    [104]李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2003.
    [105]刘华.数字流域信息提取软件研究及应用[D].南京:河海大学,2007.
    [106]刘家宏.黄河数字流域模型[D].北京:清华大学,2005.
    [107]刘娟,白雪卫.GIS模型在淤地坝设计中的应用[J].安徽农业科学,2010,38(12):6231-6232.
    [108]刘军志,朱阿兴,刘永波,等.基于栅格分层的逐栅格汇流算法并行化研究[J].国防科技大学学报,2013,(1):123-129.
    [109]刘俊峰,陈仁升,阳勇,等.实际地形下30min太阳辐射模拟及误差分析—以祁连山马粪沟流域为例[J].高原气象,2011,30(6):1647-1652.
    [110]刘学军,卞璐,卢华兴,等.顾及DEM误差自相关的坡度计算模型精度分析,测绘学报,2008,37(2):200-207.
    [111]刘学军,龚健雅,周启鸣,等.基于DEM坡度坡向算法精度的分析研究[J].测绘学报,2004,33(3):258-263.
    [112]刘学军,王永君,任政,,等.基于不规则三角网的河网提取算法[J].水利学报,2008,39(1):27-34.
    [113]刘万青,陈云明,张超超,等.基于DEM的黄土高原小流域规划空间数据挖掘[J].水土保持通报,2010,30(2):229-232.
    [114]陆中臣,贾绍凤,黄克新,等.流域地形系统[M].大连:大连出版社,1991.
    [115]罗岱,谢茂金,曹卫群,等.基于GPU编程的地形可视化[J].中国图象图形学报,2008,13(11):2244-2249.
    [116]闾国年,钱亚东,陈钟明.流域地形自动分割研究[J].遥感学报,1998,2(4):298-304.
    [117]马建超,林广发,陈友飞,等.DEM栅格单元异质性对地形湿度指数提取的影响分析[J].地球信息科学学报,2011,13(2):157-163.
    [118]潘宏伟,李辉,廖昌阊,等.一种基于现代GPU的大地形可视化算法[J].系统仿真学报,2007,19(14):3241-3244.
    [119]秦承志,李宝林,朱阿兴,等.水流分配策略随下坡坡度变化的多流向算法[J].水科学进展,2006a,17(4):450-456.
    [120]秦承志,杨琳,朱阿兴,等.平缓地区地形湿度指数的计算方法[J].地理科学进展,2006b,25(6):87-93.
    [121]任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4):269-376.
    [122]宋晓猛,张建云,占车生,等.基于DEM的数字流域特征提取研究进展[J]. 地理科学进展,2013,32(1):31-40.
    [123]宋效东.基于DEM的可视性分析综合模型及其并行算法研究[D].南京:南京师范大学,2013.
    [124]孙建伟,汤国安.域间流域及自动提取方法研究[J].地球信息科学学报,2013,15(6):871-878.
    [125]谭同德,秦鑫,赵新灿,等.基于场景图的并行渲染系统研究与实现[J].郑州大学学报(工学版),2009,30(4):103-107.
    [126]汤国安,刘学军,闾国年,等.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [127]万民,熊立华,卫晓婧.数字高程模型预处理方法的研究进展[J].水文,2008,28(5):11-17.
    [128]王春,汤国安,张婷,等.黄土模拟小流域降雨侵蚀中地面坡度的空间变异[J].地理科学,2005,25(6):683-689.
    [129]王浩,傅旭东,孙其诚.大尺度流域水文并行计算的方法改进.应用基础与工程科学学报,2010,17(11):1-9.
    [130]王加虎,郝振纯,李丽.基于DEM和主干河网信息提取数字水系研究[J].河海大学学报(自然科学版),2005,33(2):119-122.
    [131]王林,陈兴伟.基于DEM的流域水系分维计算与结果分析[J].地球信息科学,2007,9(4):133-137.
    [132]王培法.栅格DEM的尺度与水平分辨率对流域特征提取的分析:以黄土岭流域为例[J].江西师范大学学报:自然科学版,2004,28(6):549-554.
    [133]王晓朋,潘懋,徐岳仁.基于流域单元的泥石流区域危险性评价[J].山地学报,2006,24(2):177-180.
    [134]王跃奎,张乐天,陈润,等.小理河流域土壤流失环境因子研究[J].人民黄河,2010,32(12):163-164.
    [135]魏伟,石培基,赵军,等.石羊河流域海拔、植被覆盖与景观类型空间关系研究[J].干旱区地理,2012,35(1):91-98.
    [136]翁明华,姚成,李致家.数字化流域及流域信息提取方法研究[J].水文,2009,29(5):13-17.
    [137]邬伦,汪大明,张毅.基于DEM的水流方向算法研究[J].中国图像图形学报,2006,11(7):998-1003.
    [138]吴险峰,刘昌明,王中根.栅格DEM的分辨率对流域特征的影响分析[J].自然资源学报,2003,18(2):148-154.
    [139]谢顺平,都金康,罗维佳,等.基于DEM的复杂地形流域特征提取[J].地 理研究,2006,25(1):96-103.
    [140]徐精文,张万昌,符淙斌.适用于大尺度水文气候模式的DEM洼地填充和平坦区处理的新方法[J].水利学报,2007,38(12):1414-1420.
    [141]薛显武,陈喜,张志才,等.基于地形因子特征值的喀斯特流域地貌类型判别[J].中国岩溶,2009,28(2):175-180.
    [142]杨邦,任立良,贺颖庆.基于快速排序的数字高程模型分级填洼算法[J].计算机应用,2009(11):3161-3164.
    [143]杨传国,余钟波,林朝晖,等.大尺度分布式水文模型数字流域提取方法研究[J].地理科学进展,2007,26(1):68-76.
    [144]杨勤科,郭伟玲,张宏鸣,等.基于DEM的流域坡度坡长因子计算方法研究初报[J].水土保持通报,201 0,30(2):203-206.
    [145]叶爱中,夏军,王纲胜,等.基于数字高程模型的河网提取及子流域生成[J].水利学报,2005,36(5):531-537.
    [146]虞玉诚.数字流域水系生成系统研究[D].南京:河海大学,2005.
    [147]张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展[J].地理科学进展,2005,24(6):116-123.
    [148]张宏才.不同尺度数字高程模型提取水系的尺度效应[D].西安:西北大学,2004.
    [149]张宏鸣,杨勤科,李锐,等.流域分布式侵蚀学坡长的估算方法研究[J].水利学报,2012,43(4):437-444.
    [150]张珂,郭毅,李致家,等.基于DEM的流域信息提取方法及应用实例[J].水利发电,2005,31(2):18-21.
    [151]张维.基于DEM的陕北黄土高原流域剖面谱研究[D].南京:南京师范大学,2011.
    [152]张勇传,王乘.数字流域—数字地球的一个重要区域层次[J].水电能源科学,2001,19(3):1-3.
    [153]张钰娴.渭河流域产水产沙区域分异特征研究[D].杨凌:西北农林科技大学,2009.
    [154]张维,杨昕,汤国安,等.基于DEM的平缓地区水系提取和流域分割的流向算法分析[J].测绘科学,2012,37(2):94-96.
    [155]赵向辉,苗青,付忠良,等.基于CUDA的汇流分析并行算法的研究与实现[J].计算机应用研究,2010,(7):2445-2447.
    [156]郑子彦,张万昌,邰庆国.基于DEM与数字化河道提取流域河网的不同方案比较研究[J].资源科学,2009,31(10):1730-1739.
    [157]周贵云,刘瑜,邬伦.基于数字高程模型的水系提取算法[J].地理学与国土研究,2000,(4):77-81.
    [158]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [159]朱红春,汤国安,吴良超,等.基于地貌结构与汇水特征的沟谷节点提取与分析—以陕北黄土高原为例[J].水科学进展,2012,23(1):7-13.
    [160]朱连奇,史学建,彭红.基于RS和GIS的土壤侵蚀量估算方法研究—以陕西省杏子沟流域为例[J].河南大学学报(自然科学版),2007,37(6):601-606.
    [161]朱庆,赵杰,钟正,等.基于规则格网DEM的地形特征提取算法[J].测绘学报,2004,(1):77-82.
    [162]朱瑞庚,刘波.GIS技术在长江流域岩土工程中的应用[J].岩石力学与工程学报,2005,24(S2):5580-5584.
    [163]祝士杰.基于DEM的黄土高原流域面积高程积分谱系研究[D].南京:南京师范大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700