用户名: 密码: 验证码:
罗非鱼片臭氧减菌化处理中自由基的产生及其对产品品质与安全性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗非鱼片是我国优势出口水产品,出口产品主要以冻罗非鱼片为主。罗非鱼片生产过程中常采用次氯酸钠进行减菌化处理,但易造成次氯酸钠残留,影响产品品质。臭氧作为一种新型的抑菌剂,广泛应用于食品生产过程中的清洗、消毒及灭菌,采用臭氧对水产品进行减菌化处理日益被水产品加工企业广泛采用。但臭氧处理时会产生具有较强的化学活性的自由基,自由基的强氧化性会加速鱼肉蛋白在冻藏过程中的冷冻变性,并可造成鱼肉中脂质的氧化水解,生成各种羰基化合物、三甲胺与丙二醛等,造成鱼肉风味及口感劣化,影响产品品质,且水产品臭氧减菌化处理后产品的安全性尚未有系统科学地评价。鉴于此,本研究以罗非鱼片为研究对象,主要的研究内容与结论如下:
     1.测定减菌化处理中臭氧水中O_3浓度,采用自旋捕获-电子顺磁共振(spintrapping-EPR)技术检测罗非鱼片臭氧水减菌化处理过程中臭氧水中产生及处理后罗非鱼片残留自由基的种类。结果表明:试验用臭氧水中臭氧浓度为4.5mg/mL;设置EPR中心磁场强度3510G、微波功率10mW、调制频率100kHz、振幅1G、扫描时间2min,以DMPO作为捕获剂,室温条件下测定臭氧水中自由基的种类,证实臭氧水中存在超氧阴离子自由基(O_2~-·)与羟自由基(· OH);在低温条件下(~(-1)96℃)检测罗非鱼肉表面残留自由基的种类,臭氧减菌化处理后罗非鱼片表面残留有O_2~-·。
     2.以2-氨基吡啶、水杨醛与吡啶-2-甲醛为原料,基于亲核取代反应合成2种荧光探针:2-(2’-亚水杨氨基)吡啶与2-(2’-吡啶亚胺甲基)吡啶,并对合成产物进行表征以确定目标物的生成。结果表明:2种荧光探针均可与O_2~-·发生荧光淬灭反应,导致探针因-C=N-基团的破坏而出现荧光强度显著降低,基于此现象,建立了以2-(2’-吡啶亚胺甲基)吡啶(2-APC)为荧光探针检测邻苯三酚自氧化体系中产生O_2~-·相对含量的方法,该方法反应体系最佳条件为:试剂加入顺序为缓冲溶液、2-APC、邻苯三酚;反应pH值为8.2;反应温度为40℃;反应时间为40min。测定条件为:λ_(ex)=295nm、λ_(em)=365nm,狭缝宽度5nm。邻苯三酚浓度在0.4×10~(-6)~8.0×10~(-6)mol/L范围内与相对荧光强度呈良好线性关系,线性回归方程为y=37.567x+55.581,R~2=0.9834。
     3.通过测定罗非鱼肌肉组织中肌原纤维蛋白盐溶性、肌动球蛋白表面疏水性、巯基含量及ATPase活性,研究了经臭氧处理及未经处理罗非鱼片在-20℃冻藏过程中蛋白质生化特性的变化。结果表明:随着冻藏时间的延长,两组鱼肉蛋白质均发生不同程度的变性,从而导致蛋白质各种生化特性的变化;两组鱼肉肌原纤维蛋白盐溶性与巯基含量均呈下降趋势,且对照组鱼肉肌原纤维蛋白盐溶性与总巯基含量高于臭氧处理组(P<0.05),而肌动球蛋白表面疏水性呈上升趋势,同一贮藏时间由于臭氧处理中产生的O_2~-·破坏了罗非鱼肌肉暴露在蛋白质结构表面的疏水性氨基酸残基,导致其疏水性高于对照组;两组鱼肉组织中Ca~(2+)-ATPase活性、Mg~(2+)-ATPase活性及Ca~(2+)Mg~(2+)-ATPase活性在贮藏过程中均显著降低,且臭氧处理组组比对照组低(P<0.05)。总之,臭氧处理中产生的O_2~-·加速了鱼肉蛋白在冻藏过程中的变性作用;
     4.分别进行鱼肉pH测定、MDA含量测定、K值测定、色差分析及质构分析系统研究了经臭氧处理及未经臭氧处理罗非鱼片在-20℃冻藏过程中产品品质的变化。结果表明:臭氧处理组与对照组罗非鱼片pH值变化范围为6.3±0.1~7.1±0.0,在贮藏过程中呈先降后升的变化趋势;两组罗非鱼片MDA含量在冻藏过程中均逐渐增加,且由于臭氧处理过程中自由基对鱼肉脂质氧化的促进作用,臭氧处理组MDA含量明显高于对照组(P<0.05);两组罗非鱼片在冻藏过程中,K值均呈上升趋势,由于臭氧的抑菌作用,相同贮藏时间下臭氧处理组K值较对照组低(P<0.05);由于臭氧具有漂白作用,臭氧处理组罗非鱼片L值、HW值较对照组大,而值比对照组小(P<0.05);两组罗非鱼片在-20℃冻藏过程中,随着贮藏时间的延长,鱼肉的硬度、胶着性与咀嚼性有极显著降低(P<0.01),而粘合性、粘聚性、弹性(臭氧处理组)与粘附力随贮藏时间的变化较显著(P<0.05),对照组弹性变化不显著(P>0.05);菌落总数分析结果表明,两组鱼肉在冻藏过程前10d菌落总数降低,10d后菌落总数逐渐增加(P>0.05),且对照组高于臭氧处理组(P<0.05)。
     5.采用SD大鼠急性经口毒性试验、KM小鼠遗传毒性试验及SD大鼠30天喂养试验评价臭氧处理后罗非鱼片产品安全性。结果表明:臭氧处理后罗非鱼片对SD大鼠经口最大耐受剂量MTD>15g/kg,毒性分级为无毒;Ames试验结果表明,在有无S9活化系统下,罗非鱼片5个剂量组4种菌株的回变菌落数均小于溶剂对照组的2倍,重复试验结果一致,Ames试验结果为阴性;骨髓微核试验结果表明,罗非鱼片高、中、低剂量小鼠的骨髓微核率与溶剂对照组比较无显著性差异(P>0.05);睾丸染色体畸变试验结果表明,罗非鱼片高、中、低剂量组小鼠睾丸染色体畸变率分别为0.2%、0.2%,0.1%,与溶剂对照组相比无显著差异(P>0.05),KM小鼠遗传毒性试验结果为阴性。30天喂养试验中一般临床观察、体重、摄食量、食物利用率、摄水量、血液学、血液生化、脏器重量及脏器指数、组织病理学检查等各检查指标罗非鱼片各剂量组均未见明显改变,初步认为臭氧处理罗非鱼片对SD大鼠的最大无作用剂量大于7.5g·kg~(-1)·d~(-1)。
Nile Tilapia (Oreochromis niloticus) is an advantage export of aquatic products in China,and the frozen Nile Tilapia fillet is the main export product. Sodium hypochlorite is used as abacteriostatic agent in Nile Tilapia fillet processing, In order to avoid the problem of sodiumhypochlorite residue, as a novel bacteriostatic agent, ozone has been widely used in cleaningdisinfection and sterilization of food products, in addition, ozone sterilization pretreatmentmethod has been used in aquatic products processing enterprises broadly. The high chemicalactivity free radicals could be produced in the ozone sterilization pretreatment step, freezedenaturation of tilapia protein might be accelerated by the strong oxidizing property of freeradicals as well as lipid oxydrolysis. The degradation products such as carbonyl groups,trimethylamine(TMA) and malonaldehyde(MDA) will cause the flavor and taste of NileTilapia fillet degradation. The safety of ozone sterilization pretreatment in aquatic productsprocessing field has not been evaluated scientifically. For these reasons, the main researchcontents and results are as follows:
     1. The concentration of O_3in ozone-water was determined. The kinds of free radicalsgenerated from ozone-water were detected by spin-trapping electron paramagnetic resonance(EPR) spectroscopy which was used DMPO as the trapping agent, and3510G of center field,10mW of power100kHZ of modulation frequency1G of amplitude and2min of sweeptime. The results show that the concentration of ozone in water is4.5mg/mL. The existenceof superoxide anion free radical (O_2~-·) and hydroxyl radical (OH) are confirmed inozone-water under room temperature. The kinds of residual free radicals of Nile Tilapia filletsafter ozone sterilization pretreatment were detected by EPR under the low temperature (~(-1)96℃) condition, and the existence of O_2~-· is confirmed.
     2. Two kinds of novel fluorescence probe:2-SAP and2-APC were synthesized by2-aminopyridine, salicylaldehyde and2-pyridinecarbaldehyde by nucleophilic substitutionreaction and characterized by melting test, elemental analysis, infrared spectrum and1HNMR. The results shows that both of2-SAP and2-APC can produce fluorescence quenchingreaction with O_2~-·, and the fluorescence intensity of reaction system decreased significantly.Based on this phenomenon, a fluorescence probe method for O_2~-· detection was established.The optimum conditions of this reaction system are as follows,8.2of pH,40℃oftemperature of reaction system and40min of reaction time. The conditions of fluorimetricdetermination were as follows, λ_(ex)=295nm, λ_(em)=365nm and the slit width was5nm. In therange from0.4×10~(-6)mol/L to8.0×10~(-6)mol/L, relative fluorescence intensity (y) andpyrogallol concentration (x) were shown a good linear relationship, y=37.567x+55.581,R~2=0.9834.
     3. In order to investigate the changes of protein biochemistry during storage at-20℃,myofibrillar protein salt solubility, surface hydrophobicity of actomyosin, sulphur content andATPase activity in Nile Tilapia muscle were determined. The results show that: differentdegrees of protein denaturation of ozone pretreatment group and control group Nile Tilapiafillets were occurred during storage period, thus protein denaturation results in biochemistrychanges. During the extension of storage time, both of the myofibrillar protein salt solubilityand sulphur content are decreased, of which the control group were higher than ozonepretreatment group (P<0.05). Moreover, surface hydrophobicity of actomyosin is increasedduring storage, due to the hydrophobic amino acid residue exposed on the surface of proteinstructure in Nile Tilapia fillets muscle is destroyed by O_2~-· generated from ozone-water,surface hydrophobicity of ozone pretreatment group is higher than control group. All of theCa~(2+)-ATPase activity, Mg~(2+)-ATPase activity and Ca~(2+)Mg~(2+)-ATPase activity are decreasedduring storage period, and the ATPase activity of ozone pretreatment group is lower thancontrol group (P<0.05). In conclusion, the protein denaturation is promoted by O_2~-· generatedfrom ozone-water during storage period.
     4. The pH value, MDA content, K-value, color measurement and textural analysis werecarried out to research the quality changes of Nile Tilapia fillets with and without ozone-watersterilization pretreatment during frozen storage at-20℃. The results are as follows: the pHvalue of Nile Tilapia fillets with and without ozone-water sterilization pretreatment is at therange of6.3±0.1to7.1±0.0of which tend is increasing first and then decreasing. MDAcontent of these two groups are gradually increasing during storage, owning to theacceleration of lipid oxidation with free radicals during ozone-water sterilization pretreatment,the MDA content of ozone pretreatment group is higher than control group significantly(P<0.05). Both K-value of these two groups are increased during storage. Due to the bactericidal effect of ozone, the K-value of ozone pretreatment group is lower than controlgroup (P<0.05). Because of the bleaching of zone, the L value and HW value of ozonepretreatment group is higher than control group, and the value is lower (P<0.05). Duringthe extension of storage time, all of the hardness, gumminess and chewiness of Nile Tilapiafillets are decreased significantly (P<0.01), and the adhesiveness, cohesiveness springiness ofozone pretreatment group and adhesive force are decreased (P<0.05), but the springiness ofcontrol group shows no significant difference during storage at-20℃. Total plate count of thetwo groups are decreased during the first10days of frozen storage period, and then increasedgradually (P<0.05), in addition, the control group is higher than ozone pretreatment group(P<0.05).
     5. Acute oral toxicity test in SD rats, genetic toxicity test in KM mice and30daysfeeding study in SD rats were used to evaluate the safety of Nile Tilapia fillets treated byozone-water. The results show that the maximum tolerated dose in SD rats is more than15g/kg, the fillets treated by ozone-water belongs to non-toxic class. The result of Ames assayshows that the Colony-Forming Units of bacterial reverse mutation of four strains in the fivedoze groups are less than two times of control group, with or without metabolic activationsystem, as well as the repeated assay. Therefore, the results of Ames assay are negative. Theresults of bone marrow micronucleus test show that there is no significant difference betweenthe three doze groups and control group on micronucleus rate (P>0.05). The results ofchromosome aberration test show that chromosome aberration rate of mouse testis are0.2%,0.2%and0.1%respectively, there is no significant difference between the three doze groupsand control group (P>0.05). The results of genetic toxicity test in KM mice are negative. Inthe thirty days feeding study, there are no significant changes on general clinical observation,weight, food intake, food utilization rate, water intake, hematology, blood biochemical index,organ weight, organ indexes and histopathological examination of SD rats. The maximum noneffect level for ozone-treated Nile Tilapia fillets is more than7.5g·kg~(-1)·d~(-1).
引文
[1]农业部渔业局.2012中国渔业年鉴.北京:中国农业出版社,2012.35-47.
    [2]百度百科.罗非鱼[EB/OL]. http://baike.baidu.com/view/90434.htm.
    [3] Graham D. Use of ozone for food processing. Food Technology,1997,51(6):72-73.
    [4] Muthukumarappan K, Halaweish F, Naidu A S. Ozone. In: Naidu A S. Natural food antimicrobialsystems. Boca Raton: CRC Press,2000:783-800.
    [5] Bena D W. Beverage plant sanitation. In: Hui Y H. Handbook of food science, technology, andengineering. Boca Raton: CRC press,2006:1-29.
    [6] O'Donnell C P, Tiwari B K, Cullen P J, et al. Ozone in food processing. Wiley Online Library,2012.
    [7] Fielding L, Bailey R. Ozone decontamination in hygiene management. In: Lelieveld H L, MostertM A, Holah J. Handbook of hygiene control in the food industry. Cambridge: Woodhead PublishingLtd,2005:507-515.
    [8] Rice R G, Netzer A. Ozone for drinking water treatment. In: Netzer A. Handbook of ozonetechnology and applications. Michigan: Ann Arbor Science,1984.
    [9] U.S. FDA. Hazard Analysis and Critical Control Point (HACCP); Procedures for the Safe andSanitary Processing and Importing of Juice, Final rule. Federal Register,2001,66(13):6137-6202.
    [10] Pryor A, Rice R G. Introduction to the use of ozone in food processing applications[C]. In:Proceedings of14th Ozone World Congress. Dearborn, MI: Pan American Group,1999:22-26.
    [11] Sharma R. Ozone decontamination of fresh fruit and vegetables. In: Jongen W. Improving thesafety of fresh fruit and vegetables. Boca Raton, FL: CRC Press LLC,2005:265-299.
    [12] Karaca H, Velioglu Y S. Ozone applications in fruit and vegetable processing. Food ReviewsInternational,2007,23(1):91-106.
    [13] Linton R H, Han Y C, Selby T L, et al. Gas-/vapor-phase sanitation (decontamination) treatments.In: Sapers G M, Gorny J R, Yousef A E. Microbiology of fruits and vegetables. Boca Raton: CRCPress,2006:401-435.
    [14] Miller G W. An assessment of ozone and chlorine dioxide technologies for treatment ofmunicipal water supplies: executive summary. Washington, DC: Public Technology, Incorporated,1978.
    [15] Mehlman M A, Borek C. Toxicity and biochemical mechanisms of ozone. Environmentalresearch,1987,42(1):36-53.
    [16] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. ChemicalReviews,1993,93(2):671-698.
    [17] Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes actingas promoters and inhibitors of radical chain reactions. Environmental science&technology,1985,19(12):1206-1213.
    [18] Khadre M A, Yousef A E, Kim J G. Microbiological aspects of ozone applications in food: areview. Journal of Food Science,2001,66(9):1242-1252.
    [19] Kim J G, Yousef A E. Inactivation kinetics of foodborne spoilage and pathogenic bacteria byozone. Journal of food science,2000,65(3):521-528.
    [20] Broadwater W T, Hoehn R C, King P H. Sensitivity of three selected bacterial species to ozone.Applied Microbiology,1973,26(3):391-393.
    [21] Young S B, Setlow P. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueousozone. Journal of applied microbiology,2004,96(5):1133-1142.
    [22] Farooq S, Chian E, Engelbrecht R S. Basic concepts in disinfection with ozone. Journal (WaterPollution Control Federation),1977,49(8):1818-1831.
    [23] Zorlugen B, K ro lu Zorlugen F, ztekin S, et al. The influence of gaseous ozone and ozonatedwater on microbial flora and degradation of aflatoxin B1in dried figs. Food and Chemical Toxicology,2008,46(12):3593-3597.
    [24] Spotts R A, Cervantes L A. Effect of ozonated water on postharvest pathogens of pear inlaboratory and packinghouse tests. Plant disease,1992,76(3):256.
    [25] Zhao J, Cranston P M. Microbial decontamination of black pepper by ozone and the effect of thetreatment on volatile oil constituents of the spice. Journal of the Science of Food and Agriculture,2006,68(1):11-18.
    [26] Beuchat L R, Chmielewski R, Keswani J, et al. Inactivation of aflatoxigenic Aspergilli bytreatment with ozone. Letters in applied microbiology,2002,29(3):202-205.
    [27] Moore G, Griffith C, Peters A. Bactericidal properties of ozone and its potential application as aterminal disinfectant. Journal of Food Protection,2000,63(8):1100-1106.
    [28] Foarde K K, VanOsdell D W, Steiber R S. Investigation of gas-phase ozone as a potential biocide.Applied occupational and environmental hygiene,1997,12(8):535-542.
    [29] Dosti B, Guzel-Seydim Z, Greene A K. Effectiveness of ozone, heat and chlorine for destroyingcommon food spoilage bacteria in synthetic media and biofilms. International journal of dairytechnology,2005,58(1):19-24.
    [30] Wickramanayake G B, Rubin A J, Sproul O J. Inactivation of Naegleria and Giardia cysts inwater by ozonation. Journal (Water Pollution Control Federation),1984,56(8):983-988.
    [31] Korich D G, Mead J R, Madore M S, et al. Effects of ozone, chlorine dioxide, chlorine, andmonochloramine on Cryptosporidium parvum oocyst viability. Applied and EnvironmentalMicrobiology,1990,56(5):1423-1428.
    [32] Dumètre A, Le Bras C, Baffet M, et al. Effects of ozone and ultraviolet radiation treatments onthe infectivity of Toxoplasma gondii oocysts. Veterinary parasitology,2008,153(3):209-213.
    [33] Cords B R, Burnett S L, Hilgren J, et al. Sanitizers: halogens, surface-active agents,and peroxides.In: Davidson P M, Sofos J N, Branen A L. Antimicrobials in food. Boca Raton: CRC,2005:507-572.
    [34]郝淑贤,何俊燕,李来好,等.臭氧水对罗非鱼片色泽影响分析.食品科学,2012.
    [35]谢三都,陈荔红,张怡,等.臭氧对鲢鱼鱼丸品质的影响.福建农林大学学报:自然科学版,2009,38(005):552-557.
    [36]薛勇.鳙鱼鱼糜抗冻变性剂及土腥味脱除方法的研究:[博士学位论文].青岛:中国海洋大学,2006.
    [37]杜国伟.鲢鱼糜的脱腥技术研究:[硕士学位论文].无锡:江南大学,2007.
    [38] Silva D. Sensorial and microbial effects of gaseous ozone on fresh scad (Trachurus trachurus).Journal of applied microbiology,1998,84(5):802-810.
    [39] Meunpol O, Lopinyosiri K, Menasveta P. The effects of ozone and probiotics on the survival ofblack tiger shrimp (Penaeus monodon). Aquaculture,2003,220(1):437-448.
    [40]刁石强,吴燕燕,王剑河,等.臭氧冰在罗非鱼片保鲜中的应用研究.食品科学,2007(8):501-504.
    [41]徐泽智,刁石强,郝淑贤,等.用臭氧冰延长水产品保鲜期的试验.制冷学报,2008(5):58-62.
    [42] Marriott N G, Gravani R B. Principles of food sanitation. New York: Springer Science+BusinessMedia, Inc.,2006.
    [43] Guzel-Seydim Z B, Greene A K, Seydim A C. Use of ozone in the food industry. LWT-FoodScience and Technology,2004,37(4):453-460.
    [44] Greene A K, Few B K, Serafini J C. Ozonated vs. chlorinated sanitization of stainless steelsurfaces soiled with milk spoilage organisms. Journal of Dairy Science,1993,76(11):3617-3620.
    [45]黄中洋,郑荣梁.自由基生物学(第三版).北京:高等教育出版社,2007.
    [46]方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002.
    [47] Alfassi Z B. General Aspects of the chemistry of radicals. New York: John Wiley&Sons Ltd,1999.
    [48] Kropp P J. Photobehavior of alkyl halides in solution: radical, carbocation, and carbeneintermediates. Accounts of Chemical Research,1984,17(4):131-137.
    [49] Scaiano J C. Photochemical and free-radical processes in benzil-amine systems. Electron-donorproperties of.alpha.-aminoalkyl radicals. The Journal of Physical Chemistry,1981,85(19):2851-2855.
    [50] Roberfroid M B, Buc Calderon P. Free radicals and oxidation phenomena in biological systems.New York: CRC Press,1995.
    [51] McCord J M, Fridovich I. The Reduction of Cytochrome c by Milk Xanthine Oxidase. Journal ofBiological Chemistry,1968,243(21):5753-5760.
    [52]方允中,杨胜,伍国耀.自由基稳衡性动态.生理科学进展,2004(3):199-204.
    [53] Bader H, HoignéJ. Determination of ozone in water by the indigo method. Water Research,1981,15(4):449-456.
    [54] Ballou D, Palmer G, Massey V. Direct demonstration of superoxide anion production during theoxidation of reduced flavin and of its catalytic decomposition by erythrocuprein. Biochemical andBiophysical Research Communications,1969,36(6):898-904.
    [55] Slykhouse T O, Fee J A. Physical and chemical studies on bacterial superoxide dismutases.Purification and some anion binding properties of the iron-containing protein of Escherichia coli B.Journal of Biological Chemistry,1976,251(18):5472-5477.
    [56] Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygenspecies. International Microbiology,2010,3(1):3-8.
    [57] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerancein crop plants. Plant Physiology and Biochemistry,2010,48(12):909-930.
    [58] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in plant science,2002,7(9):405-410.
    [59] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Archives of biochemistryand biophysics,2005,444(2):139-158.
    [60] Gill S S, Khan N A, Anjum N A, et al. Amelioration of cadmium stress in crop plants bynutrients management: Morphological, physiological and biochemical aspects. Special Issues: PlantStress,2011,5:1-23.
    [61]贾秀英,施蔡雷.镉致黑斑蛙肝脏中ROS生成及其蛋白质氧化损伤作用.环境科学学报,2010(1):186-191.
    [62]曾富华,吴岳轩,罗泽民,等.活性氧及其清除剂诱导抗病作用与影响膜脂过氧化作用的关系.中国农业科学,2000,33(4):103-105.
    [63] Ambrozova G, Pekarova M, Lojek A. Effect of polyunsaturated fatty acids on the reactiveoxygen and nitrogen species production by raw264.7macrophages. European journal of nutrition,2010,49(3):133-139.
    [64]陈扬.米邦塔仙人掌多糖提取鉴定及对缺血性脑损伤的保护作用研究:[博士学位论文].武汉:华中科技大学,2012.
    [65] Tuteja N, Ahmad P, Panda B B, et al. Genotoxic stress in plants: shedding light on DNA damage,repair and DNA repair helicases. Mutation Research/Reviews in Mutation Research,2009,681(2):134-149.
    [66] Tuteja N, Singh M B, Misra M K, et al. Molecular mechanisms of DNA damage and repair:Progress in plants. Critical Reviews in Biochemistry and Molecular Biology,2001,36(4):337-397.
    [67] Diez L, Livertoux M, Stark A, et al. High-performance liquid chromatographic assay of hydroxylfree radical using salicylic acid hydroxylation during in vitro experiments involving thiols. Journal ofChromatography B: Biomedical Sciences and Applications,2001,763(1-2):185-193.
    [68] Elias R J, Andersen M L, Skibsted L H, et al. Identification of Free Radical Intermediates inOxidized Wine Using Electron Paramagnetic Resonance Spin Trapping. Journal of Agricultural andFood Chemistry,2009,57(10):4359-4365.
    [69]程宏英,曹玉华.毛细管电泳-电化学检测法测定硫酸铜-维生素C反应体系中的羟基自由基和菊花的抗氧化活性.色谱,2007(5):681-685.
    [70] Bielski B H, Chan P C. Re-evaluation of the kinetics of lactate dehydrogenase-catalyzed chainoxidation of nicotinamide adenine dinucleotide by superoxide radicals in the presence ofethylenediaminetetraacetate. Journal of Biological Chemistry,1976,251(13):3841-3844.
    [71]徐向荣,王文华,李华斌.化学发光法测定Fenton反应中的羟自由基及其应用.环境科学,1998(2):53-56.
    [72] Ou B, Hampsch-Woodill M, Prior R L. Development and Validation of an Improved OxygenRadical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal ofAgricultural and Food Chemistry,2001,49(10):4619-4626.
    [73] Zweier J L, Flaherty J T, Weisfeldt M L. Direct measurement of free radical generation followingreperfusion of ischemic myocardium. Proceedings of the National Academy of Sciences,1987,84(5):1404-1407.
    [74] Pou S, Ramos C L, Gladwell T, et al. A Kinetic Approach to the Selection of a Sensitive SpinTrapping System for the Detection of Hydroxyl Radical. Analytical Biochemistry,1994,217(1):76-83.
    [75] Kaur H, Halliwell B. Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals:measurement of hydroxyl radical formation from ozone and in blood from premature babies usingimproved HPLC methodology. Analytical biochemistry,1994,220(1):11-15.
    [76] Chodurek E, Zdybel M, Pilawa B. Application of EPR spectroscopy to examination of freeradicals in melanins from A-375and G-361human melanoma malignum cells. Journal of AppliedBiomedicine,2013,11:173-185.
    [77]耿予欢,李国基,魏东,等.荧光探针法测定极地雪藻自由基含量的研究.现代食品科技,2008,24(4):381-384.
    [78]曹炜,尉亚辉,郭斌,等.用荧光探针法研究茶叶花粉黄酮对氧自由基致鼠红细胞膜氧化损伤的保护作用.光子学报,2002,31(4):394-397.
    [79]李兆杰,薛勇.水产品化学.北京:化学工业出版社,2007.
    [80]百度百科.蛋白质变性[EB/OL]. http://baike.baidu.com/view/81898.htm.
    [81] Ragnarsson K, Regenstein J M. Changes in Electrophoretic Patterns of Gadoid and Non-gadoidFish Muscle during Frozen Storage. Journal of Food Science,1989,54(4):819-823.
    [82] Sych J, Lacroix C, Adambounou L T, et al. Cryoprotective Effects of Lactitol, Palatinit andPolydextrose on Cod Surimi Proteins during Frozen Storage. Journal of Food Science,1990,55(2):356-360.
    [83] Benjakul S, Bauer F. Physicochemical and enzymatic changes of cod muscle proteins subjectedto different freeze–thaw cycles. Journal of the Science of Food and Agriculture,2000,80(8):1143-1150.
    [84] Jiang S T, Hwang D C, Chen C S. Denaturation and change in sulfhydryl group of actomyosinfrom milkfish (Chanos chanos) during storage at-20°C. Journal of Agricultural and Food Chemistry,1988,36(3):433-437.
    [85] Saeed S, Howell N K. Effect of lipid oxidation and frozen storage on muscle proteins of Atlanticmackerel (Scomber scombrus). Journal of the Science of Food and Agriculture,2002,82(5):579-586.
    [86] Sompongse W, Itoh Y, Obatake A. Effect of cryoprotectants and a reducing reagent on thestability of actomyosin (from carp) during ice storage. Fisheries Science,1996,62(1):73-79.
    [87] Sultanbawa Y, Li-Chan E C. Structural changes in natural actomyosin and surimi from ling cod(Ophiodon elongatus) during frozen storage in the absence or presence of cryoprotectants. Journal ofagricultural and food chemistry,2001,49(10):4716-4725.
    [88] Ramiarez J A, Martian-Polo M O, Bandman E. Fish Myosin Aggregation as Affected by Freezingand Initial Physical State. Journal of Food Science,2000,65(4):556-560.
    [89] Hebard C E, Flick G J, Martin R E. Occurrence and significance of trimethylamine oxide and itsderivatives in fish and shellfish. In:Chemistry and Biochemistry of Marine Food Products. Westport:AVI Publication,1982:149-304.
    [90] Aubourg S. Practices and processing from catching or harvesting till packaging: Effect on cannedproduct quality. In: A. G. Cabado, Vieites J M. Quality parameters in canned seafoods. New York:Novo Science Publishers, Inc.,2008:1-24.
    [91] Alasalvar C, Taylor K A, Shahidi F. Comparison of volatiles of cultured and wild sea bream(Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-massspectrometry. Journal of agricultural and food chemistry,2005,53(7):2616-2622.
    [92] Peter H. Traditional methods. In: Rehbein H, Oehlenschlager J. Fishery products: Quality, safetyand authenticityTraditional. Oxford, UK: Wiley-Blackwell,2009:19-40.
    [93] Alasalvar C, Garthwaite T. Practical evaluation of fish quality. In: Alasalvar C, Taylor T.Seafoods-Technology, Quality and Nutraceutical Applications. Berlin, Germany: Springer,2002:17-31.
    [94] Tejada M. ATP-derived products and K-value determination. In: Rehbein H, Oehlenschlager J.Fishery products: Quality, safety and authenticity. Oxford, UK: Wiley-Blackwell,2009:66-68.
    [95] McGill A S, Hardy R, Gunstone F D. Further analysis of the volatile components of frozen coldstored cod and the influence of these on flavour. Journal of the Science of Food and Agriculture,1977,28(2):200-205.
    [96] Josephson D B, Lindsay R C, Stuiber D A. Variations in the occurrences of enzymically derivedvolatile aroma compounds in salt-and freshwater fish. Journal of agricultural and food chemistry,1984,32(6):1344-1347.
    [97] Ke P J, Ackman R G, Linke B A. Autoxidation of polyunsaturated fatty compounds in mackereloil: formation of2,4,7-decatrienals. Journal of the American Oil Chemists' Society,1975,52(9):349-353.
    [98] Chytiri S, Chouliara I, Savvaidis I N, et al. Microbiological, chemical and sensory assessment oficed whole and filleted aquacultured rainbow trout. Food Microbiology,2004,21(2):157-165.
    [99]李来好,彭城宇,岑剑伟,等.冰温气调贮藏对罗非鱼片品质的影响.食品科学,2009,30(24):439-443.
    [100]戚晓玉,李燕,周培根.日本沼虾冰藏期间ATP降解产物变化及鲜度评价.水产学报,2001,25(5):482-484.
    [101]李燕,周培根.罗氏沼虾在不同温度贮藏期间鲜度的变化.上海水产大学学报,2002,11(1):62-67.
    [102]李杉,岑剑伟,李来好,等.充气比率对罗非鱼片冰温气调贮藏期间品质的影响.南方水产,2010,6(1):42-48.
    [103] Zhai H, Yang X, Li L, et al. Biogenic amines in commercial fish and fish products sold insouthern china. Food Control,2012,25(1):303-308.
    [104] Nilsen H, Esaiassen M. Predicting sensory score of cod (Gadus morhua) from visiblespectroscopy. LWT-Food Science and Technology,2005,38(1):95-99.
    [105] Downey G. Non-invasive and non-destructive percutaneous analysis of farmed salmon flesh bynear infra-red spectroscopy. Food Chemistry,1996,55(3):305-311.
    [106] Karoui R, Lefur B, Grondin C, et al. Mid-infrared spectroscopy as a new tool for the evaluationof fish freshness. International journal of food science&technology,2007,42(1):57-64.
    [107] Jonsdottir R, Olafsdottir G, Martinsdottir E, et al. Flavor characterization of ripened cod roe bygas chromatography, sensory analysis, and electronic nose. Journal of agricultural and food chemistry,2004,52(20):6250-6256.
    [108] ElMasry G, Wold J P. High-speed assessment of fat and water content distribution in fish filletsusing online imaging spectroscopy. Journal of agricultural and food chemistry,2008,56(17):7672-7677.
    [109] Schubring R. Colour measurement. In: Rehbein H, Oehlenschlager J. Fishery Products: Quality,Safety and Authenticity. Oxford, UK: Wiley-Blackwell,2009:127-172.
    [110] Schubring R. Differential scanning calorimetry. In: Rehbein H, Oehlenschlager J. FisheryProducts: Quality, Safety and Authenticity. Oxford, UK: Wiley-Blackwell,2009:173-213.
    [111] Careche M, Barroso M. Instrumental texture measurement. In: Rehbein H, Oehlenschlager J.Fishery products: Quality, safety and authenticity. Oxford, UK: Wiley-Blackwell,2009:214-239.
    [112] Aursand M, Veliyulin E, Standal I B, et al. Nuclear magnetic resonance. In: Rehbein H,Oehlenschlager J. Fishery products: Quality, safety and authenticity. Oxford, UK: Wiley-Blackwell,2009:252-272.
    [113]岑剑伟,李来好,杨贤庆,等.水产品中河鲀毒素的高效液相紫外测定法.中国水产科学,2010,17(5):1036-1044.
    [114]陈培基,李刘冬,邹琴,等.高效液相色谱法测定水产品中甲基睾丸酮残留量的优化研究.食品科学,2010,31(6):223-226.
    [115]白丽丽,林正峰,戴华. HPLC法检测水产品中孔雀石绿,结晶紫及其关联化合物的残留.海南医学院学报,2011,17(9):1157-1159.
    [116]刘辉,牛智有.基于电子鼻的鱼粉中挥发性盐基氮检测模型比较.农业工程学报,2010(004):322-326.
    [117] Balaban M O, Chombeau M, C rban D, et al. Prediction of the weight of Alaskan Pollock usingimage analysis. Journal of food science,2010,75(8):E552-E556.
    [118]林朝朋,许晓春,钟瑞敏,等.水产品中微量甲醛的色差法快速检测.食品与生物技术学报,2009(006):795-798.
    [119]黄卉,李来好,杨贤庆,等.对虾产品质量分级要素及评价技术.中国水产科学,2010,17(006):1371-1376.
    [120] Jensen K N, J rgensen B M. Effect of storage conditions on differential scanning calorimetryprofiles from thawed cod muscle. LWT-Food Science and Technology,2003,36(8):807-812.
    [121]许雯雯.多聚磷酸盐对养殖鲈鱼品质影响的初步研究:[硕士学位论文].杭州:浙江工商大学,2011.
    [122] Shibamoto T, Bjeldanes L F. Principles of toxicology. In: Shibamoto T, Bjeldanes L F.Introduction to food toxicology. New York: Academic press,2009:1-32.
    [123]中央政府门户网站.中华人民共和国食品安全法[EB/OL].http://www.gov.cn/flfg/2009-02/28/content_1246367.htm.
    [124]贺锡雯.毒理学安全性评价中动物替代方法的研究和应用.中华预防医学杂志,2006,40(3):215-216.
    [125] Paul E F, Paul J. Why animal experimentation matters: The use of animals in medical research.New Jersey: Transaction Publishers,2001.
    [126] CDER, FDA. Guidance for industry: single dose acute toxicity testing for pharmaceuticals (Final).[1996-08-15]. http://www. fda. gov.
    [127] Guilhermino L, Diamantino T, Carolina Silva M, et al. Acute Toxicity Test with Daphnia magna:An Alternative to Mammals in the Prescreening of Chemical Toxicity? Ecotoxicology andEnvironmental Safety,2000,46(3):357-362.
    [128] Meri S, Sel uk H, Belgiorno V. Acute toxicity removal in textile finishing wastewater byFenton's oxidation, ozone and coagulation-flocculation processes. Water research,2005,39(6):1147-1153.
    [129]姜国良,刘云.用臭氧处理海水对鱼虾的急性毒性效应研究.海洋科学,2001,25(3):11-13.
    [130]赵生友,姜晓春,王艳秋,等.四种消毒剂的急性毒性试验和微核试验.癌变.畸变.突变,2004,16(003):178-180.
    [131] Mortelmans K, Riccio E S. The bacterial tryptophan reverse mutation assay with Escherichia coliWP2. Mutation research,2000,455(1-2):61-69.
    [132]刘材材,项凌云,王金辉,等. Ames试验对海产贝类遗传毒性的检测.海洋环境科学,2010(001):124-126.
    [133] Inami K, Ishikawa S, Mochizuki M. Mutagenicity of polyaromatic hydrocarbons by chemicalmodels for cytochrome P450in Ames assay. Toxicological and Environ Chemistry,2010,92(6):1169-1176.
    [134] Ribeiro J C, Antunes L M G, Aissa A F, et al. Evaluation of the genotoxic and antigenotoxiceffects after acute and subacute treatments with a ai pulp (Euterpe oleracea Mart.) on mice using theerythrocytes micronucleus test and the comet assay. Mutation research,2010,695(1):22-28.
    [135] Mohr J, Jain B, Sutter A, et al. A maximum common subgraph kernel method for predicting thechromosome aberration test. Journal of chemical information and modeling,2010,50(10):1821-1838.
    [136]王树槐.喹乙醇诱发CHL细胞染色体畸变试验.中国兽药杂志,1993,27(4):27-29.
    [137]曹霞飞,曹智丽,郑翔,等.甲醛致胎鼠肝微核率及染色体畸变的研究.卫生研究,2009,38(6):667-668.
    [138] Maenosono S, Yoshida R, Saita S. Evaluation of genotoxicity of amine-terminatedwater-dispersible FePt nanoparticles in the Ames test and in vitro chromosomal aberration test. TheJournal of toxicological sciences,2009,34(3):349-354.
    [139]王春花,王玉秋,张静,等.90%单甲脒盐酸盐原药的TK基因突变试验.环境与健康杂志,2011,28(6):523-525.
    [140] Styles J A, Cross M F. Activity of2,4,6-trinitrotoluene in an in vitro mammalian gene mutationassay. Cancer letters,1983,20(1):103-108.
    [141] Blaszkowska J. Induction of dominant lethal mutations by Ascaris trypsin inhibitor in malemice. Reproductive Toxicology,2010,29(1):113-119.
    [142] S derberg P G, Philipson B T, Lindstr m B. Unscheduled DNA synthesis in lens epithelium afterin vivo exposure to UV radiation in the300nm wavelength region. Acta ophthalmologica,2009,64(2):162-168.
    [143] Khabour O F, Alsatari E S, Azab M, et al. Assessment of genotoxicity of waterpipe and cigarettesmoking in lymphocytes using the sister‐chromatid exchange assay: A comparative study.Environmental and molecular mutagenesis,2010,52(3):224-228.
    [144] Boverhof D R, Chamberlain M P, Elcombe C R, et al. Transgenic animal models in toxicology:historical perspectives and future outlook. Toxicological Sciences,2011,121(2):207-233.
    [145]中华人民共和国卫生部,中国国家标准化管理委员会. GB15193.1-2003.食品安全性毒理学评价程序.北京:中国标准出版社,2003.
    [146]李来好,戚勃,杨贤庆.麒麟菜膳食纤维对SD大鼠30天喂养实验和致畸作用.中国水产科学,2006,1:65-72.
    [147]凌利,章达礼,徐焱,等.共轭亚油酸食品安全性毒理学试验研究.粮油食品科技,2003,11(4):4-7.
    [148]赵安莎,孙于兰,周蓉,等. SD大鼠30天喂养试验血液学指标和血清生化指标参考值探讨.中国比较医学杂志,2003,13(1):13-15.
    [149]王茵,来伟旗,陈建国,等.抗除草剂基因(BAR)转基因水稻的毒性试验.卫生研究,2000,29(3):141-142.
    [150] Momma K, Hashimoto W, Yoon H, et al. Safety assessment of rice genetically modified withsoybean glycinin by feeding studies on rats. Bioscience, biotechnology, and biochemistry,2000,64(9):1881-1886.
    [151]中华人民共和国卫生部. GB2760-2011.食品安全国家标准食品添加剂使用标准.北京:中国标准出版社,2011.
    [152] Halliwell B. Free radicals and antioxidants: updating a personal view. Nutrition reviews,2012,70(5):257-265.
    [153] Clancy D, Birdsall J. Flies, worms and the Free Radical Theory of ageing. Ageing ResearchReviews,2013,12(1):404-412.
    [154] Vaziri N D. Mechanisms of lead-induced hypertension and cardiovascular disease. AmericanJournal of Physiology-Heart and Circulatory Physiology,2008,295(2):H454-H465.
    [155] Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidativestress-induced cancer. Chemico-biological interactions,2006,160(1):1-40.
    [156]黄亚成,秦云霞.植物中活性氧的研究进展.中国农学通报,2012,28(36):219-226.
    [157] Hibino M, Okumura K, Iwama Y, et al. Oxygen-derived free radical-induced vasoconstriction bythromboxane A2in aorta of the spontaneously hypertensive rat. Journal of cardiovascularpharmacology,1999,33(4):605-610.
    [158] Elahi M M, Matata B M. Free radicals in blood: evolving concepts in the mechanism of ischemicheart disease. Archives of biochemistry and biophysics,2006,450(1):78-88.
    [159] Adams M R, Kinlay S, Blake G J, et al. Atherogenic lipids and endothelial dysfunction:mechanisms in the genesis of ischemic syndromes. Annual review of medicine,2000,51(1):149-167.
    [160] Cross C E, Forte T, Stocker R, et al. Oxidative stress and abnormal cholesterol metabolism inpatients with adult respiratory distress syndrome. The Journal of laboratory and clinical medicine,1990,115(4):396-404.
    [161] Tosic M, Ott J, Barral S, et al. Schizophrenia and oxidative stress: glutamate cysteine ligasemodifier as a susceptibility gene. The American Journal of Human Genetics,2006,79(3):586-592.
    [162] Shurtz-Swirski R, Sela S, Herskovits A T, et al. Involvement of peripheral polymorphonuclearleukocytes in oxidative stress and inflammation in type2diabetic patients. Diabetes care,2001,24(1):104-110.
    [163]张久亮,史载祥,黄力.大蒜素清除氧自由基的实验研究.中日友好医院学报,2002,16(5):298-300.
    [164] Glaze W H, Kang J, Chapin D H. The chemistry of water treatment processes involving ozone,hydrogen peroxide and ultraviolet radiation. Ozone: Science&Engineering,1987:335-352.
    [165] Hyland K, Auclair C. The formation of superoxide radical anions by a reaction between O2, OHand dimethyl sulfoxide. Biochemical and Biophysical Research Communications,1981,102(1):531-537.
    [166]程涛,孙艳波,李健.双缩脲法测定乳中酪蛋白含量.中国乳品工业,2000,28(3):33-35.
    [167] Benjakul S, Seymour T A, MORRISSEY M T, et al. Physicochemical changes in Pacific whitingmuscle proteins during iced storage. Journal of Food Science,1997,62(4):729-733.
    [168] Yongsawatdigul J, Park J W. Thermal denaturation and aggregation of threadfin breamactomyosin. Food chemistry,2003,83(3):409-416.
    [169] Benjakul S, Visessanguan W, Thongkaew C, et al. Comparative study on physicochemicalchanges of muscle proteins from some tropical fish during frozen storage. Food Research International,2003,36(8):787-795.
    [170]荣建华,甘承露,丁玉琴,等.低温贮藏对脆肉鲩鱼肉肌动球蛋白特性的影响.食品科学,2012,33(14):273-276.
    [171] Seki N, Ikeda M, Narita N. Changes in ATPase activities of carp myofibril during ice-storage.Bulletin of the Japanese Society of Scientific Fisheries,1979,45(6):791-799.
    [172] Seki N, Narita N. Changes in ATPase activities and other properties of carp myofibrillar proteinsduring ice-storage. Bulletin of the Japanese Society of Scientific Fisheries,1980,46(2):207-213.
    [173] Watabe S, Ushio H, Iwamoto M, et al. Rigor-mortis progress of sardine and mackerel inassociation with ATP degradation and lactate accumulation. Nippon Suisan Gakkaishi,1989,55(10):1833-1839.
    [174]薛勇,薛长湖,李兆杰,等.海藻糖对冻藏过程中鳙肌原纤维蛋白冷冻变性的影响.中国水产科学,2006,13(4):637-641.
    [175] Yuan C, Yu K, Chen S, et al. Effect of Freezing Rate on the Denaturation of Myofibrillar Proteinin Fish Muscle. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2011,23:329-334.
    [176]侯温甫,薛长湖,杨文鸽,等.低温速冻处理对鲻鱼冻藏生化特性的影响.海洋水产研究,2006,27(3):73-77.
    [177]袁春红,福田裕.冻结条件下冻藏温度对鲢鱼肉肌原纤维蛋白冷冻变性的影响.上海水产大学学报,2001,10(1):44-48.
    [178]王小利,朱蓓薇,董秀萍,等.虾夷扇贝贝糜冻藏过程中部分理化性质的变化.食品科学,2012,33(04):267-270.
    [179] Starke D W, Chen Y, Bapna C P, et al. Sensitivity of protein sulfhydryl repair enzymes tooxidative stress. Free radical biology&medicine,1997,23(3):373-384.
    [180] Davies K J. Protein damage and degradation by oxygen radicals. I. general aspects. Journal ofBiological Chemistry,1987,262(20):9895-9901.
    [181] Davies K J, Delsignore M E, Lin S W. Protein damage and degradation by oxygen radicals. II.Modification of amino acids. Journal of Biological Chemistry,1987,262(20):9902-9907.
    [182] Davies K J, Delsignore M E. Protein damage and degradation by oxygen radicals. III.Modification of secondary and tertiary structure. Journal of Biological Chemistry,1987,262(20):9908-9913.
    [183] Davies K J, Lin S, Pacifici R E. Protein damage and degradation by oxygen radicals. IV.Degradation of denatured protein. Journal of Biological Chemistry,1987,262(20):9914-9920.
    [184] Perez-Magarino S, Jose I. Prediction of red and rose wine CIELab parameters from simpleabsorbance measurements. Journal of the Science of Food and Agriculture,2002,82(11):1319-1324.
    [185] Hernandez M D, Lopez M B, Alvarez A, et al. Sensory, physical, chemical and microbiologicalchanges in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chemistry,2009,114(1):237-245.
    [186]吴桂苹.肉的颜色变化机理及肉色稳定性因素研究进展.肉类工业,2006(6):32-34.
    [187]邬应龙.漂白魔芋微粉的结构与特性研究:[博士学位论文].杭州:浙江大学,2006.
    [188]中华人民共和国卫生部. GB4789.2-2010.食品安全国家标准食品微生物学检验菌落总数测定.北京:中国标准出版社,2010.
    [189] Ruiz-Capillas C, Moral A. Residual effect of CO2on hake (Merluccius merluccius L.) stored inmodified and controlled atmospheres. European Food Research and Technology,2001,212(4):413-420.
    [190] Reddy N R, Roman M G, Villanueva M, et al. Shelf life and clostridium botulinum toxindevelopment during dtorage of modified atmosphere-packaged fresh catfish fillets. Journal of FoodScience,1997,62(4):878-884.
    [191] Olley J, Lovern J A. Phospholipid hydrolysis in cod flesh stored at various temperatures. Journalof the Science of Food and Agriculture,1960,11(11):644-652.
    [192] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Annual review ofplant biology,1992,43(1):83-116.
    [193] Li L H, Hao S X, Diao S Q, et al. Proposed new color retention method for tilapia fillets (O.NILOTICUS×O. AUREUS) by euthanatizing with reduced carbon monoxide. Journal of FoodProcessing and Preservation,2008,32(5):729-739.
    [194]李来好,郝淑贤,刁石强,等.一种罗非鱼鱼片加工的发色方法.中国专利,1836575.2006-9-27.
    [195] Kilinc B, Cakli S, Dincer T, et al. Microbiological, chemical, sensory, color, and textural changesof rainbow trout fillets treated with sodium acetate, sodium lactate, sodium citrate, and stored at4°C.Journal of Aquatic Food Product Technology,2009,18(1-2):3-17.
    [196] Hatae K, Yoshimatsu F, Matsumoto J J. Role of muscle fibers in contributing firmness of cookedfish. Journal of food science,2006,55(3):693-696.
    [197] Johnston I A, Manthri S, Robertson B, et al. Family and population differences in muscle fibrerecruitment in farmed Atlantic salmon (Salmo salar). Basic and Applied Myology,2000,10(6):291-296.
    [198] Bj rnevik M, Karlsen, Johnston I A, et al. Effect of sustained exercise on white musclestructure and flesh quality in farmed cod (Gadus morhua L.). Aquaculture Research,2002,34(1):55-64.
    [199]裘迪红,李八方.臭氧水减菌化处理在炝蟹生产中的应用.农业工程学报,2008(7):273-275.
    [200] Crapo C, Himelbloom B, Vitt S, et al. Ozone Efficacy as a Bactericide in Seafood Processing.Journal of Aquatic Food Product Technology,2004,13(1):111-123.
    [201]张涛,陈忠林,马军,等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学,2004,25(4):43-47.
    [202]中华人民共和国卫生部,中国国家标准化管理委员会. GB15193.3-2003.急性毒性试验.北京:中国标准出版社,2003.
    [203]中华人民共和国卫生部.保健食品检验与评价技术规范.2003.
    [204]中华人民共和国卫生部,中国国家标准化管理委员会. GB15193.4-2003.鼠伤寒沙门氏菌/哺乳动物微粒体酶试验.北京:中国标准出版社,2003.
    [205]中华人民共和国卫生部,中国国家标准化管理委员会. GB15193.5-2003.骨髓细胞微核试验.北京:中国标准出版社,2003.
    [206]中华人民共和国卫生部,中国国家标准化管理委员会. GB15193.8.小鼠睾丸染色体畸变试验.北京:中国标准出版社,2003.
    [207] Kastenbaum M A, Bowman K O. Tables for determining the statistical significance of mutationfrequencies. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1970,9(5):527-549.
    [208] Würgler F E, Graf U, Berchtold W. Statistical problems connected with the sex-linked recessivelethal test in Drosophila melanogaster. I. The use of the Kastenbaum-Bowman test. Archiv für Genetik,1975,48(2-3):158-236.
    [209]中华人民共和国卫生部,中国国家标准化管理委员会. GB15193.13-2003.30天和90天喂养试验.北京:中国标准出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700