用户名: 密码: 验证码:
基于EST-SSR、Genomic-SSR和SCoT标记的柑橘连锁图谱构建及杂种和多倍体遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是世界上最具经济价值的果树之一。其遗传育种工作历来受到各国研究者的重视,人们通过芽变筛选、杂交和多倍体培育等方法已经培育了许多在世界各地广为栽培的优良柑橘品种。这些品种的推广对于促进当地经济的发展和人们生活水平的提高起到了重要作用。近年来,分子生物学的发展为柑橘的遗传育种提供了新的技术手段,对柑橘的选育种研究起到了有效的辅助作用,有力的推动了柑橘产业各个领域的快速发展。而随着基因和基因组学研究的兴起,对于重要性状基因的精确鉴别和定位也成为柑橘遗传育种学领域研究的热点。遗传连锁图谱就是承载这个热点研究领域的重要基础之一。以上各方面的进步都将为柑橘的研究和应用带来深远影响。为此,本研究构建柑橘的高密度遗传连锁图谱,并与已有图谱进行比较整合;同时以不同品种或倍性材料进行杂交培育,并利用细胞和分子生物学方法对获得的杂交后代群体其进行遗传鉴定和分析,以期为柑橘的分子遗传和育种研究提供技术平台和优良种质资源。具体结果如下:
     1.以柑橘幼苗微量叶片为材料,改进柑橘基因组DNA提取方法,并对三种PAGE凝胶浓度和三种银染色方法进行了筛选和优化,建立了一种经济、高效的柑橘苗期SSR分析体系。初步应用结果表明优化的技术体系稳定可靠,可以用于柑橘杂交后代的早期辅助选择和遗传图谱构建等研究。
     2.采用正交设计方法,对影响柑橘SCoT-PCR反应的Mg2+、dNTPs、引物、TaqDNA聚合酶及模板DNA用量等因素进行优化,首次建立了适于柑橘的SCoT标记分析体系,即20μL反应体系中含有:Mg2+1.5mmol-L-1, dNTPsO.35mmol·L-1,引物0.625μmol·L-1, TaqDNA聚合酶0.5U,模板DNA10ng。最适退火温度为49℃利用Wan2橘橙×Li2甜橙的杂交后代对该体系进行验证,结果表明建立的柑橘SCoT体系结果稳定,重复性好,可为柑橘遗传多样性分析和连锁图谱构建提供新的技术支持。
     3.分别利用168对SSR引物和20条SCoT引物对92株Wan2橘橙[Citrus unshiu (Mark.) Marc,×Citrus sinensis (L.) Osb.]×Li2甜橙[Citrus sinensis (L.) Osb.]杂交群体进行多样性分析。168对(112对EST-SSR和56对SSR) SSR引物共扩增出294条多态性条带,平均每对引物扩增出1.75条带。20条SCoT引物共扩增出32条多态性带,平均每对引物扩增出1.6条带。分别以两种标记的数据进行聚类分析,结果显示两种方法都可以将所有材料分为8类,并且每一类别所包含单株的比例也比较相近,二者均表明该群体具有丰富的遗传多样性,后代和亲本以及后代之间都存在较大遗传差异,可以推测该作图群体的分离方式具有多样性。
     4.以92株Wan2橘橙[Citrus unshiu (Mark.) Marc.×Citrus sinensis (L.) Osb.]×Li2甜橙[Citrus sinensis (L.) Osb.]杂交F1为群体,利用EST-SSR,SSR和SCoT三种标记技术构建柑橘遗传连锁图谱。对518对(条)引物进行了筛选,共获得219个多态性引物,占引物总数的42.28%,其中SSR引物67对,占全部同类引物的37.02%;EST-SSR引物127对,占同类引物的47.57%;SCoT引物25条占同类引物的35.71%。从这些多态性引物中选出206对(条)引物用于柑橘遗传图谱的构建,包括65对SSR引物,121对EST-SSR引物和20条SCoT引物,分别为各自引物总数的34.81%,45.69%和28.57%。
     利用筛选出的206对(条)引物构建柑橘遗传图谱。EST-SSR引物共扩增出213条多态性带,平均每对引物扩增出1.8条多态性带;SSR引物共扩增出多态性带114条,平均每对引物扩增出1.7条,SCoT引物扩增出32条多态性带,平均每个引物扩出1.6条。206个引物总共扩增出359条多态性带,平均每个引物产生1.7条多态性带。359条带中共产生了232个符合四种分离类型的标记,包括69个SSR标记,131个EST-SSR标记和32个SCoT标记,其中偏分离标记113个,占总数的48.7%。
     利用Joinmap4.0软件对获得的232个标记进行连锁分析,并构建柑橘遗传连锁图谱。最终226个标记被定位在了构建的9个连锁群上,包括67个SSR标记,129个EST-SSR标记和30个SCoT标记。各个连锁群长度在5到122.3cM之间,平均长度为77.1cM。总覆盖图距为693.7cM,平均遗传图距为3.1cM。9个连锁群上包含的标记数在4到104个之间,每个连锁群的平均标记数为25.1个,含标记数最多的是ESS-WL1,共含有104个标记,最少的为ESS-WL7,仅包含4个标记。分别比较分析了SCoT标记和偏分离标记的加入对图谱构建的影响。发现SCoT标记在连锁群上分布均匀,对原图谱有良好的整合效果,使连锁群的组建更加合理,更加符合与柑橘9条染色体相对应的理论连锁群数。而偏分离标记对图谱构建也并无太大影响。说明本文所构建的遗传图谱准确可靠,可以用于柑橘重要性状基因的定位等后续研究。
     5.将本研究构建的图谱和其他研究者构建的包含有共同标记位点的6张柑橘图谱进行比较分析。发现一些标记位点可以很好的对应起来,能够进行图谱的整合,使本研究构建的图谱具有更加重要的应用价值。但是也有一些标记由于各个图谱连锁群的组成差别较大而无法对应起来,说明了柑橘标准参考图谱构建的必要性。
     6.利用优化的SSR技术体系对沙田柚×红江橙杂交实生苗进行杂种性质鉴定和多样性分析。结果表明5对特异引物可以将55株杂种苗全部鉴定出来,并且发现了一个纯合显性标记AAT12,该标记在在亲本间有明显差异,可以用于沙田柚和红江橙杂交后代大量群体的遗传鉴定。在引物GA18和AGC9扩增结果中出现了亲本条带的缺失情况,可能与有性杂交过程中染色体的异常交换有关。SSR聚类分析显示55株杂种后代中,65.45%的植株和沙田柚聚在一起,34.55%的植株和红江橙聚在一起,说明杂交后代植株较多表现为偏母遗传,并且具有较高的遗传多样性。
     7.以柠檬四倍体为母本,分别以强德勒柚和枳为父本进行授粉杂交。共收获5个柠檬四倍体×强德勒柚杂交果,32粒种子;获得1个柠檬四倍体×枳杂交果,5粒种子。观察发现杂交果明显小于正常四倍体果,杂交所得种子也明显比正常种子小。经培养获得了27株柠檬四倍体×强德勒柚杂交苗和2株柠檬四倍体×枳杂交苗。利用细胞学方法对培养成活的植株进行染色体观察,发现29株杂交后代全部为三倍体(2n=3x=27)。根据父本枳的三叶特征和染色体数目鉴定出2株柠檬和枳杂交苗为真杂种。利用13对EST-SSR标记对25株柠檬和强德勒柚杂交后代进行遗传鉴定和分析。杂种鉴定结果显示有9对引物可以一次性鉴定出全部杂种后代。其余4对引物也可以一次鉴定出9-18株不等的杂种。EST-SSR标记的鉴定结果表明25株柠檬和强德勒柚杂交后代全部为杂种。遗传分析结果显示13对引物共扩增出87条带,多态性条带共82条,多态率达到94.03%。三倍体杂种后代的扩增图谱中出现了部分新条带或亲本条带的缺失,可能与亲本倍性不同及其在杂交过程中所提供的遗传信息量差异较大有关。聚类分析显示27份材料分为两大类:父本强德勒柚单独聚为一类;25株三倍体杂种后代全部和母本柠檬四倍体聚在一起。聚类结果充分说明了这些三倍体后代植株的偏母遗传,与母本和父本提高的遗传信息量的多少一致,据此可以推断出在杂交后代基因组中母本柠檬四倍体提供的遗传物质远多于父本,这也在一定程度上表明这些杂交后代染色体的组成及倍性水平,说明EST-SSR标记能够很好的反映出植株遗传物质所含信息量的多少,可以作为不同倍性植株杂交后代染色体倍性确认的一个参考。
     8.利用建立的柑橘SCoT标记分析体系对沙田柚四倍体进行分析。11个引物在4株沙田柚四倍体及其二倍体亲本中共扩增出84条带,其中多态性条带46条,多态性比率为54.8%,聚类分析显示5株沙田柚可分为三类,3株同源四倍体分别聚在不同的位置,表明4株四倍体基因组相对于二倍体母本均发生了不同程度的遗传变异,并且其相互之间也存在较大的遗传差异。这些含有丰富遗传变异的四倍体材料也可以作为柑橘育种的重要材料。
Citrus is one of economically the most important fruit trees in the world. The genetic improvement programs of citrus has been subjected to the attention of global researchers, many new cultivars have been released in the world via bud sport selection, cross, polyploid and other breeding channels.The promotion of these cultivars has played an important role in promoting local economic development and the improvement of living standards of the people. The molecular biotechnology provide new technical means for improvement programs of citrus, have greatly promoted the citrus breeding. Identification and location of important qualitative genes and quantitative trait loci on a chromosome has also become a hot spot of citrus genetics and breeding programs with the rise of genetic and genomic studies,and genetic linkage mapping is one of the important foundation. The progress of the above aspects are a profound impact on research and applications for citrus. Therefore, we constructed the genetic linkage map of citrus with different molecular markers, and which were used for comparison with other citrus genetic linkage maps. Then, we obtained some hybrid progenies throgh different cross combinations, and identification and analysis by cell and molecular biology methods.The results are as follows:
     1. An optimized SSR analysis system on citrus were obtained, through building a new method to isolate DNA from microamount of citrus leaves rapidly and testing three PAGE concentrations and three silver staining methods. The results showed that the method had the characteristics of little material and shorter time, and its primary application showed that the optimization SSR system could provided a technical support for citrus molecular assisted breeding and constructing of molecular linkage map.
     2. Orthogonal design was applied to optimize SCoT-PCR amplification system of citrus in five factors such as Mg2+, dNTPs, primer, Taq DNA polymerase and template DNA. An optimal reaction system of Citrus was established, PCR reaction mixtures contained Mg2+1.5mmol· L-1, dNTPs0.35mmol· L-1, primers0.625μmol· L-1, Taq polymerase0.25U, template DNA10ng. The most suitable annealing temperature of primers was49℃. Amplifications and genetic analysis were carried out on progenies from Wan2[tangor, Citrus unshiu (Mark.) Marc. x Citrus sinensis (L.) Osb.] x Li2[sweet orange, Citrus sinensis (L.) Osb.]. The result showed that the SCoT system established in this report is useful for genetic diversity analysis and constructing linkage map of Citrus, which possesses considerable potential for citrus breeding.
     3. The genetic diversity of92F1individuals derived between Wan2(tangor, Citrus unshiu (Mark.) Marc, x Citrus sinensis (L.) Osb.) and Li2(sweet orange, Citrus sinensis (L.) Osb.) was analysized. A total of294polymorphism bands were amplified by112EST-SSR and56SSR merkers,with an average of1.7bands.and20SCoT primers produced32polymorphism bands,with an average of1.6bands. UPGMA cluster analysis showed that92F1individuals could be grouped into eight distinct families, and the resuits from two different marker were similar,which all showed that the F1population has high genetic diversity and greater genetic variation, can be speculated that the separation of population is diversity.
     4. Expressed sequence tag-simple sequence repeat (EST-SSR), simple sequence repeats (SSR),and start codon targeted (SCoT) polymorphism markers were used to establish genetic linkage map of citrus using a population of92F1individuals derived between Wan2(tangor, Citrus unshiu (Mark.) Marc.×Citrus sinensis (L.) Osb.) and Li2(sweet orange, Citrus sinensis (L.) Osb.). We initially tested518primers or primer pairs, and219(42.28%) gave polymorphic markers,which included67SSR(37.02%of187SSR),127EST-SSR (47.57%of267EST-SSR) and25SCoT primers(35.57%of267EST-SSR). Among all,206primers, including65SSR,121EST-SSR and20SCoT primers were used in linkage analysis.
     EST-SSR, SSR, and SCoT analyses produced213(1.8per primer),114(1.7per primer) and32(1.6per primer) polymorphic bands, respectively. Total number of polymorphic bands were359by206primers, with an average of1.7bands. Among all,232markers, including69SSR,131EST-SSR, and32SCoT markers were found segregating in the progeny, and113(48.7%) showed distorted segregation.
     A genetic map was constructed using JoinmaP4.0setting CP type data based on232markers, a total of226markers,including67SSR markers,129EST-SSR markers and30SCoT markers were assigned to9linkage groups. The groups ranged in size from5to122.3cM, with an average length of77.1cM, The total map length was693.7 cM, with an average distance of3.1cM between adjacent markers. the total number of markers per linkage group ranged from4to104, with an average number of25.1markers, ESS-WL1has the most number markers,and the least number of markers was detected in the ESS-WL7.The effects of SCoT markers and distorted markers on genetic linkage maps were analyzed. Distribution of SCoT markers was evenly on chromosome, which were beneficial in the construction of linkage maps, and were valuable for genetic mapping. The distorted markers also will not have a great effect in linkage maps. Which shows that the genetic map constructed in this paper is accurate and reliable, can be used for determining locations of genes on a chromosome or QTL mapping of citrus.
     5. Through comparison of shared markers in the map constructed by us and6maps constructed by other researchers, we found that some markers in this study could show better identity with other maps. However, some markers were placed on difference postion in different linkage groups.Which show that construction of a reference map of citrus is very necessary.
     6. The hybrid nature and the genetic relationship of offsprings from'Shatianyou'×'Hongjiangcheng'was analyzed with optimized SSR system.The results showed that all the offsprings from'Shatianyou'pummelo×'Hongjiangcheng'were proved to be hybrids with5pairs SSR primers, one homozygous maker AAT12was obtained, and some markers were absent in55F1seedlings in primer GA18and AGC9, which may be related to chromosome abnormality exchange. The cluster analysis of SSR data showed that65.45%progenies could be grouped with'Shatianyou'together, and34.55%grouped with'Hongjiangcheng' together, which indicated that the most of offsprings were partial maternal inheritance and the genetic variation of hybrids from the cross combinations was obviously.
     7. A total of5fruits and32seeds were obtained from the cross between tetraploid lemon and'Chandler'pummelo,and1fruit and5seeds were obtained from tetraploid lemon xtrifoliate orange. The hybrid fruits and seeds are significantly smaller than normal tetraploid fruits and seeds. A total of29progenies (27from lemon×'Chandler' pummelo,2from lemon×trifoliate orange) were obtained.Cytological analysis indicated that all the29hybrids were triploid (2n=3x=27). Two progenies from tetraploid lemon×trifoliate orange were considered to be hybrids by morphology identification and number of chromosomes.25triploid from tetraploid lemon× 'Chandler'pummelo were hybrids by EST-SSR verification. Genetic analysis were carried out on25triploid from tetraploid lemon×'Chandler'pummelo and the parents by13pairs EST-SSR primers. The13primers generated a total of87fragments,and82(94.03%) were polymorphic, some progenies had non-parent markers and some markers were absent in progenies, UPGMA cluster analysis showed that27plants could be grouped intotwo distinct families:25triploid hybrids were grouped with female parent together;'Chandler'pummelo was grouped alone.Which showed that the hybrids included different genetic information from female and male parent. EST-SSR markers can reflect plant genetic material contained in the amount of the hybrid, which can Provide a basis for ploidy confirmed.
     8. Amplifications and genetic analysis were carried out on four tetraploids of Shatianyou pomelo [Citrus grandis(L.)Osb.'Shatianyou'].84bands were amplified from Shatianyou pomelo with11primers, of which46(54.8%) were polymorphic. UPGMA cluster analysis showed that four tetraploids could be grouped into three distinct families based on similarity of0.825, and three homologous tetraploids were clustered in different locations, which showed that different degree of genome variation was detected in tetraploids compared with the diploid. And the tetraploids can provid important genetic resources for breeding programs of citrus.
引文
[1]邓秀新.世界柑橘品种改良的进展[J].园艺学报,2005,32(6):1140-1146.
    [2]张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展[J].果树学报,2006,23(6):871-876.
    [3]Calabrese F, Michele A, Barone F. New seedless lemon varieties for sicily[A]. Proceedings of the Global Citrus Germplasm Network Meeting,2002,129.
    [4]Castillo I P, Lidon M G, Banos M S. Fino 95:An extra-early selection of lemon[A]. Proceedings of the Global Citrus Germplasm Network Meeting,2002,131.
    [5]黄新忠,陆修闽,卢新坤,等.早熟优质蜜柚新品种-红肉蜜柚的选育[J].果树学报,2007,24(1):123-124.
    [6]伊华林,邓秀新,夏仁学,等.脐橙新品种‘红肉脐橙’.园艺学报,2003,30(1):115.
    [7]叶白行,曾泰,许建楷,等.无子沙糖橘(十月橘)的选育[J].果树学报,2006,23(1):149-150.
    [8]翁法令.谈柑橘杂交育种[J].浙江柑橘,2005,22(3):]0-11.
    [9]黄桂香,徐炯志,邓英毅,等.优质柚育种研究初报[J].中国南方果树,2003,32(2):4-5.
    [10]Esen A and R. K Soost. Unexpected triploids in Citrus, their origin, identification and possible use[J]. J.Hered.,1971,62:329-333.
    [11]Esen A., R. K. Soost and G. Geraci. Genetic evidence for the origin of diploid megagametophytes in Citrus[J]. J. Hered,1979,70:5-8.
    [12]邓秀新,章文才.柑桔染色体倍性操纵与育种.果树科学,1993,10(增刊):23-28.
    [13]吴乃超,赵小龙.柑橘育种新技术综述[J].广西园艺,2007,18(3):50-52.
    [14]Jaskani M J, Khan I A, Khan M M. Fruit set, seed development and embryo germination in interploid crosses of citrus[J]. Sci Hortic,2005,107 (1):51-57.
    [15]Junko Kaneyoshi,Tetuji Kanoul,Yuuji Kuwata, et al.Breeding of Triploid Citrus Cultivars I.Production of Triploids from Satsuma Mandarin (Citrus unshiu Marc.) ×Tetraploid Ponkan Mandarin(Citrus reticulata Blanco) Crosses[J]. J. Japan. Soc. Hort. Sci,1997,66 (1):9-14.
    [16]Starrartino A. Use of triploids for production of seedless cultivars in citrus improvement programs. In:Proc. Int. Soc. Citriculture,1992,1:117-21.
    [17]Russo G, Reupero S, Recupero G R. The development of citrus triploid hybrids. In:Albrigo L G eds. Proc. Inter. Soc. of Citriculture 9 Congress. Orlando.2003,1:198-199.
    [18]Soost R K, Cam eron J W. "Oroblanco"a triploid pummelo-grapefruit hybrid[J]. HortSci,1980, 15 (5):667-669.
    [19]Soost R K, Cam eron J W.'Melogold'a triploid pummelo-grapefruit hybrid[J]. HortSci,1985, 20 (6):1134-1135.
    [20]汪伟,赵卫国,等.DNA分子标记在植物上的应用[J].安徽农学通报,2006,12(7):39-41.
    [21]张阵阵,郭美丽,张军东.分子标记技术及其在药用植物[J].药学实践杂志.2007,25(3).137-140.
    [22]张学宁,郭保林,张开春.果树分子标记研究进展[J].河北农业大学学报,2003,26:75-78.
    [23]Ganal M.W., Young N.D., Tanksley S.D. Pulsed field geleleetrophoresis and Physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato[J]. Mol.Gen.Genet, 1989,215:395-400.
    [24]鲍露,张东,滕元文,陈昆松.DNA标记技术在梨属植物研究中的应用[J].果树学报,2006,23:270-275.
    [25]Sambrook J, Firtsch E F, Maniatis T. Molecular Cloning:A Manual[M].Glod Spirg Harbor Laboratory Press,2000.
    [26]Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of rice genome based on an interspecific backcross population[J]. Genetics,1994,138:1251-1274.
    [27]Kurate N, Nagamura Y, Yamamoto K et al. A 300 kilobase interval genetic map of rice including 833 espressed sequences[J]. Nature Genet,1994,8:365-372.
    [28]Zabeau M,Vos P.Selective restriction fragment amplification, a general method for DNA fingerprinting[P].European Patent Application 94202629.7(Publication No.05348Al).Paris, European Patent Office.1993.
    [29]Vos P, Hogers R, BleederMet al. AFLP, a newtechnique for DNA fingerprinting[J]. Nucleic Acid Researchc.1995,23(21):4407-4414.
    [30]Becker J,Vos P, Zabeau M, Combined mapping of AFLP and RFLP markers in barley[J]. Mol Gen Genet.1995,249:65-73.
    [31]Thomas C M, Vos P, Zabeau M, et al. Identification of amplified restriction fragment polymorphism(AFLP) markers tightly linked to the tomato Cf-9 gene forrestrition to Cladospoium fulyum[J]. The Plant Journal.1995,8(5):785-794.
    [32]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [33]Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility-restoration for cytoplasmic male sterility inGossypium hirsutum L[J].Theor Appl Genet.2003,106:461-469.
    [34]王泽立,王鲁昕,戴景瑞,等.运用近等基因系(NIL), AFLP, RFLP和SCAR标记对玉米S组育性恢复基因(Rf3)的研究[J].遗传学报,2001.28(5):465-470.
    [35]Li G, Quiros C F. Sequence-related amplified polymorphism(SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging inBrassica[J]. Theo Appl Genet,2001,103:455-461.
    [36]Rohde W. Inverse sequence-tagged repeat (ISTR) analysis, a novel and universal PCR-based technique for genome analysis in the plant and animal kingdom[J]. Journal ofGenetic and Breeding,1996,50:249-261.
    [37]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001,103:455-461.
    [38]Hu Jinguo, Vick B A. Target region amplification polymorphism:a novel marker technique for plant genotyping[J]. Plant Molecular Biology Reporter,2003,21:289-294.
    [39]Waugh R., McLean K., Flavell A.J., et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms(S-SAP) [J]. Molecular and General Genetics,1997,253(6):687-694.
    [40]陆才瑞,喻树迅,于霁雯,等.功能型分子标记(ISAP)的开发及评价[J].遗传,2008,30(9):1207-1216.
    [41]Orita M, Iwahana H, Kanazawa H, etal. Detection of polymorphisms ofhuman DNA by gel electrophoresis as single-strand conformation polymorphisms [J]. Proc.Natl.Acad.Sci.USA, 1989,86(8):2766-2770.
    [42]Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers(ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function[J]. Genome,1999,42(3):387-402.
    [43]Collard BCY, Mackill DJ. Conserved DNA-derived polymorphism(CDDP):a simple and novel method for generating DNA markers in plants[J]. Plant Mol Biol Rep,2009,27:558-562.
    [44]Pang M X, Percy R G, Hughs E D, et al. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA(PAAP-RAPD)in cotton[J]. Euphytica,2009,167: 281-291.
    [45]Kalendar R, Grob T, Regina M, et al. IRAP and REMAP:two new retrotransposon-based DNA finger-printing techniques[J]. Theor Appl Genet,1999,98:704-711.
    [46]Wang Q H, Zhang B L, Lu Q S. Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhi[J]. Plant Molecular Biology Reporter,2009,27(4):139-143.
    [47]Jaccoud D, Peng K, Feinstein D, et al. Diversity Arrays:A solid state technology for sequence information independent genotyping[J]. Nucleic Acids Res,2001,29(4):e25.
    [48]Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominantecotype-specific PCR based markers[J]. The Plant Journal,1993,4(2):403-410.
    [49]Wang D G, Fan J B, Siao C J, et al. Large-scale identification mapping and genotyping of single nuclotide polymorphisms in the human genome. Science,1998,280:1077-1082.
    [50]Zabeau M, Vos P. Selective restriction fragment amplification:general method for DNA fingerprinting[P]. European Patent Application 94202629.7. Paris:European Palent Office,1993
    [51]Vos P.Hogers R, Bleeder M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Reaearch,1995,23(21):4407-4414.
    [52]李传友AFLP分析中多态性扩增产物的回收、克隆及鉴定[J].遗传,1998,20(4):1-4.
    [53]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:19-22.
    [54]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29,4:1-10.
    [55]张桂霞,陈静,王文江,等AFLP技术及其在果树上的应用研究进展[J].河北农业大学学报.2003,26(增刊):60-63.
    [56]尹佟明,黄敏仁AFLP分子标记及其在植物育种上的应用[J].生物工程进展,1997(17):16-17.
    [57]Ajmone M P, Castigliono P, and Fusari F, et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers[J]. Theor Appl Genet,1998,96: 219-227.
    [58]Powell W, Morgante M, and Mndre C. The comparison of RFLP,RAPD,AFLP and SSR (microsatellite) markers for germplasm analysis[J]. Mol Breed,1996,2:225-238.
    [59]Hill M, Witsebboer H, and Zabeau M, et al. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactucaspp[J]. Theor Appl Genet,1996,93(4):1202-1210.
    [60]祝军,王涛,赵玉军,等.苹果AFLP分析体系的建立[J].中国农业大学学报,2000,5(3):63-67.
    [61]祝军,周爱琴,李光晨,等.苹果M系矮化砧木AFLP指纹图谱的构建与分析[J].农业生物技术学报,2000,8(1):59-62.
    [62]祝军,王涛,赵玉军,等.应用AFLP分子标记鉴定苹果品种[J].园艺学报,2000,27(2):102-106.
    [63]王斌.水稻的AFLP研究初报-反应条件的优化及对温核不育等位突变系的分析[J].植物学报,1999,41(5):502-507.
    [64]王峥峰,王伯荪,李铭光,等.锥栗种群在鼎湖山三个群落中的遗传分化研究[J].生态学报,2001,21(8):1308-1313.
    [65]王彩虹,干倩.戴洪义,等.与苹果柱型基因(Co)相关的AFLP标记片段的克隆[J].果树学报,2001,18(4):193-195.
    [66]王彩虹,王倩,戴洪义.等.与苹果柱型基因(Co)紧密连锁的分子标记的筛选[J].农业生物技术学报,2001,9(2):187-190.
    [67]Tautz D. Hypervariability of simple sequence as a general source of polymorphic DNA markers[J]. Nucleic Acids Research,1989,17:6463-6471.
    [68]Wang Z, Weber J L, Zhong G, et al.Survey of plant short tandem DNA repeats[J].Theor Appl Genet,1994,88:1-6.
    [69]Lilt M, Luyt J A. A hypervariable nfierosatellile revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am Hum Genet,1989,44:397-401.
    [70]Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation[J]. Nature,1986(322):652-656.
    [71]张学勇,李大勇.小麦及其近亲基因组中的DNA重复序列研究进展[J].中国农业科学,2000,33(5):14-24.
    [72]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism(SSLP)in rice(Oryza sativa L.)[J]. MolGen Genet, 1996,252(5):597-607.
    [73]Gupta P K, Varshney R K. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat[J]. Euphytica,2000,113:163-185.
    [74]Pejic I, Aimone-Marsan P, Morgante M, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs,SSRs and AFLP[J]. Theor Appl Genet,1998,97: 1248-1255.
    [75]Delourme R, Falentin C, Huteau V, et al. Genetic control of oil content in oilseed rape(Brassica napus L.)[J]. Theor Appl Genet,2006,113:1331-1345.
    [76]Padmaja K L, Arumugam N, Gupta V, et al. Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea[J]. Thero Appl Genet,2005,111:8-14.
    [77]Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traitsrelated to plant development and grain field[J]. Theor Appl Genet,2006,113:33-38.
    [78]Joobeur T, Pexiam N, Vicente M C, et al. Development of a second generation linkage map for almond using RAPD and SSR markers[J]. Genome,2000,43:649-655.
    [79]Hormaza J I. Molecular characterization and similarity relationships among apricot(Prunns armeniaca L.)genotypes using simple sequence repeats[J].Theor Appl Genet 2002,104: 321-328.
    [80]YU Y G, SAGHAI M M A, BUSS G R. Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers[J].Theor Appl Genet,1996,92:64-69.
    [81]李明芳,郑学勤.荔枝SSR标记的研究[J].遗传,2004,26(6):911-916.
    [82]姚庆荣,赵长增,王文泉.荔枝基因组DNA提取与SSR反应条件优化[J].甘肃农业大学学报,2004,39(2):131-135.
    [83]Morgante M., Hanafey M and Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetics,2002,30(2):194-200.
    [84]骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展[J].生物化学与生物物理进展,2001,28(4):494-497.
    [85]Hatey F, Tosser K.G, Clouscard-Martinato C, et al. Expressed sequenced tags for genes:a review[J]. Genet.Sel.Evol,1998,30(5):521-541.
    [86]Varshney R.K.,Graner A.,and Sorrells M.E. Genie microsatellite markers in plants:features and applications[J].Trends in Biotechnology,2005,23:48-55.
    [87]姜春芽,廖娇,徐小彪,等.植物EST-SSR技术及其应用[J].分子植物育种,2009,7(1):125-129.
    [88]Wellington Martins, Daniel de Sousa, Karina Proite, et al. New softwares for automated microsatellite marker developmentJ]. Nucleic Acids Research,2006,34(4).
    [89]Kantety R.V., La-Rota M., Matthews D.E., et al. Data mining for simple sequence repeats in expressed sequence tags from barley,maize,rice,sorghum and wheat[J]. Plant Mol Biol,2002, 48(5-6):50-51.
    [90]陈吉宝,赵丽英,褚学英,等.植物中单核苷酸多态性的分布及其应用[J].安徽农业科学,2009,37(31):15153-15154,15166.
    [91]杜春芳,刘惠民,李润植,等.单核苷酸多态性在作物遗传及改良中的应用[J].遗传,2003,25(6):735-739.
    [92]Germano J, Klein A S. Species specific muclear and chloroplast single nucleotide polymorphism to distinguish Picea glauca, P.mariana and P.rubens[J]. Theor Appl Genet,1999, 99:37-49.
    [93]Kota R, Varsheny R K, Thiel T, et al. Generation and comparison of EST-derived SSRs and SNPs in barley(Hordemu uulgare L.)[J]. Hereditas,2001,135:145-151.
    [94]Khlestkina E K, Salina E A. SNP markers:methods of analysis, ways of development and comparison on an example of common wheat[J]. Russian Journal of Genetics,2006,42(6): 585-594.
    [95]Collard B.C.Y., and Mackill D.J. Start codon targeted(SCoT) polymorphism:a simple,novel DNA marker technique for generating gene-targeted markers in plants[J]. Plant Mol.Biol.Rep., 2009,27(1):,86-93.
    [96]Williams J.G.K., Kubelik A.R., Livak K.J., et al. DNA polymorphism's amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res,1990,18(22):6531-6535.
    [97]Zietkiewicz E., Rafalski A and Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J]. Genomics,1994,20(2): 176-183.
    [98]Gupta M., Chyi Y.S., Romero-Severson J, et al. Amplification of DNA markers from evolutionarily diverse genomes using single primers of SSRs[J]. Theor. Appl. Genet.,1994, 89(7-8):998-1006.
    [99]Joshi C.P., Zhou H., Huang X., et al. Context sequences of translation initiation codon in plants[J]. Plant Mol Biol,1997,35(6):993-1001.
    [100]Hawkins J.D. A survey on intron and exon lengths[J]. Nucleic Acids Res.1998,16(21): 9893-9905.
    [101]Sawant S.V., Singh P.K., Gupta S.K., et al. Conserved nucleotide sequences in highly expressed genes in plants[J]. J. Genet.,1999,78(2):123-131.
    [102]熊发前,唐荣华,陈忠良,等.目标起始密码子多态性(SCoT):一种基于翻译起始位点的目的基因标记新技术[J].分子植物育种,2009,7(3):635-638.
    [103]Luo C, He X H, Chen H, et al. Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers[J]. Biochemical Systematics and Ecology, doi: 10.1016/j.bse.2010.11.004.
    [104]Xiong F Q, Zhong R C, Han Z Q, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes[J]. Mol Biol Rep,2010, DOI 10.1007/s11033-010-0459-6.
    [105]熊发前,蒋菁,钟瑞春,等.标起始密码子多态性(SCoT)分子标记技术在花生属中的应用[J].作物学报,2010,36(12):2055-2061.
    [106]陈虎,何新华,罗聪,等.龙眼SCoT-PCR反应体系的优化[J].基因组学与应用生物学,2009,28(5):970-974.
    [107]陈虎,何新华,罗聪,等.龙眼24个品种的SCoT遗传多样性分析[J].园艺学报2010,37(10):1651-1654.
    [108]陈香玲,李杨瑞,杨丽涛,等.低温胁迫下甘蔗抗寒相关基因的cDNA-SCOT差异显示[J].生物技术通报,2010,8:120-124.
    [109]吴建明,李杨瑞,王爱勤,等.赤霉素诱导甘蔗节间伸长基因的cDNA-SCoT差异表达分析[J].作物学报,2010,36(11):1883-1890.
    [110]蒋巧巧,龙桂友,李武文,等SCoT结合克隆测序鉴别湖南甜橙变异类型[J].中国农学通报,2011,27(6):148-154.
    [111]张君玉,郭大龙,龚莹,等.葡萄目标起始密码子多态性反应体系的优化[J].果树学报,2011,28(2):209-214.
    [112]Dong Y C. Biodiversity and method for detection of crop genetic diversity[J].Crop Genetic Resources,1995,3:1-5.
    [113]Yamamoto T., Shimada T., Kotobuki K., et al. Genetic characterization of Asian chestnut varieties assessed by AFLP[J]. Breed. Sci,1998,48:359-363.
    [114]Shinya Kanzaki, KeizoYonemori,Akihiko Sato, et al. Analysisofthe genetic relationships among Pollination constant and Non-astrigent (PCNA) cultivars of Persimmon(Diospyros kaki Thunb.)from Japan and China using Amplified Fragment Length Polymorphism(AFLP)[J]. J. Japan. Soc. Hort.Sci,2000,69(6):665-670.
    [115]柯冠武.我国龙眼科技工作的进展与成就[J].中国果树,1989,4:6-8.
    [116]邱武陵,章恢志.中国果树志·龙眼枇杷卷[M].北京:中国林业出版社,1996.1-18.
    [117]陈熹,柯冠武.应用过氧化物同工酶分析对福建龙眼品种的分类初探[J].中国果树,1989,1:18-21.
    [118]刘舒芹,沈德绪,林伯年.龙眼品种过氧化物酶与多酚氧化酶同工酶分析及其亲缘关系[J].园艺学报,1988,15(4):217-221.
    [119]林同香,陈振光,戴思兰,等RAPD标记在龙眼品种分类中的应用[J].植物学报,1998,40(12):1159-1165.
    [120]陈有志,刘成明.龙眼品种的RAPD鉴别及分析[J].中国果树,2001,4:28-29.
    [121]易干军,谭卫萍,霍合强,等.龙眼品种(系)遗传多样性及亲缘关系的AFLP分析[J].园艺学报,2003,30(3):272-27.
    [122]丁晓东,吕柳新,陈晓静,等.利用RAPD标记研究荔枝品种的亲缘关系[J].热带亚热带植物学报,2000,8(1):49-54.
    [123]Omura M, Hidaka T, Nesumi H, et al. PCR markers for citrus identification and mapping techniques on gene diagnosis and breeding in fruit trees[J]. Japan:FTRs,1993:66-73.
    [124]Deng Z N, Gentile A N, Nicolosi E, et al. Identification of in vivolemon mutants by RAPD markers[J]. Hort.Sci.,1995,70:117-125.
    [125]Luro F, et al. DNA amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in citrus[J]. HortSci,1995, (30):1063-1067.
    [126]刘勇,吴波,刘德春,等.江西柑橘地方品种资源及野生近缘种SSR分子标记[J].江西农业大学学报,2005,27(4):486-490.
    [127]刘勇,孙中海,刘德春,等.柚类种质资源AFLP与SSR遗传多样性分析[J].中国农业科学,2005,38(11):2308-2315.
    [128]Bower J E, Meredith C P. Genetic similarities among wine grape cultivars revealed by restriction fragment length polymorphism (RFLP) analysis[J]. Amer.Soc.Hort.Sci.,1996, 12(14):620-624.
    [129]Warburton M L, Bliss F A. Genetic diversity in peach(Prunus persica L. Batch) revealed by randomly amplified polymorphic DNA (RAPD) markers and compared to onbreeding confficients[J]. J. Amer.Soc.Hort.Sci,1996,121(6):1012-1019.
    [130]张开春,等RAPD技术检测平邑甜茶遗传一致性的有效方法[J].农业生物技术学报,1997,5(2):201-202.
    [131]R. Margis, D. Felix, J.F. Caldas, et al. Genetic differentiation among three neighboring Brazil-cherry(Eugenia uniflora L.) populations within the Brazilian Atlantic rain forest [J]. Biodiversity and Conservation,2002,11(1):149-163.
    [132]Pan X F, Meng X X, Cao G L, et al. Application of RAPD-PCR technique for identification of varieties in loquat[J]. Journal of Fruit Science,2002,19(2):136-138(in Chinese).
    [133]Pan Z, Kawabata S, Sugiyama N, et al. Genetic diversity of cultivated resources of pear in north China[J]. Acta Hort.,2002:187-194.
    [134]谢宗周,邓秀新,陈腾土,等.“桂橙一号”的遗传鉴定[J].南方园艺,2010,21(3):3-6.
    [135]鲁凤娟,张玉星,杜洁AFLP用于梨芽变鉴定的可行性分析[J].江苏农业科学,2009,4:66-67.
    [136]曾柏全,甘霖,熊兴耀,等.冰糖橙优良芽变的AFLP分析[J].江西农业大学学报,2006,28(2):222-225.
    [137]罗安才,李纯凡,黄仁湖,等.奉节脐橙芽变株系的AFLP分析[J].中国农学通报,2003,19(6):20-24.
    [138]张小军,徐凌飞,吴中营.梨极早熟芽变品种‘六月酥’的AFLP分析[J].西北农林科技大学学报(自然科学版),2009,37(12):139-145.
    [139]廖振坤,张秋明,刘卫国,等.利用AFLP鉴定柑橘变异[J].果树学报,2006,23(3):486-488.
    [140]彭志军,李金强,蔡永强,等.纽荷尔脐橙及其果形变异体的AFLP分析[J].西南农业学报,2010,23(5):1636-1639.
    [141]彭志军,陈守一,蔡永强,等吧.朱红橘及其突变体牛肉红金橘的AFLP分析[J].西南农业学报,2011,24(1):225-228.
    [142]Deng Z N,gentile A,nicolosi E, et al.Identification of in vivo and in vitro lemon mutants by RAPD markers[J]. Journal of Horticultural Science,1995,70(1):117-125.
    [143]Striem M J, Ben-hayyim G, Spiegel-roy P. Development molecular genetic markers for grape breeding, using polymerase chain reaction procedures[J]. Vitis,1994,33:53-54.
    [144]李俊峰,向长海,邓秀新.柑橘天然杂种秭归橘橙来源探究.果树学报,2009,26(4)425-430.
    [145]蒋巧巧,龙桂友,李武文,等SCoT结合克隆测序鉴别湖南甜橙变异类型[J].中国农学 通报,2011,27(6):148-154.
    [146]吴少华,张大生,等RAPD技术在果树上的应用[J].亚热带植物科学,2003,31:1-6
    [147]章文才.现代果树育种进展.浙江柑橘[J].1987,2:1-10.
    [148]陈东明.遗传标记及其在园艺植物研究中的应用[J].农业生物技术科学,2005,21(7):66-69.
    [149]李玉晖,陈学森,等.果树远缘杂交育种研究进展[J].山东农业大学学报(自然科学版),2003,34(1):139-143.
    [150]翻新法RAPD技术在果树遗传育种研究中的应用[J].生物学杂志,2002,19(2):26-29.
    [151]Sawazaki H E. Identification of parents and hybrids amongVitis viniferaand Vitis rotundifoliausing isoenzyme polymorphism and RAPD marker[J]. Bragantia,1996,55(2): 221-230.
    [152]史永忠,郭文武,邓秀新,等.柑橘RAPD技术体系建立与体细胞杂种鉴定[J].园艺学报,1998,25(2):105-110.
    [153]萧顺元,Frederick G, Gmitter J R,等RAPD分析---鉴定柑橘体细胞杂种的快速方法[J].遗传,1995,17(4):40-42.
    []54]刘继红,邓秀新.粗柠檬与哈姆林甜橙二倍体细胞杂种胞质基因组初步分析[J].植物学报,2000,42(1):102-104.
    [155]鹿金颖,毛永民,申莲英,等.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究[J].园艺学报,2005,32(4):680-683.
    [156]唐建民.用RAPD和SSR分子标记鉴定小金海棠Fl代杂种实生苗研究[D].西南大学,2006.
    [157]何祯祥,施季森,邱进清,等.林木遗传图谱构建的技术与策略[J].浙江林学院学报,1998,15(2):151-157.
    [158]卢江.基因定位及其在园艺作物遗传育种中的应用[J].园艺学年评,1995,(1):165-179.
    [159]万怡震,王跃进,张今今,等.多年生果树植物分子遗传作图[J].园艺学报,2002,29(增刊):629-634.
    [160]Weeden N F, Hemmat M, Lawon DW, et al. Development and application of marker linkage map in woody fruit crops[J]. Eduphutica,1994,77:71-75.
    [161]Hemmat M, Weeden NF, Manganaris A C, et al. Molecular marker linkage map for apple[J]. The Journal of Heredity,1994,85(1):4-11.
    [162]阮成江,何祯祥,钦佩.中国植物遗传连锁图谱构建研究进展[J].西北植物学报,2002,22(6):1526-1536.
    [163]周亦华,陈延华.分子标记在植物学中的应用及前景[J].武汉植物学研究,1999,17(1):75-86.
    [164]谢志兵.DNA分子标记在果树上的应用[J].孝感学院学报,2003,23(6):60-64.
    [165]King G J. Progress of apple genetic mapping in Europe[J]. HortScience,1996,3 (7): 1108-1116
    [166]Kurata N, Nagamura Y, Yamamoto K, et al. Single tree genetic map of rice including 883 expressed sequence[J]. Nature Genetics,1994,8:365-372.
    [167]Tulsieram L K, Glaubitz J C, Kiss G, et al. Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes[J]. Bio Techology,1992,10:689-692.
    [168]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179.
    [169]张开春,尹淑萍,杨英军,等.分子标记在果树上的应用[J].果树科学,1999,16(32:10-218.
    [170]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1995,90:1-10.
    [171]Martinez-gomez P, Sanchez-perez R, Rubio M, et al. Application of recent biotechnologies to prunus tree crop genetic improvement[J]. Cien Inv Agr,2005,32(2):73-96.
    [172]Zietkiewicz E, Rafalske A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplifyication[J].Genome,1994,20:178-183.
    [173]Scorza R. Gene transfer for the genetic improvement of perennial fruit and nut crops[J]. HortScience,1991,26 (8):1033-1035.
    [174]Allen A F. Usefulness of plant genome mapping to plant breeding. Plant Genome Analysis[J], 1994,11-18.
    [175]Baid WV, Ballard R E, Abboott A G Progress inPrunnusmapping and application of molecular markers to germplasm improvement[J]. HortScience,1996,31 (7):1099-1106.
    [176]Ragot M, Hoistington D A. Molecularmarkersfor plant breeding:Comparisonsof RFLP and RAPD genotyping costs[J]. Theor. Appl. Genet,1993,86:975-984.
    [177]Tanksley S D. Molecular markers in plant breeding[J]. Plant Mol. Bio. Rep,1983,1:3-8.
    [178]章秋平,王力荣,李疆,等.核果类果树遗传连锁图谱的研究进展[J].果树学报,2009,26(4):532-538.
    [179]Dirlewanger, Bodo C. Molecular genetic linkage map of peach [J]. Euphytica,1994,77: 101-103.
    [180]Dirlewanger E, Pronier V, Parvery C. et al. Genetic linkage map of peach [Prunus persica(L.) Batsch] using morphological and molecular markers [J]. Theor Appl Genet,1998,97:888-895.
    [181]Dirlewanger E, Graziano E, Joobeur T. Comparative mapping and marker-assisted selection in Rosaceae fruit crops[J].Proc Natl Acad Sci USA,2004,101:9891-9896.
    [182]Dirlewanger E, Cosson P, Boudehri K, et al. Development of a second-generation genetic linkage map for peach[Prunus persica(L.) Batsch] and characterization of morphological traits affecting flower and fruit [J]. Tree Genetics &Genomes,2006,3:1-13.
    [183]吴俊,束怀瑞,张开春,等.桃分子连锁图的构建与分析[J].园艺学报,2004,31(5):593-597.
    [184]Blenda A V, Verde L, Georgil L, et al. Construction of a genetic linkage map and iden tification of molecular markers in peach roots tocks for response to peach tree short life syndrome [J]. Tree Genetics& Genomes,2007,3:341-350.
    [185]乔飞,王力荣,范崇辉,等.利用AFLP和RAPD标记构建桃的遗传连锁图谱[J].果树学报,2006,23(5):766-769.
    [186]宋健,韩明玉,赵彩平,等.桃‘秦光2号’ב曙光’'F1代SSR遗传连锁图谱的构建[J].西北植物学报,2008,28(5):0895-0900.
    [187]高妍,韩明玉,赵彩平,等.桃分子连锁图谱的构建[J].果树学报,2008,25(4):478-484.
    [188]曹珂,王力荣,朱更瑞,等.桃遗传图谱的构建及两个花性状的分子标记[J].园艺学报,2009,36(2):179-186.
    [189]M. A. Hurtado, C. Romero, S. Vilanova, et al. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) and mapping of PPV(sharka) resistance[J]. Theor Appl Genet,2002, 105:182-191
    [190]S. Vilanova, C. Romero, A. G. Abbott, et al. An apricot(Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits[J].Theor Appl Genet,2003,107:239-247.
    [191]P. Lambert, L.S. Hagen, P. Arus et al. Genetic linkage maps of two apricot cultivars(Prunus armeniaca L.) compared with the almond Texas peach Early gold reference map for Prunus[J].Theor Appl Genet,2004,108:1120-1130.
    [192]L. Dondini, O. Lain, F. Geuna, et al. Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps[J]. Tree Genetics&Genomes,2007,3: 239-249.
    [193]D. A. Lalli, A. G. Abbott, T. N. Zhebentyayeva, et al. A genetic linkage map for an apricot(Prunus armeniaca L.) BCl population mapping plumpox virus resistance[J].Tree Genetics&Genomes,2008,4:481-493.
    [194]J. M. Soriano, E. M. Vera-Ruiz, S. Vilanova, et al. Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps[J]. Tree Genetics& Genomes,2008,4:391-402.
    [195]Maliepaard C, Alstonf H, Vanarkel G, et al. Aligning male and female linkage maps of apple (Maimpumila Mill.) using multi-allelic markers[J].Theor Appl Genet,1998,97:60-73.
    [196]R. Liebhard, B. Koller, L. Gianfranceschi et al. Creating a saturated reference map for the apple (Malus×domestica Borkh.)genome[J]. Theor Appl Genet,2003,10(6):1497-1508.
    [197]K Kenis and J Keulemans. Genetic linkage maps of two apple cultivars(Malus×domestica Borkh.)based on AFLP and microsatellite markers[J]. Molecular Breeding,2005,15(2):205-219.
    [198]Igarashi M, Abe Y, Hatsuyama Y, et al. Linkage maps of the apple(Malusx domestica Borkh.) CVS'Rails Janet'and'Delicious'include newly developed EST markers[J]. Mol Breeding, 2008,22:95-118.
    [199]司鹏.苹果分子遗传图谱构建及其部分性状SRAP分析[D].郑州:中国农业科学院郑州果树研究所,2010.
    [200]T. Yamamoto, T. Kimura, M. Shoda, et al. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears [J]. Theor Appl Genet,2002,106(1): 9-18.
    [201]Dondini L, Pier.antoni L, Gaiotti F, et al. Identifying QTLs for fire-blight resistance via a European pear(Pyrus communis L.)genetic linkage map[J]. Molecular Breeding,2004,14: 407-418.
    [202]L. Pierantoni, L. Dondini, K.-H. Cho, et al. Pear scab resistance QTLs via a European pear(Pyrus communis) linkage map[J].Tree Genetics & Genomes,2007,3:311-317.
    [203]孙文英,张玉星,张新忠,等.梨分子遗传图谱构建及生长性状的QTL分析[J].植物遗传资源学,2009,10(2):182-189.
    [204]W Y Sun, Y X Zhang, W Q Le et al. Construction of a genetic linkage map and QTL analysis for some leaf traits in pear(Pyrus L.)[J]. Frontiers of Agriculture in China,2009,3(1):67-74.
    [205]韩明丽,刘永立,郑小艳,等.梨遗传连锁图谱的构建及部分果实性状QTL的定位[J].果树学报,2010,27(4):496-503.
    [206]张瑞萍,吴俊,李秀根,等.梨AFLP标记遗传图谱构建及果实相关性状的QTL定位[J].园艺学报,2011,38(10):1991-1998.
    [207]陈桂信,潘东明,吕柳新,赖钟雄,王凤华.DNA分子标记技术及其在热带亚热带果树上的应用[J].江西农业大学学报(自然科学版),2002,24(2):176-182.
    [208]Faure S, Noyer J L, Horry P. A molecular marker-based linkage map of diploid bananas (Musa acuminata)[J]. Theor. Appl. Genet,1993,87(4):517-526.
    [209]Sondur S N, Manshardt R M, Stiles J I. A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers[J]. Theor. Appl. Genet,1996,93:547-553.
    [210]房经贵,刘大钧,章镇,等.两个芒果品种的AFLP指纹图谱[J].南京农业大学学报,1999,22(2):25-27.
    [211]房经贵,章镇,马正强,等AFLP标记在两个芒果品种间杂交F1代的多态性及分离方 式[J].中国农业科学,2000,33(3):19-24.
    [212]房经贵,刘大钧,马正强.利用双杂合位点标记资料构建芒果遗传图谱[J].分子植物育种,2003,1(3):313-319.
    [213]郭印山,赵玉辉,刘朝吉,等.利用多种分子标记构建龙眼高密度分子遗传图谱[J].园艺学报,2009,36(5):655-662.
    [214]赵玉辉,郭印山,胡又厘,等.应用SRAP及AFLP标记构建荔枝高密度复合遗传图谱[J].园艺学报,2010,37(5):697-704.
    [215]A. D. Gisbert, J. Marti'nez-Calvo, G. Lla'cer, et al. Development of two loquat [Eriobotrya japonica (Thunb.)Lindl.] linkage maps based on AFLPs and SSR markers from different Rosaceae species[J]. Mol Breeding,2009,23:523-538.
    [216]Torres AM, Mau-Lastovicka T, Williams T E, et al. Segregation distortion and linkage of citrus and Poncirus isozyme genes[J]. J Hered,1985,76:289-294.
    [217]Liou P C. A molecular study of the Citrus genome through analysis of restriction fragment length polymorphism and isozyme mapping[D]. University of Florida, Gainseville, USA, 1990.
    [218]Durham R E, Liou P C, Gmitter Jr F G, et al. Linkage of restriction fragment length polymorphisms and isozymes in Citrus[J]. Theor Appl Genet,1992,84:39-48.
    [219]Jarrell D C, Roose M L, Traugh S N, et al. A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross[J]. Theor Appl Genet,1992,84:49-56.
    [220]Cai Q, Guy CL, Moore GA. Extension of the genetic linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation responsive loci[J]. Theor Appl Genet,1994,89:606-614.
    [221]Kijas J M, Thomas M R, Fowler J C S, et al. Integration of trinucleotide microsatellites into a linkage map of Citrus[J]. Theoretical and Applied Genetics,1997,94:701-706.
    [222]Mestre P F, Asins M J, Pina J A, et al. Molecular markers flanking citrusresistance gene from Poncirus trifoliate(L.)Raf[J].Theor Appl Gener,1997,94:458-464.
    [223]Cristofani M, Machado M A, Grattapaglin D. Genetic linkage maps of Citrus sunki Hort.ex.Tan.and Poncirus trifoliata(L)Raf. and mapping of citrus tristeza virus resistance gene[J]. Euphytica,1999,109:25-32.
    [224]Deng Z, Huang S, Ling P, et al. Cloning and characterization of NBS-LRR class resistanee-gene candidate sequences in citrus[J]. Theor Appl Genel,2000,101:814-822.
    [225]Luro F, Laigret F, Lorieux M, et al. Citrus genome mapping with molecular markers:two maps obtained by segregation analysis of progeny of one intergeneric cross[J]. Proc Intl Soc Citricult,1996,2:862-866.
    [226]Garcia R, Asins M J, Forner J, et al. Genetic analysis of apomixes in Citrus and Poncirus by moleeular markers[J]. TheorAppl Genel,1999,99:511-518.
    [227]Ling P, Duncan L W, Deng Z, et al. Inheritance of citrus nematode resistance and its linkage with molecular markers[J]. TheorAppl Genet,2000,101:1010-1017.
    [228]Asins M J, Bernet G P, Ruiz C, et al. QTL analysis of citrus tristeza virus-citridia interaction[J]. Theor Appl Genel,2004,108:603-611.
    [229]Bernet G P, Margaix C, Jacas J, et al. Genetic analysis of citrus leafminer susceptibility[J], TheorAppl Genel,2005,110:1393-1400.
    [230]Sankar A Z, Moore G A. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map[J].Theor Appl Genel,2001,102:206-214.
    [231]G. P. Bernet, J. Fernandez-Ribacoba, E. A. Carbonell, M. J. Asins. Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasmutilization[J]. Mol Breeding,2009, DOI 10.1007/s 11032-009-9363-y.
    [232]Ruiz C, Asins M J..Comparison between Poncirus and citrus genetic linkage maps[J]. Theor Appl Genet,2003,106:826-836.
    [233]Osman Gulsen, Aydin Uzun, Ihsan Canan, et al. A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers[J]. Euphytica.2010, DOI 10.1007/s10681-010-0146-7.
    [234]Chen C, Bowman K D, Choi Y A, et al. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata[J].Tree Genetics&Genomes,2008,4:1-10.
    [235]de Simone M, Russo MP, Puelo G, et al. Construction of genetic maps for Citrus aurantium and C. latipes based on AFLP, RAPD and RFLP markers[J]. Fruits,1998,53:383-390.
    [236]Roose ML, Fang D, Cheng FS, et al. Mapping the citrus genome. In:Goren R, Goldschmidt EE(eds) Proc Intl Soc Hort Sci (ISHS) [J]. Leuven, Belgium, Acta Hort,2000,535:25-32.
    [237]Omura M, Ueda T, Kita M, et al. EST mapping of Citrus[J]. Proceedings of the International Society of Citriculture IX Congress. Orlando, FL, USA,2000, pp 71-74.
    [238]Roberto Pedroso de Oliveira, Carlos Ivan Aguilar-Vildoso, Mariangela Cristofan, et al. Skewed RAPD markers in linkage maps of Citrus[J]. Genetics and Molecular Biology,2004, 27(3):437-441.
    [239]鲁玉洋.利用SSR和RAPD技术构建柑桔分子遗传图谱[D].重庆:西南大学,2006.
    [240]谭美莲.柑橘有性杂种群体的获得及分子遗传连锁框架图的构建[D].武汉:华中农业大学,2007.
    [241]ManoSh Kumar BiswaS. Exploring SSR markers based on the BES and EST sequences for the Linkage map of Citrus[D],武汉:华中农业大学,2010.
    [242]陈德富,陈喜文.现代分子生物学实验原理与技术[M].北京:科学出版社,2006:98-101.
    [243]季伟,王立新,孙辉,等.小麦SSR分析体系的简化[J].农业生物技术学报,2007,15(5):907-908.
    [244]Sharma R, Mahla H R, Mohapatra T, et al, Isolating plant genomic DNA without liquid nitrogen[J]. Plant Molecular Biology Reporter,2003,21:43-50.
    [245]Cheng Y J, Guo W W, Yi H L, et al. An efficient protocol for genomic DNA extraction from Citrus species[J]. Plant Molecular Biology Reporter.2003,21:177-178.
    [246]曹玉芬,刘凤之,高源,等.梨栽培品种SSR鉴定及遗传多样性[J].园艺学报,2007,34(2):305-310.
    [247]王凤格,赵久然,郭景伦,等.一种改进的玉米SSR标记的PAGE/快速银染检测新方法[J].农业生物技术学报,2004,12(5):606-607.
    [248]Asheesh S, Aarti B, Richa B, et al. Bioinformatically mined simple sequence repeats in UniGene of Citrus sinensis[J]. Scientia Horticulturae,2007,113:353-361.
    [249]梁宏伟,王长忠,李忠,等.聚丙烯酰胺凝胶快速、高效银染方法的建立[J].遗传,2008,30(10):1379-1382.
    [250]熊光明,梁国鲁,阎勇,等.适用于(?)AFLP分析用的柑橘DNA提取方法[J].果树学报,2002,19(4):267-268.
    [251]桂腾琴,孙敏,乔爱民,等.正交设计优化果梅ISSR反应体系[J].果树学报,2009,26(1):108-112.
    [252]Andersen J R, Lubberstedt T. Functional markers in plant[J]. Trends Plant Sci,2003,8: 554-560.
    [253]杨景华,王士伟,刘训言,等.高等植物功能性分子标记的开发与利用[J].中国农业科学,2008,41:3429-3436.
    [254]Hong Q B, Gong G Z, Peng Z C, et al. A consensus map constructed with SSR and EST-SSR markers using progeny population from sweet orange xtangor[J]. Proc Intl Soc Cirri cult,2008, Wuhan, China (in press).
    [255]Barkley N A, Roose M L, Krueger R R, et al. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs) [J].Theoretical and Applied Genetics,2006,112(8):1519-1531.
    [256]Shanker A, Bhargava A, Bajpai R, et al. Bioinformatically mined simple sequence repeats in UniGene of Citrus sinensis[J]. Scientia Horticulturae,2007,113:353-361.
    [257]Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants:Features and applications[J]. Trends in Biotechnology,2005,23(1):48-55.
    [258]司鹏.苹果分子遗传图谱构建及其部分性状SRAP分析[D].郑州:中国农业科学院, 2010.
    [259]曹珂,王力荣,朱更瑞,等.桃遗传图谱的构建及两个花性状的分子标记[J].园艺学报,2009,36(2):179-186.
    [260]Maliepaard C, Alston F H, G van Arkel, et al. Aligning male and female linkage maps of apple (Malus pumila Mill.)using multi-allelic markers[J]. Theoretical and Applied Genetics,1998, 97,60-73.
    [261]Dirlewanger E, Bodo C. Molecular geneticmapping ofpeach[J]. Euphytica,1994,77:101-103.
    [262]Lu H, Romero-Severson J and Bernardo R. Chromosomal regions associated with segregation distortion in maize[J].Theoretical Applied Genetics,2002,105:622-628.
    [263]Charlesworth B. Driving genes and chromosomes[J]. Nature,1988,332:394-395.
    [264]宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响[J].农业生物技术学报,2006,14(2):286-292.
    [265]W Li, Z X Lin, X L Zhang. A novel segregation distortion in intraspecific population of asian cotton (Gossypium arboretum L.) detected by molecular markers[J]. Journal of Genetics and Genomics,2007,34(7):634-640.
    [266]I. Eujayl, M. Baum, W. Erskine, et al. The use of RAPD markers for lentil genetic mapping and the evaluation of distorted F2 segregation[J]. Euphytica,1997,96:405-412.
    [267]Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton,Gossypium hirsutumx Gossypium barbadense:Cnromosome organization and evolution in a disomic polyploid genome[J]. Genetics,1994,138:829-847.
    [268]卫泽,棉花分子图谱构建、偏分离位点的比较作图和棉花品种遗传多样性分析[D].泰安:山东农业大学,2010.
    [269]L Y Zhang, S Q Wang, H H Li, et al. Effects of missing marker and segregation distortion on QTL mapping in F2 populations[J]. Theor Appl Genet,2010,121:1071-1082.
    [270]石健泉,曾沛繁.柠檬的经济价值及栽培管理[J].广西热带农业,2006,1:8-9.
    [271]陈瑞阳,宋文芹,李秀兰.植物有丝分裂染色体制片的新方法[J].植物学报,1979,21(3):297-298.
    [272]张开春,李荣旗,毕晓颖,等RAPD技术鉴定无融合生殖型平邑甜茶的有性后代[J].农业生物技术学报,1997,5(4):392-396.
    [273]Tusa N, Fatta Del Bosco S, Nardi L,Lucretti S. Obtaining triploid plants by crossing Citrus Lemon cv.'Femminello'2n×4n Allotetraploid Somatic hybrids[J]. Proc Int Soc Citriculture, 1996,1:133-136.
    [274]Chandler J L, Viloria Z, Grosser J W. Acid citrus fruit cultivar improvement via interploid hybridization[J]. Proc Fla State Hort Soc,2000,113:124-126.
    [275]Viloria Z, Grosser J W. Acid citrus fruit improvement via interploid hybridization using allotetraploid somatic hybrid and autotetraploid breeding parents[J]. J Amer Soc Hort Sci, 2005,130 (3):392-402
    [276]Scarano M T, Tusa N, Abbate L, et al. Flow cytometry, SSR and modified AFLP markers for the identification of zygotic plantlets in backcross between'Femminelo'lemon cybrids (2n and 4n) and a diploid clone of'Femminelo'lemon(Citrus limon L. Burm. F.) tolerant to mal secco disease[J]. Plant Science,2003,164:1009-1017.
    [277]Antonio Carlos de Oliveira, Aristides Novae Garcia, Mariangela Cristofani&Marcos Antonio Machado. Identification of Citrus hybrids through the combination of leaf apex morphology and SSR markers[J]. Euphytica,2002,128:397-403.
    [278]张利达,唐克轩.植物EST-SSR标记开发及其应用[J].基因组学与应用生物学,2010,29(3):534-541.
    [279]杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371.
    [280]Chen Z J, Ni Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids[J]. BioEssays,2006,28:240-252.
    [281]洪柳,刘永忠,邓秀新.椪柑成熟种子胚培养获得四倍体植株[J].园艺学报,2005,32(4):688-690.
    [282]刘文革,王鸣,阎志红.西瓜二倍体及同源多倍体遗传差异的AFLP分析[J].果树学报,2004,21(1):46-49.
    [283]向素琼,何建,何波,等.沙田柚多倍体遗传差异的SSR分析[J].果树学报,2009,26(3):382-385.
    [284]王卓伟,余茂德,鲁成.桑树二倍体及人工诱导的同源四倍体遗传差异的AFLP分析[J].植物学通报,2002,19(2):194-200.
    [285]何波,汪卫星,向素琼,等.沙田柚多倍体基因组AFLP分析[J].西南农业学报,2009,22(3):746-749.
    [286]陆才瑞,喻树迅,于霁雯,等.功能型分子标记(ISAP)的开发及评价[J].遗传,2008,30:1207-1216.
    [287]高俊燕,周东果,岳建强,等.费米耐劳柠檬引种研究初报[J].西南农业学报,2008,21(3):760-763.
    [288]詹有青.强德勒红心柚引种表现及初结果树栽培技术[J].福建果树,2007,(2):57-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700