用户名: 密码: 验证码:
一种WDM信号色散补偿器的设计与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色散补偿技术是光纤通信领域中的关键技术之一。由于掺铒光纤放大器(EDFA)的出现,基本上解决了光纤损耗问题,从而使人们的注意力越来越多地从受损耗限制的光纤通信系统转向受色散限制也即受带宽限制的光纤通信系统的研究。同时,由于光纤通信中的波分复用(WDM)技术的强大竞争力和独特的优越性能以及电时分复用(TDM)技术的“瓶颈”局限性,使人们正越来越多地把兴趣从电时分复用技术转移到波分复用技术上,波分复用技术得到飞速的发展和广泛的应用。因此,如何解决波分复用系统中色散积累问题就成了光通信研究的一个焦点。
     针对色散的物理机理,人们研究并提出了各种色散补偿技术,如色散补偿光纤法、预啁啾法、色散支持传输法和啁啾光纤光栅法等,而对波分复用系统中各分波光信号分别进行有针对性的色散补偿的研究报导还很少。本文结合近几年来日益成熟起来的平面集成波导制作工艺和光纤光栅制作技术,利用阵列波导光栅(AWG)的复用特性和波长路由选择特性与均匀光纤光栅(UFBG)的色散特性,提出了一种能对WDM系统中各分波光信号分别进行有针对性色散补偿的补偿器件,该器件使WDM系统中各分波光信号所得到的色散补偿在理论上达到很高效率。
     论文首先从光纤色散的概念和起因入手,然后从数字和模拟信号传输两个方面,说明了光纤色散对通信的影响,对光纤色散理论作了详细地阐述和分析,并介绍了几种已实用的色散补偿技术。在简要叙述了阵列波导光栅的结构及其特性后,着重从光纤光栅耦合波理论导出了均匀光纤光栅在反射带隙(RBG)外附近的色散特性方程,并根据这一特性方程,对8通路的WDM系统中各分
    
    /亡巴八硕士学位论文
    \%TINV坯1:E---’STHE狠
     波光信号的色散补偿进行了数值计算与分析,由此确定补偿器中各均匀光纤光
     栅的相关参数。计算结果表明,有针对性对WDM系统中各分波光信号分别进
     厅色散补偿是有必要的,而且用本文中所设计的补偿器进行补偿,其效率可达
     到很高。论文中还对这种补偿器件的制作与加工的现实可行性作了讨论。
The technology of dispersion compensation is one of the crucial technologies in the realm of optical fiber communication. Because of the appearance of Erbium Doped Fiber Amplifier (EDFA), the problem of optical fiber loss has been solved basically. Then people's attention is more and more concentrating on the research of the optical fiber communication system which is limited by optical fiber dispersion instead of that which is limited by optical fiber loss. At the same time, because of the strongly competitive ability and characteristic predominance of Wavelength Division Multiplexing (WDM) technologies and "bottle neck" limitation of Time Division Multiplexing (TDM) technologies, people's interest is transferred from the TDM to the WDM. The WDM technologies are developing rapidly and are used widely. So how to settle the problem, in which dispersion is accumulated in WDM system, becomes a focus of study.
    hi accordance with the physical principle of dispersion generation, many kinds of technologies of dispersion compensation have been researched and expounded. For instance, dispersion compensation fiber technology, pre-chirpped technology, dispersion supported transmission technology, chirpped fiber grating technology, and so on. But the study of dispersion compensation technology in which the dispersion of the optical signal in every channel in the WDM system is compensated respectively is reported rarely.
    In this paper, on the basis of increasingly mature fabrication technologies of planar integrated waveguide and the optical fiber grating, we make use of not only
    
    
    
    the (de)multiplexing and wavelength router characteristic of Arrayed Waveguide Grating(AWG), but also the dispersion peculiarity of Uniform Fiber Bragg Grating(UFBG). Then a kind of dispersion compensator, which can compensate the dispersion of the optic signal in every channel in the WDM system respectively, is devised. The method makes the compensation efficiency maximum theoretically.
    In this article, at first, the dispersion conception and generation reason are explained, and the dispersion influences that are brought about in the analog and digital signal transmission in optical fiber communication are accounted for. Next, the dispersion theory of optical fiber is discussed in detail and several useful technologies of dispersion compensation are introduced. Then, after the structure and characteristic of AWG is described in brief, we put emphasis on the deduce of the dispersion equation of UFBGS in the vicinity of its reflection band gap(RBG) in light of coupling theory. In terms of this equation, the dispersion compensation of the optical signal in every channel in the WDM system, which has eight channels, is calculated and analyzed theoretically. During the course, some important parameters of UFBGS in the compensator are computed. Finally, the result manifests that it is necessary that the dispersion of the optical signal in every channel in the WDM system be compensated respectively. By use of the compensator, which is designed here, the dispersion efficiency can obtain very high value. The realistic possibility of fabricating this compensator is mentioned in this paper.
引文
[1]李玲、黄永清,光纤通信基础,国防工业出版社,1999
    [2]孙学军、张述军等,DWDM传输系统原理与测试,人民邮电出版社,2000
    [3]纪越峰,光波分复用系统,北京邮电大学出版社,1999
    [4]解金山、陈宝珍,光纤数字通信技术,电子工业出版社,1997
    [5]孙学康、张金菊,光纤通信技术,北京邮电大学出版社,2000
    [6]顾畹仪、李国瑞,光纤通信系统,北京邮电大学出版社,1999
    [7]M.Durkin,M.Ibsen, M.J.Cole,and R. I. Laming, "Im long continuously written fiber Bragg gratings for combined second- and third-order dispersion compensation," Electron. Lett. Vol.32.No.25.pp. 1891~1893,Oct. 1997
    [8]Fariborz Mousavi Madani and Kazuro Kikuchi, Member, IEEE. Performance Limit of Long-Distance WDM Dispersion-Managed Transmission System Using Higher Order Dispersion Compensation Fibers. IEEE Photonics Technology Letters, vol.11.No.5.May 1999
    [9]明海、张国平、谢建平,光电子技术,中国科学技术大学出版社,1998
    [10]Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt. Lett. 1987,12:847~849
    [11]Hiroyuki Tsuda. Hirokazu Takenouchi. Akira Hirano. Takashi Kurokawa.Katsunari Okamoto. Performance Analysis of a Dispersion Compensator Using Arrayed Waveguide Gratings. Journal of Lightwave Technology.Vol.18. No.8.August 2000.1139~1146.
    [12]H. Tsuda, K, Okamoto, T. ishii, K.Naganuma, Y. Inoue, H.Takenouchi, and T.Kurokawa, "Second-and third-order dispersion compensator using a high resoulution arrayed-waveguide grating," IEEE Photon Technol. Lett, Vol. 11,pp.569~571, May 1999
    [13]Hiroshi Takahashi. Kazuhiro Oda. Hiroma Toba. Yasuyki. Transmission Characteristics of Arrayed Waveguide N×N Wavelength Multiplexer.Journal of Lightwave Technology. Vol. 13.No.3.March 1995.447~455.
    
    
    [14]H. Takahashi. S. Suzuki. K. Katoh, and I. Nishi. "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,"Electron. Lett. Vol. 26. pp. 87~88,1990
    [15]C. Drangone, C. A. Edwards, and R. C. Kistler, "Integrated optics N×N multiplexer on silicon," Photon Technol. Vol. 3. pp. 896~899, 1991
    [16]H.Takahashi,Y. Hibino, Y. Ohmori, and M. Kawachi, "Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film," IEEE Photon. Technol. Lett. Vol. 5. pp. 707~709,1993
    [17]Hill K O and MeltzFiber G. Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15:1263~1274
    [18]谢满红、原荣,光纤光栅特性及其在光纤通信中的应用,光通信技术,第二期 113~120,1997
    [19]Morten Ibsen, Michael K. Durkin, Michalis N. Zervas, Anatoly B. Gmdinin,and Richard I. Laming. Custom Design of Long Chirped. Bragg Gratings:Application to Gain-Flattening Filter with Incorporated Dispersion Compensation. IEEE Photonics Technology Letters, vol.12.No.5.May 2000
    [20]Giles C R. Lightwave application of fiber Bragg gratings. Journal of Lightwave Technology, 1997,15:1391~1404
    [21]Lam D K, Garside, B K,Hill K O. Dispersion cancellation using optical-fibers. Opt. Lett. 1982,7(6): 291~293
    [22]Eggleton B J, Stephens T, and Krug P A. Dispersion compensation using a fiber grating in transmission. Electron, Lett. 1996,32:1610~1611
    [23]李建新、陈雪等,利用均匀光纤光栅进行色散补偿,光通信技术,第二期130~133,2000
    [24]刘志国、张艺兵等,光纤光栅技术及其发展,光通信技术,第二期141~144,1996
    [25]苑立波,光纤光栅原理与应用,光通信技术,第一期 70~78,1998
    [26]吕乃光,傅立叶光学,机械工业出版社,1998
    
    
    [27] 邹柳娟、周志敏、邹道文、刘水华等,Bragg光纤光栅色散补偿的理论分 析与研究,光通信技术,第四期284-289,1998
    [28] M. K.Smit, "New focusing and dispersive planar component based on an optical phased array," Electron. Lett. Vol. 24. pp. 385-386,1988
    [29] S. E. Miller, Intergrated Optics: an Introduction , Bell Syst Tech. J. 1969,48 (7) :2059-2069
    [30] Kawchi, M. Silica waveguedes on silion and their application to integrated optic components. Opt.Quantum Electr.,1990,22:391-416.
    [31] Syms, R.R.A, Tate, T.T, and Bellerby, R. Low-loss near-infrared passive optical waveguide compinents formed by electron-beam irradiation of silica-on silicon. J. Lightwave Technol. 1995,13:1745-1749
    [32] M. Kawachi. Recent progress in silica-based planar lightwave circuits on silicon. IEEE pro-Optoelectron, 1996, 143(5) : 257-261
    [33] C. A. Jones, K. Cooper. Hybrid integration onto silicon motherboards with planar silica waveguides. IEE Pro-Optoeletron, 1996, 143(5) , 316-321
    [34] T. Kominato, Y. Ohmori, H. Okazaki, and M. Yasu, "Very low loss Geo2-doped silica waveguides fabricated by flame hydrolysis deposition methed," Electron. Lett. Vol. 26, pp. 327-328,1990
    [35] Yung Jui chen, Yen-Ping Ho, Wenh.ua Lin, Haifeng Li, John Hryniewicz etc. Spectrometer on a chip based WDM photonec integrated components. SPIE, 2690:337-347
    [36] Ryo Nagase, Akira Himeno, Masayuki Okuno etc. Silica-based 8×8 optical matrix switch module with hybrid integrated driving circuits and its system application J. Lightwave Technol, 1994,12(9) : 1631-1639
    [37] Y. P. Li, C. H. Herry. Silica-based optical integrated circuits. IEE Pro-Optoeletron. 1996,143(5) : 263-280
    [38] M. Benatsou, B. Capoen, and M. Bouazaoue. Preparation and characterization of sol-gel derived Er3+: Al2O3-SiO2 planar waveguides. Appl. Phys. Lett. 1997,71 (4) : 428-430
    
    
    [39]Mccourt.M.Status of glass and silicon-based technologies for passive components. Proceedings of European Conference on Integrated Optics,1993:91~94
    [40]何赛灵、殷源等,硅基底平面波导光通信集成器件的模拟、设计及工艺,中国计量学院学报,第二期65~72,2001
    [41]杨玲、陈根祥、梁毅、简水生,光纤Bragg光栅及其在光纤通信中的应用,光通信技术,第二期146~151,1996
    [42]徐永青、梁春广、杨拥军等,硅基SiO_2光波导,半导体学报,第22卷第12期 1546~1550,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700