用户名: 密码: 验证码:
水体的偏振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球表面的水体约占总面积的70%以上,针对水体监测成为全球环境研究的重要的组成部分,而利用遥感技术对水体的监测也伴随着遥感科学技术的快速发展成为一项至关重要和有效可行的技术。在遥感技术背景的讨论前提下,水体表面的反射辐射强度与其它地物类型相比是较小的,但是仍然包含很多水体的特征信息,例如:水体泡沫、水面溢油、水中悬浮泥沙、水中浮游生物等,这些都可以通过水体的光学特性直接或者间接地反映出来。
     但是在实际水体遥感中,想要获取真正的水体反射信息要受到很多条件的制约。主要表现在大气的影响、太阳入射角度变化的影响、探测器观测方位的影响、水面状态的影响。其中,大气的影响是不可避免的,而且随时间变化大气状态的变化非常迅速。无论是在可见光还是红外光谱范围内,进入到传感器内的大气反射发射辐射信息往往会将水体信息淹没。而太阳角度变化、探测器观测方位的变化与水面状态变化将共同影响传感器获取真实的水体反射与发射信息。其中最为常见的就是镜面反射引起的耀斑的影响,这会使在耀斑覆盖的范围内得到的反射信息比正常的高出几十倍甚至更多,传感器因为达到饱和状态而不能得到水体的信息。
     尤其在可见光范围,水体遥感必须避免太阳直射的反射方向(也就是镜面方向)才能得到真正的水体信息。如果能够将耀斑从总反射部分消除,那么水体遥感中反演水中叶绿素、悬浮泥沙等的精度就会得到很大的提升。从而也使得现有的多角度传感器可以在更多角度进行水体观测。在红外波段,太阳耀斑依然对水体的发射辐射会有影响,而这种影响主要是在镜面反射中体现的。正是在镜面反射方向,无论是可见光还是红外波段都会产生由水面特征决定的偏振光。从而使偏振技术在常规遥感中无法实现的范围起到一定的作用。利用偏振探测技术可以将反射光分解成不同的分量,从而,目标偏振程度的测量不依赖于校准传感器,而且不需对反射信息标准化就可以计算出来;在获取偏振测量结果的同时,还能得到辐射测量的信息。
     本论文主要以辐射传输理论、菲涅尔理论、入射辐射场与斯托克斯参量之间的关系为理论依据,结合不同探测角度、入射角度信息与偏振信息,从可见光到近红外再到热红外波段分析了水体表面反射辐射和发射辐射的偏振态。同时分析了油膜、大气与水面耀斑对偏振反射的影响。最后,利用斯托克斯参量与菲涅尔反射折射定律建立了基于平静水面利用偏振测量方法在不同角度获取水体反射信息的模型,并证明了离水辐射亮度信息的偏振度为零的假设是可行的,同时将计算值与实际测量值进行了对比分析,两者的差异较小,可以满足离水辐射测量的精度。
     水体偏振反射的研究不仅对水的辐射传输过程的描述更加详细,也为水体遥感提供了一种额外的辅助手段,可以结合现有多角度传感器不用避免太阳直射而在较大观测范围内实现水体反射信息的获取,从而使遥感技术能更好的为水环境监测服务。
More than70%of the earth’s surface area is covered by water, so it is veryimportant to monitor water body for the global environmental research. Aquaticmonitoring by remote sensing has been an effective technology along with thedevelopment of remote sensing technology. The reflection strength of water surface,on the premise of remote sensing, is weaker than other surface features, but it containsmany characteristics of the water body, such as water bubble, oil spill, suspendedsediment and plankton, which can be reflected directly or indirectly, by the opticscharacteristics of the water body.
     There are many constraints to get real aquatic reflection information in practicaloperations, such as atmospheric effect, variation of the solar incident angles,observing position of detectors, and water status, and atmospheric effect is inevitablein these factors. Because the atmospheric statue varies swiftly, atmospheric reflectiveradiation information usually mask the aquatic information, in both visible spectrumand infrared spectrum. And variation of the solar incident angles, observing positionof detectors and water status make great effect on the aquatic reflection informationreceived by sensors. The most common factor is the solar flare by specular reflection,which makes the information in flares over several tens times stronger than itscounterpart in common range, because sensors are not able to obtain any aquaticinformation in the saturated condition.
     Aquatic remote sensors are able to obtain real aquatic information, only afteravoiding the reflection direction of the solar vertical incident rays (i.e. surfacedirection). The inverting accuracy to chlorophylls in the water, suspended sedimentswill get great improved, if flares can be eliminated from the total reflection, somulti-angle sensors are able to make aquatic observations from more angles. Ininfrared band, solar flares are still making influence on the water radiation, which ismainly embodied in the specular reflection. In the specular direction, polarized light happens which is caused by aquatic features in both visible and infrared band. Sopolarization technique can make effects in the range that conventional remote sensorcan not achieve. Decomposing reflected lights into different components bypolarization detection technology can make the object polarization degreemeasurement independent from calibrating sensors. So the calculation doesn’t have tostandardize the reflection information.
     The dissertation, whose theoretical foundation is radiation transfer theory,Fresnel theory and the relationship between Stokes scattering parameters and incidentradiation field, analyzes water surface reflective radiation and emitted radiationpolarization from visible and near infrared to thermal infrared band and the effect ofoil films, atmosphere and water surface flares on polarizations, combining differentdetection angles, incident angles and polarization information. Finally, it, on the basisof Stokes parameters and Fresnel reflection refraction theory, sets up a model forobtaining water reflection information on the calm water surface at different angles bypolarization measurement, and proves the hypothesis is feasible that the polarizationdegree of water-leaving radiance luminance information is zero. The comparisonbetween calculation values and actual measured ones shows that the difference isminor and it’s able to satisfy the measurement precision to water-leaving radiance.
     The research on water polarization reflection can not only make a more detaileddescription to water radiation and transfer process, but also provide an additionalauxiliary method for water body remote sensing. It can obtain water reflectioninformation in large observation range cooperating with multi-angle sensors withoutavoiding direct sunlight, so that remote sensing technology offers more benefits towater environment monitoring.
引文
[1] Bicheron P, Leroy M, Hautecoeur O, et al.. Enhanced discrimination of boreal forest coverswith directional reflectances from the airborne polarization and directionality of Earthreflectances(POLDER) instrument [J]. Journal of Geophysical Research D: Atmospheres,1997,102(24):29517–29528.
    [2]Li X, Strahler A H,. Geometric-optical bidirectional reflectance modeling of thediscrete crown vegetation canopy: effect of crown shape and mutal shadowing[J].IEEE Trans, Geosci. Remote Sens,1992,30:279–292.
    [3]Li X, Strahler A H. Modeling the gap probability of a discontinuous vegetationcanopy[J]. IEEE Trans, Geosci. Remote Sens,1988,26(2):161–170.
    [4]Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of aconifer forest canopy [J]. IEEE Trans. Geosci. Remote Sens1986,24(6):906–919.
    [5] Li X, Strahler A H. Geometric-optical modeling of a conifer forest canopy [J]. IEEETrans. Geoseci. Remote Sens.,1985,23(5):705–721.
    [6] Smith R C, Baker K S. Optical properties of the clearest natural waters [J]. Appl. Opt.,1981,20(2):177-184
    [7] Morel A, Prieur L. Analysis of variations in ocean color [J]. Limnol. Oceanogr,1977,22:709-722.
    [8] Gordon H R, Brown O B. A multi-phase Monte Carlo technique for simulation ofradiative transfer [J]. J. Quant. Spectrosc. Radiat. Transf.,1975,15(5):419-422.
    [9] Downing H D, Williams D. Infrared optical constants of aqueous solutions ofelectrolytes. Further studier of salts [2][J]. J. Phy. Chem.1976,80(17):1950-1951.
    [10] Hale G M, Querry M R. Optical constants of water in the200nm to200mnmwavelength regon [J]. Appl. Opt.,1973,12:555-563.
    [11] Zoloratev V M, Demin A V. Instrumental function of a laser anemometer with adifferential optical arrangement [J].Opt. Spectrosc.,1977,43:157-160.
    [12] Simpson O A, Bean B L, Perkowitz S. Far-infrared laser spectroscopy of water vapor andliquid water [J]. Proce.1979,23-24.
    [13] Afsar M N, Hasted J B. Submillimetre wave measurements of optical constants of water atvarious temperatures [J]. Infrared Phys.1978,18(5-6):835-841.
    [14] Afsar M N, Hasted J B, Zafar M S, et al. New techniques for dispersive Fourier transformspectrometry of liquids [J]. Infrared Phys.1976,16(1-2):301-310.
    [15]李铜基,唐军武,陈清莲,等.光谱仪测量离水辐射亮度的方法[J].热带海洋学报,2001,20(4):56-60.
    [16] Chen C Q, Shi P, Zhan H G. A local algorithm for estimation of yellow substance(gellbstoff) in coastal waters from Sea WiFS data: Pearl River estuary, China [J]. Int. J. RemoteSens.,2003,24(5):1171-1176.
    [17]陈楚群,潘志林,施平.海水光谱模拟及其在黄色物质遥感反演中的应用[J].热带海洋学报,2003,22(5):33-39.
    [18]曹文熙,杨跃忠.珠江口悬浮颗粒物的吸收光谱及其区域模式.科学通报,2003,48(17):1876-1882.
    [19]朱建华,李铜基.黄东海海区浮游植物色素吸收系数与叶绿素a浓度关系研究[J].海洋技术,2004,23(4):117-122.
    [20]朱建华,李铜基.黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究[J].海洋技术,2004,23(2):7-13.
    [21]唐军武,田国良,汪小勇,等.水体光谱测量与分析iv:水面以上测量法[J].2004,8(1):37-44.
    [22]周虹丽,朱建华,李铜基,等.青海湖水色要素吸收光谱特性分析[J].海洋技术,2005,24(2):55-58.
    [23]王桂芬,曹文熙.南海北部水体浮游植物比吸收系数的变化[J].热带海洋学报,2005,24(5):1-10.
    [24]顾德宇,杨燕明.赤潮信息提取及监测应用模型研究.海洋光学遥感信息应用技术研究,818-06-03,技术报告汇编(1997-2000),136-165
    [25]李素菊,吴倩,王学军,等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14:228-234.
    [26]赵冬至,张丰收,赵玲.近岸海域叶绿素和赤潮的AVHRR波段比值探测方法研究[J].海洋环境科学,2003,22:9-12.
    [27] Talmage D A, Curran P J. Remote sensing using patially polarized light [J], Int. J. RemoteSens. Environ.,1986,7(1):47–64.
    [28] Fitch B W, Walraven R L, Bradley D E. Polarization of light reflected from grain cropsduring the heading growth stage [J], Remote Sens. Environ.,1984,15(3):263–268.
    [29] Vanderbilt V C, Grant L, Biehl L L, et al. Specular, cliffuse and polarized light scattered bytwo threat canopies [J]. Appl Opt.,1985,24:2403-2418.
    [30] Vanderbilt V C, Clevenecia K J. Specular cliffuse and polarized imageny of and of and outcanopy [J]. IEEE Trans. Geosci Remote sens.,1988,5(26):451-462.
    [31] Rondeaux G, Herman M. Polarization of light reflected by crop canopies [J]. Remote Sens.Environ.,1991,38(1):63–75.
    [32] Bréon F M, Tanre D, Lecomte P, et al. Polarized reflectance of bare soils and vegetation:measurements and models [J]. IEEE Trans. Geosci. Remote Sens.,1995,33(2):487–499.
    [33] Perovich D K. Observations of the polarization of light reflected from sea ice [J]. J. Geophys.Res.,1998,103, C3:5563–5575.
    [34] Mishchenko M I, Luck J M, Nieuwenhuizen T M. Full angular profile of the coherentpolarization opposition effect [J]. J. Opt. Soc. Am. A,2000.17:888–891.
    [35] Songxin T, Narayanan R M. Design and performance of a mutiwavelength airbornepolarimetric lidar for vegetation remote sensing [J]. Appl. Opt.,2004,43(11):2360–2368.
    [36] Tyo J S, Goldstein D L, Chenault D B, et al. Review of passive imaging polarimetry forremote sensing applications [J]. Appl. Opt.,2006,45(22):5453–5469.
    [37] Suomalainen J, Hakala T, Puttonen E et al. Polarised bidirectional reflectance factormeasurements from vegetated land surfaces [J]. J. Quant. Spectrosc. Radiat. Transf.,2009,110:1044–1056,2009.
    [38] Peltoniemi J I. Spectropolarised ray-tracing simulations in densely packed particulatemedium [J]. J. Quant. Spectrosc. Radiat. Transf.,2007,108:180–196.
    [39] Peltoniemi J, Hakala T, Suomahainen J, et al. Polarised bidirection factor measurement fromsoil, stones and snow [J]. J. Quant. Spectrosc. Radiat. Transf.,2009,110:1940-1953.
    [40] Hibbitts C A, Gillespie A R. Polarization of visible light by desert pavements [J]. RemoteSens. Environ.,2008,112:1808–1819.
    [41] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces:Spaceborne measurements and analytical modeling [J]. Remote Sens. Environ.,2009,113:2642–2650.
    [42]乔延利,杨世植,罗睿智,等.对地遥感中的光谱偏振探测方法研究[J].高技术通讯,2001,7:36-39.
    [43]曹汉军,乔延利,杨伟锋,等.偏振遥感图像特性表征及分析[J].量子电子学报,2002,19(4):373-378.
    [44]赵云升,金锡锋,金伦.植物单叶偏振反射特性研究[J].遥感学报,2000,52(4):131-135.
    [45]赵云升,金伦,张洪波,等.土壤的偏振反射特征研究[J].东北师大学报,2000,32(4):93-97.
    [46]赵云升,吴太夏,宋开山,等.橄榄岩的多角度偏振与二向反射定量关系研究[J].矿业研究与开发,2005,25(3):63-66.
    [47]赵云升,吴太夏,胡新礼,等.多角度偏振反射与二向性反射定量关系初探[J].红外与毫米波学报,2005,24(6):441-444.
    [48] Curran P J. Preliminary investigation into the application of oblique multispectralphotography for the monitoring of sewage outfalls [J]. J. Environ. Manaqe.,1979,9:41-48.
    [49] Shaw J A. Polarimetric measurements of long-wave infrared spectral radiance from water [J].Appl. Opt.,2001.40(33):5985–5990.
    [50] Shaw J A. The effect of instrument polarization sensitivity on sea surface remote sensing withinfrared spectroradiometers [J], J. Atmos. Ocean. Tech., vol.19(5):820–827,2002.
    [51] Shaw J A. Degree of linear polarization in spectral radiances from water-viewing infraredradiometers [J]. Appl. Opt.,1999,38(15):3157–3165.
    [52] Henderson B G, Theiler J, Villeneuve P. The polarized emissivity of wind-roughened seasurface: A Monte Carlo model [J]. Remote Sens. Environ.,2003,88(4):453-467.
    [53] Cunningham A, Wood P, McKee D. Brewster-angle measurements of sea-surface reflectanceusing a high resolution spectroradiometer [J]. J. Opt. A: Pur. Appl. Opti.,2002,4: S29-33.
    [54] Tonizzo A, Ibrahim A, Zhou J, et al. Estimation of the polarized water leaving radiance fromabove water measurements [J]. Proc. SPIE,2010,7678,767803.
    [55] Tonizzo A, Gilerson A, Harmel T, et al. Estimating particle composition and size distributionfrom polarized water-leaving radiance [J]. Appl. Opt.,2011,50,5047-5058.
    [56]曹念文,张玉钧,王锋平,等.水下目标自然光偏振成像的研究[J].量子电子学报,1999,16(2):110-115.
    [57]赵云升,金伦,宋开山,等.液体表面偏振反射特征研究[J].东北师大学报,2000,32(4):103-106.
    [58]罗杨洁,赵云升,胡新礼,等.偏振与多角度遥感中的太阳耀光剥离[J].光学技术,2006,32(2):205-208.
    [59]罗杨洁,赵云升,吴太夏,等.水体镜面反射的多角度偏振特性研究及应用[J].中国科学D辑:地球科学(中英文),2007,37(3):411-416.
    [60]孙仲秋,赵云升,阎国倩,等.利用偏振光技术计算海水密度的深入研究[J].光学学报,2010,30(8):2451-2457.
    [61] Gordon H R, Brown O B, Evans R H, et al. A Semianalytic radiance model of ocean color [J].J. Geophys. Res.,1988,93(D9):10909-10924.
    [62] Necket H, Labs D. The solar radiation between3300and12500A [J]. Sol. Phys.1984,90:205-258.
    [63] Gordon H R, Brown J W, Evans R H. Exact Rayleigh scattering calculations for use with theNimbus-7Coastal Zone Color Scanner [J]. Appl. Opt.,1988,27(5):862-871.
    [64] Morel A, Gentili B. Diffuse reflectance of oceanic waters:its dependence on sun angle asinfluenced by molecular scattering contribution [J]. Appl. Opt.,1991,30:4427-4438.
    [65] Morel A, Gentili B. Diffuse reflectance of ocean waters.II. Bidirectional aspects [J]. Appl.Opt.,1993,32(33):6864—6879.
    [66] Morel A, Gentili B.Diffuse reflectance of oceanic waters. III. Implication of bidirectionalityfor the remote-sensing problem [J]. Appl. Opt.,1996,35(24):4850-4862.
    [67] Kirk J T. Dependence of relationship between inherent and apparent optical properties ofwater on solar altitude [J]. Limnol. Oceanogr.,1984,29(2):350-356
    [68] Gordon H R. Can the Lambert-Beer Iaw be applied to the diffuse attenuation coefficient ofocean water?[J]. Limnol. Oceanogr.,1989,34(8):1389-1409.
    [69]唐军武.海洋光学特性模拟与遥感模型[D]:[博士学位论文].北京:中国科学院遥感应用研究所,1999.
    [70] Morel A, Voss K J, Gentili B. Bidirectional reflectance of oceanic water:A comparison ofmodeled and measured upward radiance fields [J]. J. Geophys. Res.,1995,100(C7):1314-13150.
    [71] Volckert F A M, Kayens G, Schaller R, et al. Aerial surveillance of operational oil pollutionin Belgium’s maritime zone of interest [J]. Mar. Poll. Bull.,2000,40(11):1051-1056.
    [72] Gonzalez M, Uriarte A, Pozo R, et al. The Prestige crisis: operational oceanography appliedto oil recovery, by the Basque fishing fleet [J]. Mar. Poll. Bull.,2006,53:369-374.
    [73] Fingas M F, Brown C E. Review of oil spill remote sensing [J]. Spill. Sci. Tech. Bull.,1997,4(4):199-208.
    [74] Labelle R, Danenberger E P. Oil-spill research program of the US minerals managementservice [J]. Spill Sci Tech Bull,1997,4(2):107-111.
    [75] Brown C E, Fingas M F. Development of airborne oil thickness measurements [J]. Mar. Poll.Bull.,2003,47:485—492
    [76] Keramitsoglou I, Cartalis C, Kiranoudis C T. Automatic identification of oil spills on satelliteimages[J]. Env. Mod. Soft.,2006,21:640-652.
    [77] Salem F M F. Hyperspectral remote sensing: A new approach for oil spill detection andanalysis [D].[Doctor Dissertation]. George Mason University,2003,49-85.
    [78]赵冬至,丛丕福.海面溢油的可见光波段地物光谱特征研究[J].遥感技术与应用,2000,15(3):160-164.
    [79]张永宁,丁倩,高超,等.油膜波谱特征分析与遥感监测溢油[J].海洋环境科学,2000,19(3):5-10.
    [80]王丽,卓林,何鹰,等.近红外光谱技术鉴别海面溢油[J].光谱学与光谱分析,2004,24(12):1537-1539.
    [81]陆应诚,田庆久,王晶晶,等.海面油膜光谱响应实验研究[J].科学通报,2008,53(9):1085-1088.
    [82]陆应诚,田庆久,齐小平,等.海面甚薄油膜光谱响应研究与分析[J].光谱雪与光谱分析,2009,29(4):986-989.
    [83] Egan W G. Photometry and Polarization in Remote Sensing [M].(Elsevier, New York,1985),pp:337–354.
    [84] Sidran M. Broadband reflectance and emissivity of specular and rough water surfaces [J].Appl. Opt.,1981,20:3176–3183.
    [85] Cooper A W, Crittenden E C, Milne E A, et al. Mid and far infrared measurements of sunglint from the sea surface [J]. Proc. SPIE,1992,1749:176–185.
    [86] Cooper A W, Lentz W. J, Walker P. L, et al. Infrared polarization measurements of shipsignatures and background contrast [J]. Proc. SPIE,1994,2223:300–309.
    [87] Cooper A W, Lentz W. J, Walker P. L. Infrared polarization ship images and contrast in theMAPTIP experiment [J]. Proc. SPIE,1996,2828:85–96.
    [88] Walker P L, Lentz W J, Cooper A W. Atmospheric and sea state dependence of polarizedinfrared contrast [J]. Proc. SPIE,1995,2469:393–403.
    [89] Hale G M, Querry M R. Optical constants of water in the200-nm to200-mmwavelengthregion [J]. Appl. Opt.,1976,12:555–563.
    [90] Shaw J A. Degree of liner polarization in spectral radiances from water-viewing infraredradiometers [J]. Appl. Opt.,1999,38(15):3157-3165.
    [91] Shaw J A. Polarimetric measurements of long-wave infrared spectral radiance from water [J].Appl. Opt.,2001,4(33):5985-5990.
    [92] Shaw J A. The effect of instrument polarization sensitivity on sea surface remote sensing withinfrared spectroradiometers [J]. J. Atm. Ocean. Techn.,2002,19:820-827.
    [93]赵云升,吴太夏,罗杨洁,等.水面溢油的多角度偏振与二向性反射定量关系研究[J].遥感学报,2006,10(3):294-298.
    [94] Brekke C, Solbreg A H S. Oil spill detection by satellite remote sensing[J]. Remote Sens.Environ.,2005,95(1):1-3.
    [95] Gade M, Alpers W. Using ERS22SAR Images for routine observation of marine pollution inEuropean Coastal Waters [J]. Sci. Total Environ.,1999,237-238.
    [96] Egan W G, Duggin M J. Comparative merits of multispectral optical polarization tomicrowave [J]. Proc. SPED,2002,4481:292-298.
    [97]王曙.不透明矿物晶体光学[M].北京:地质出版社,1987:35-39.
    [98]姚启钧.光学教程[M].北京:高等教育出版社,2008:30-36.
    [99] Hochberg E J, Andrefouet S, Tyler M R. Sea surface correction of high spatial resolutionIKONOS images to improve bottom mapping in near-shore environments[J]. IEEE Transactionson Geoscience and Remote Sensing,2003,41,17241729.
    [100] Mustard J F, Staid M I, Fripp W J. A semianalytical approach to the calibration of AVIRISdata to reflectance over water application in a temperate estuary[J]. Remote Sensing ofEnvironment,2001,75,335349.
    [101] Cavalli R M, Pignatti S, Zappitelli E. Correction on sun glint effect on MIVIS data of theSicily campaign in July2000[J]. Annals of Geophysics,2006,49,277286.
    [102] Heege T, Fischer J. Sun glitter correction in remote sensing imaging spectrometry[J]. SPIEOcean Optics XV Conference, Monaco,2000.
    [103] Schweizer D, Armstrong R A., Posada J. Remote sensing characterization of benthichabitats and submerged vegetation biomass in Los Roques Archipelago National Park,Venezuela[J]. International Journal of Remote Sensing,2005,26,26572667.
    [104] Vahtm e E, Kutser T, Martin G, Kotta J. Feasibility of hyperspectral remote sensing formapping benthic macroalgal cover in turbid coastal waters[J]. Remote Sensing of Environment,2006,101,342351.
    [105] Dekker A G, Brando V E, Anstee J M. Retrospective seagrass change detection in a shallowcoastal tidal Australian lake[J]. Remote Sensing of Environment,2005,97,415433.
    [106] Pasqualini V, Pergent-Martini C, Pergent G, Agreil M, Skoufas G, Sourbes L et al. Use ofSPOT5for mapping seagrasses: An application to Posidonia oceanica[J]. Remote Sensing ofEnvironment,2005,94,3945.
    [107] Horvath G, Wehner R. Skylight polarization as perceived by desert ants and measured byvideo polarimetry[J]. Journal of Comparative Physiology, A: Sensory, Neural, and BehavioralPhysiology,1999,184,1-7.
    [108] Guenther R D. Modern optics. John Willey&Sons, Inc., New York,1990, Chapter3:Reflection and Refraction, pp.61-87.
    [109] Horvath G. Reflection-polarization patterns at flat water surfaces and their relevance forinsect polarization vision[J]. Journal of Theoretical Biology,1995,175,27-37.
    [110] Horvath G, Varjua D. Polarization pattern of freshwater habitats recorded by videopolarimetry in red, green and blue spectral ranges and its relevance for water detection by aquaticinsects[J]. Journal of Experimental Biology,1997,200,1155-1163.
    [111] Gal J, Horvath G, Meyer-Rochow V B. Measurement of the reflection-polarization patternof the flat water surface under a clear sky at sunset[J]. Remote Sensing of Environment,2001,76,103-111.
    [112] Peltonieme J, Hakala T, Suomalainen J, Puttoned E. Polarised bidirectional reflectancefactor measurements from soil, stones and snow[J]. Journal of Quantitative Spectroscopy andRadiative Transfer,2009,110,1940-1953.
    [113] Hansen J E, Travis L D. Light scattering in planetary atmospheres [J]. Spac. Sci. Rev.,1974,16(4):527-610.
    [114] Tonizzo A, Gilerson A, Harmel T, et al. Estimating particle composition and size distributionfrom polarized water-leaving radiance [J]. Appl. Opt.,2011,50(25):5047-5058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700