用户名: 密码: 验证码:
纳米和亚微米氧化钛陶瓷烧结曲线及烧结机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对纳米TiO_2的研究,大多集中于其功能性研究,如光催化性能、介电性能、导电性、光电转换特性、气敏、湿敏以及一些新的独特的光学性质,然而纳米氧化钛陶瓷作为结构陶瓷,具有良好的低温超塑性等力学性能,利用超塑性对纳米陶瓷进行形变加工,将会在陶瓷工业中发挥很大的作用。为了得到高致密化的纳米TiO_2陶瓷,研究其烧结理论和烧结机理,具有重要的理论价值和工程意义。
     本论文以纳米和亚微米锐钛矿和金红石TiO_2为原料,采用高温热膨胀仪、X射线衍射仪、扫描电镜、透射电镜、原子力显微镜和差示扫描量热仪等分析测试手段,对恒速升温无压烧结条件下的热膨胀行为、烧结致密化过程、显微结构的变化及烧结机理进行研究,并对二步烧结法制备亚微米氧化钛陶瓷的工艺过程进行研究。
     对比研究了纳米锐钛矿和纳米金红石、亚微米锐钛矿和纳米锐钛矿的烧结曲线、烧结行为以及显微结构的变化过程,重点研究相结构和粒径对烧结行为的影响。结果发现:亚微米锐钛矿烧结中期起始温度明显高于纳米级锐钛矿;锐钛矿在烧结过程中的相变降低了其收缩起始的温度(450℃),最大致密化速率出现的温度(880℃),而纳米金红石的收缩起始温度和最大致密化速率出现的温度分别为750℃和920℃。锐钛矿氧化钛的烧结起始温度,致密化速率,均与粉料粒径有关,粉料越细,越容易烧结。
     根据全期烧结模型,设计实验,建立TiO_2主烧结曲线。纳米TiO_2主烧结曲线对烧结路径不敏感,烧结体的相对密度仅是时间和温度的函数,利用主烧结曲线得到的相对密度和Archimedes法实测的密度吻合,证明了主烧结曲线的有效性:主烧结曲线提供了一种计算烧结激活能的新方法,根据纳米金红石的主烧结曲线,得到其在空气中的烧结激活能为105 KJ/mol。根据主烧结曲线,可以准确预测陶瓷烧结全过程的致密化行为,预测烧结体的收缩量和最终相对密度。
     利用高温热膨胀仪以不同的升温速率进行无压烧结,研究了纳米和亚微米氧化钛的烧结激活能。研究结果表明:随烧结温度的增加,比表面积的增加加速了致密化速率;对于纳米氧化钛,当烧结体的瞬时相对密度为70%-80%时,出现最大致密化速率,而对于亚微米氧化钛陶瓷,最大致密化速率出现在相对密度为75%-85%;纳米和亚微米氧化钛的烧结激活能分别为115±10 KJ/mol和302±15 KJ/mol,纳米氧化钛的初期烧结以界面反应为主导机制,而亚微米氧化钛的初期烧结以边界扩散为主导机制。
     在整个烧结过程中,在最大烧结致密化速率阶段,吸收的热量没有突然增加,比热容基本上是一个常数。比热容随温度变化的关系曲线可以拟合成直线方程,Cp=-0.7+8.79×10~(-4) J/(gK),R=0.89。热分析的结果表明,样品在烧结过程中致密化引起的显微结构的有序化,是一个熵减少的过程,它与由于温度升高引起的热振动熵增加过程是相互抵消的,烧结过程中没有出现明显的放热或吸热现象,是有序无序竞争的结果。
     分别采用两段式无压烧结法(Ⅰ)和粗化预处理二步烧结法(Ⅱ)制备亚微米氧化钛陶瓷。两段式无压烧结法(Ⅰ),可以显著抑制烧结过程中的晶粒长大,得到晶粒细小的高致密度的陶瓷;粗化处理二步烧结法(Ⅱ),第一步的粗化过程使细小的颗粒消失,试样产生更大的孔径,但得到的试样的孔径分布和粒度分布更小。在第二步烧结中,制备了显微组织更加均匀、晶粒更加细小且晶粒尺寸分布更窄的致密化陶瓷。
At present,the studies on nanometer TiO_2 are largely focused on its functional properties,such as the photocatalytic properties,dielectric properties,conductivity, photoelectric conversion features,gas sensitivity,humidity sensitivity and some new unique optical properties.However,nano titanium ceramics,as structural ceramics,has good mechanical properties,such as low-temperature superplasticity.In order to prepare nano TiO_2 ceramics with high relative density,it is very important to investigate the sintering theory and mechanism.
     The anatase and rutile of nanometer and sub-micrometer TiO_2 were used as raw materials in this thesis.The thermal expansion behaviors,the sintering behaviors and mechanism were investigated under the pressureless sintering condition at constant heating rates using Thermal Dilatometer,X-ray Diffractometer(XRD),Scanning Electron Microscope(SEM),Transmission Electron Microscope(TEM),Atom Force Microscope (AFM) and Differential Scanning Calorimeter(DSC).The two step sintering method was also investigated to prepare sub-micrometer TiO_2 ceramics with fine size grain and high relative density.
     The sintering curves of nanometer anatase and rutile and submicrometer anatase titania were compared.The results show that the intermediate sintering stage of nano rutile happenes in the range of 765℃~995℃,nano anatase at 490℃~1000℃and submicrometer anatase at 975℃~1065℃.The temperature of sintering shrinkage onset and maximum densification rate appearance is 750℃and 920℃for nano rutile.However, that of nano anatase is 450℃and 880℃for the phase transformation.The SEM images of sample fracture and the AFM images of etched surface show that the grain growth before 1000℃is induced by the adhesion between small granules in the aggregate,and after 1000℃it is caused by the grain boundary motion.
     Based on the combined-stage sintering model,the master sintering curve(MSC) for the rutile was constructed for sintering in air with constant pressure and using a constant heating rate in a dilatometer.The MSC curve of the rutile TiO_2 samples was constructed and validated under different thermal histories.The MSC,in which the sintered density is a unique function of the integral of a temperature function over time,is insensitive to the heating path.According to the MSC of TiO_2,it is possible to predict the sintering shrinkage and final density and calculate the activation energy(105KJ/mol).With one temperature dependent parameter determined experimentally,it becomes possible to describe accurately the densification behavior of TiO_2 from the initial to final stages during the sintering period.
     The nano- and micrometer rutile TiO_2 power compacts were sintered in air at 1200℃at constant heating rates of 1,3,5℃/min using a dilatometer.The shrinkage behaviors of TiO_2 were investigated to clarify the effect of specific surface area on the densification behaviors at the initial sintering stage.The apparent sintering activation energies were also investigated using the shrinkage data by the Arrhenius plot.The results show that the increase in specific surface area enhances the densification rate with increasing temperature.The activation energy values of nanometer and micrometer TiO_2 are 115±10 KJ/mol and 302±15 KJ/mol,separately.The effect of heating rates on densification rate for manometer TiO_2 is much greater than that for micrometer TiO_2.For nanometer TiO_2,a maximum vale of densification rate appears when the instantaneous relative density is in the range of 70%-80%.But for micrometer TiO_2,the maximum value of densification rate appears in the range of 75%-85%.
     The sintering kinetics of nanometer rutile TiO_2 was intestigeted using DSC.The whole sintering process nearly was a steady endothermic one.The specific heat capacity(Cp) had not increased abruptly at the temperature when the maximal densification rate appeared.The equation of Cp and temperature is Cp=-0.7+8.79×10~(-4)T.
     A two-step sintering process was used to prepare sub-micrometer TiO_2.The first heating step should be short at a relatively high-temperature in order to close porosity without significant grain growth.The second step at a relative low-temperature facilitates further densification with limited grain growth.Fine-grained TiO_2 with a relative density of 95%and a grain size of 0.8μm was prepared by two-step sintering.Besides,another two-step sintering method was investigated.The initial precoarsening at a low temperature with a long dwell time produced an improvement in the microstructure homogeneity during the subsequent sintering.The microstructural refinement was produced by the two-step sintering.
引文
1 萧小月,徐燕,桂治轮等.材料化学研究进展[J].硅酸盐学报,1996(24):322-328
    2 徐祖耀,李鹏兴.材料科学导论[M].北京:国防工业出版社,1985
    3 严东生,师昌绪.新型材料与材料科学[M].北京:科学出版社,1988
    4 高瑞平,李晓光,施剑林等.先进陶瓷物理与化学原理及技术[M],北京:科学出版社,2001.
    5 高基伟,黄顺余,杨辉,等.热处理温度对TiO_2结构和光学性能的影响[J].稀有金属材料与工程,2004,33(suppl 3):52-54.
    6 钱东,闫早学,石毛,等.溶胶凝胶法制备TiO_2纳米颗粒及其光催化性能[J].中国有色金属学报,2005,15(5):817-822.
    7 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002,12.144-188.
    8 李晓娥,祖庸,纳米TiO_2光催化氧化机理及应用[J].化工进展,1999,4:35
    9 徐瑞芬,佘广为,许秀艳.复合涂料中纳米TiO_2降解污染物和抗菌性能研究[J].化工进展2003,22(11):1193-1195
    10 G.C.Kuczynski.Self-Diffusion in Sintering of Metallic Particles[J].Trans Am Inst Mining Met Eng.1949,185(2):169-178.
    11 W.D.Kingery,M.Berg.Study of Initial Stages of Sintering Solids by Viscous Flow,Evaporation-Condensation,and Self-Diffusion[J].J Appl Phys.1955,26(10):1205-1212.
    12 R.L.Coble.Sintering of Crystalline Solids I:Intermediate and Final Stage Diffusion Models [J].J.Appl.Phys.1961,32(5):787-792.
    13 D.L.Johnson.New Method of Obtaining Volume,Grain-Boundary,and Surface Diffusion Coefficients from Sintering Data[J].J Appl Phys.1969,40(1):192-200.
    14 张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994
    15 Gleiter H.Nanocrystalline materials[J].Prog.Mater.Sci,1989,33:223-31
    16 Halperin W P.Quantum size effect in metal particles[J].Rev of Modern Phys,1986,58:533-606
    17 ZhangZhikun,Cui Zuolin,Chen Kezheng,et al.Structure of nano-conductive fibers[J].Chinese Science Bulletin,1997,42:1535-1537
    18 Ryogo Kubo,Arisato Kawabata.Electronic properties of small particles[J].Annu Rev.Mater.Sci,1984,14:49-66
    19 Young Ⅱ Lee,Jong-Heun Lee,Seong-Hyeon Hong and Doh-Yeon Kim.Preparation of nanostructured TiO_2 ceramics by spark plasma sintering[J].Materials Research Bulletin,2003,38(6):925-930.
    20 Padmanabhan.P.V.A,Sreekumar.K.P,Thiyagarajan.T.K,et al.Nano-crystalline titanium dioxide formed by reactive plasma synthesis[J],Vacuum,2006,80(11-12):1252-1255.
    21 LIU Haimei,YANG Wensheng,MA Ying,et al.Synthesis and characterization of titania prepared by using a photoassisted sol-gel method[J].Langmuir,2003,19:3 001 - 3 005.
    22 付宏祥,吕功煊,李树本.Cr~(6+)离子在TiO_2表面光催化还原机理研究[J],化学物理学报,1999,12:113
    23 Serpone N.,Borgarello E.,Barbeni M.,et al.Photocatalytical reduction of gold(Ⅲ) on semiconductor dispersions of TiO_2 in the presence of CN- ion:Disposal of CN- by treatment with hydrogen peroxide[J].J.Photochem.,1987,36:373-388
    24 沈伟韧,赵文宽,贺飞,方佑龄.光催化反应及其在废水处理中的应用[J],化学进展,1998,10:349
    25 K.Sunada,Y.Kikuchi,K.Hashimoto,A.Fujishima,Bactericidal and detoxification effects of TiO_2,thin film photo catalysts[J],Environ.Sci.Technol.1998.32:726
    26 王浩等.TiO_2光催化杀灭肿瘤细胞的研究[J],催化学报,1999,20:373
    27 胡圣飞,龙万堂,黄光华.纳米粒子及其改性涂料[J],精细与专用化妆品,2000,2:13-14
    28 李国辉,李春忠,朱以华.防晒化妆品用纳米氧化钦的表面处理及紫外吸收性能[J],无机盐工业,2000,2:59
    29 高铁,钱朝勇,于向阳.TiO_2表面超亲水性[J],材料导报,2000,14:27
    30 R.Wang,K.Hashimoto,A.Fujishima,Light-induced amphiphilic surfaces[J],Nature,1987,388:431
    31 Y.F.Zhu,L.Zhang,C.Gao,L.L.Cao,The synthesis of nanosized TiO_2 powder using a sol-gel method with TiCl_4 as a precursor[J],J Mater Sci,2000,35:4049
    32 高镰,陈锦元,黄军华,严东升,醇盐水解法制备二氧化钛纳米粉体[J],无机材料学报,199510:423
    33 F.C.Gennari,D.M.Pasquevich.Kinetics of the anatase-rutile transformation in the presence of Fe_2O_3[J].J Mater.Sci.1999,331571
    34 R.Wang,K.Hashimoto,A.Fujishima,M.Chikuni and E.Kojima:Nature,1997,388:431-432
    35 Satterfield C H,Feakes F.Kinetics of Thermal Decomposition of Calcium Carbonate[J].AIChE J,1959,5:115
    36 Ristic M M.Recent Problems in the Science of Sintering[J].Science of Sintering.1990,22(1):3-9
    37 Kuczynski G C.Self-Diffusion in Sintering of Metallic Particles[J].Trans Am Inst Mining Met Eng 1949,185(2):169-178
    38 陆佩文.无机材料科学基础[M].北京:武汉理工大学出版社,1996
    39 冯端,师昌绪,刘治国.材料科学导论-融贯的论述[M].北京:化学工业出版社,2002.502-540
    40 徐仕种,张晓芬,郑晓光等.纳米陶瓷材料制备中的烧结技术[J].吉林师范大学学报(自然科学版),2006,2:10-12
    41 段成军,杨东升,贾春雷等.放电等离子烧结AlN陶瓷[J].硅酸盐学报,2003,31(4):389-392
    42 李凡修,陆晓华,梅平.微波法制备纳米TiO_2材料的研究进展[J].材料导报,2007,21:61-64
    43 肖长江,靳常青,邹文俊.纳米钛酸钡陶瓷的特殊烧结方法和新颖特性的研究进展[J].材料导报,2007,21:11-13
    44 Kuczynski,G.C.Measurement of self-diffusion of silver without radioactive tracers[J].Journal of Applied Physics,1950,21(7):632
    45 Kingery,W.D.,Berg,M.Study of the initial stages of sintering solids by viscous flow,evaporation-condensation,and selfdiffusion[J].Journal of Applied Physics,1955,26(10):1205
    46 Luis A.Perez-Maqueda,Jose Manuel Criado,Concepcion Real.Kinetics of the Initial Stage of Sintering from Shrinkage Data:Simultaneous Determination of Activation Energy and Kinetic Model from a Single Nonisothermal Experiment[J].Journal of the American Ceramic Society,2002,85(4)
    47 R.L.Coble.Sintering crystalline solids.Ⅱ.Experimental test of diffusion models in powder compacts[J].J Appl Phys,1961,32:793
    48 M.P.Harmer,"The Use of Solid Solution Additives in Ceramic Processing",in Advances in Ceramics,10,pp.679-96,Ed.W.D.Kingery,The American Ceramic Society,Columbus,Ohio (1985)
    49 刘士荣,杨爱云.物理化学概念辨析[M].长沙:湖南科学技术出版社,1986,529-530
    50 Yuji Hotta.Microstructure Changges in Sintered Al_2O_3 by Acid Treatment of Compacts Produced by Slip Casting in Gypsum Molds[J].Ceramic International,2002,28:593-599
    51 Dorn J E.in:R Maddin(Ed),Creep and Recovery,American Society Metals.Cleveland,OH:1957,255
    52 Wang J,Raj R.Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Aluminal,and Aluminal Doped with Zirconia or Titania[J].J Am Ceram Soc,1990,73(5):1172-1175
    53 Meng G Y,Sorensen O T.Kinetics analysis on low temperature sintering process for Y-TZP ceramics,in:Y Han(Ed),Advanced Structural Materials,vol2,Elsevier Science Publishers B V Amsterdam,Netherlands:1991,369-374
    54 Wang H T,Liu X Q.Kinetics and mechanism of a sintering process for macroporous alumina ceramics by extrusion[J].J Am Ceram Soc,1998,81(3):781-784
    55 Makipirtti S.in:W Lesznski(Eds),Powder Metallurgy,Interscience Publ,New York,London,1961,97
    56 Frenkel,J.Viscous flow of crystalline bodies under the action of surface tension[J].Journal of Physics,1945,9:385
    57 施剑林.固相烧结-Ⅰ气孔显微结构模型及其热力学稳定性致密化方程[J].硅酸盐学 报,1997,25(5):499-513.
    58 施剑林.固相烧结-Ⅱ粗化与致密化关系及物质传输途径[J].硅酸盐学报,1997,25(6):657-668.
    59 施剑林.固相烧结-Ⅲ实验:超细氧化锆素坯烧结过程的晶粒与气孔生长及致密化[J].硅酸盐学报,1998,26(1):1-13.
    60 景晓宁,倪勇,何陵辉.陶瓷烧结过程孔隙演化的二维相场模拟[J].无机材料学报,2002,17(5):1078-1082
    61 景晓宁,赵建华,何陵辉.固相烧结后期晶粒和气孔拓扑生长演化的二维相场模拟[J].材料科学与工程学报,2003,21(2):170-173.
    62 许世蒙,丁华东,李颖.华东模型中烧结机制相互关系的数学讨论[J].中国有色金属学报,2001,11(S1):176-178
    63 许世蒙,丁华东,李颖.华东烧结模型的数学计算(Ⅰ)[J].装甲兵工程学院学报,2001,15(1):22-26
    64 许世蒙,丁华东,刘俊红.华东烧结模型的数学计算(Ⅱ)[J].装甲兵工程学院学报,2002,16(1):48-52
    65 程远方,果世驹,赖和怡.烧结理论进展-2.烧结初期多种扩散机制耦合作用的烧结模型[J].粉末冶金技术,1999,17(4):257-263
    66 Gregory N.Hassold,I-Wei Chen,and David J.Srolovitz.Computer Simulation of Final-Stage Sintering:I,Model Kinetics,and Microstructure[J].Journal of the American Ceramic Society,1990,73(10):2857
    67 I-Wei Chen,Gregory N.Hassold,David J.Srolovitz.Computer Simulation of Final-Stage Sintering:Ⅱ,Influence of Initial Pore Size[J].J of the Am Cera Soc,1990,73(10):2865
    68 Daoli Zhang,Guangan Weng,Shuping Gong,et al.Computer simulation of grain growth of intermediate-and final-stage sintering and Ostwald ripening of BaTiO_3-based PTCR ceramics [J].Mater Sci and Eng B,2003,99(1-3):428
    69 H.Leclerc and J.C.Gelin.Numerical modeling of solid state sintering using heterogeneous packing and diffusion processes[J].Journal of Materials Processing Technology,2003,143-144(20):891
    70 Tatstuhiko Aizawa,Yunan Prawoto,et al.Coupled,macro-micro modeling for hot deformation and sintering[J].Journal of Computational and Applied Mathematics,2002,149(1):307
    71 Dirk Kadau,Guido Bartels,Lothar Brendel,et al.Contact dynamics simulations of compacting cohesive granular systems[J].Computer Physics Communications,2002,147(1-2):190
    72 R.A.Dorey,J.A.Yeomans,P.A.Smith,et al.In situ optical dilatometric measurements of the initial stages of sintering of alumina[J].Acta Materialia,2001,49(3):519
    73 Lennart Mahler,Magnus Ekh,Kenneth Runesson.A class of thermo-hyperelastic-viscoplastic models for porous materials: theory and numerics [J]. International Journal of Plasticity, 2001, 17(7): 943
    74 Michael Gasik and Baosheng Zhang. A constitutive model and FE simulation for the sintering process of powder compacts [J]. Computational Materials Science, 2000, 18 (1): 93
    75 S. Kolossov, E. Boillat, R. Glardon, P. Fischer and M. Locher. 3D FE simulation for temperature evolution in the selective laser sintering process [J]. International Journal of Machine Tools and Manufacture, 2004, 44(2-3): 117
    76 Michael L. Pines, Hugh A. Bruck. Pressureless sintering of particle-reinforced metal-ceramic composites for functionally graded materials: Part II. Sintering model [J]. Acta Materialia, 2006, 54 (6): 1467
    77 Hassold G N, Chen I-W, Srolovit D J. Computer simulation of final-sintering: I. Model, Kinetics, and Microstructure [J]. J Am Ceram Soc, 1990, 73(10):2865
    78 Hansen James D, Rusin Richard P, Teng Mao-hua. Combined-stage sintering model [J]. J Am Ceram Soc, 1992, 75 (5): 1129
    79 Su Hunghai, Johnson D L. Master sintering curve: a practical approach to sintering [J]. J Am Ceram Soc, 1996, 79 (12):3211
    80 Kutty T R G, Khan K B, Hegde P V. Determination of activation energy of sintering of ThO_2-U_3O_8 pellets using the master sintering curve approach [J]. Sci Sinter, 2003, 35: 125
    81 Kutty T R G, Khan K B, Hegde P V. Development of a master sintering curve for ThO_2 [J]. J Nucl Mater, 2004, 327:211
    82 Tatami J, Suzuki Y, Wakihare T. Control of shrinkage during sintering of alumina ceramics based on master sintering curve theory [J]. Key Eng Mater, 2006, 317:11
    83 Gouri S, Lund J A, Chaklader A C D. Solid State Phenomena, 25/26:45-54, 1992,New York, London, 1961, 97
    84 Chu M Y, Rahaman N N, Brook R J, et al. Effect of Heating Rate on. Sintering and Coarsening. J Am Ceram Soc, 1991,74(6):1217- 1225
    85 Sutton R A, Schaffer G B. An Atomistic Simulation of Solid State Sintering Using Monte Carlo Method. Materials Science and Engineering,2002,A335:253-259
    86 Zeming He, J. Ma. Constitutive modeling of alumina sintering: grain-size effect on dominant densification mechanism[J]. Computational Materials Science,2005,32(2): 196-202
    87 Suk-Joong L Kang, Yang-II Jung. Sintering Kinetics at Final Stage Sintering: Model Calculation and Map Construction [J]. Acta Materials,2004,52:4573-4578
    88 W.J.Soppe, G. J.M.Janssen, B.C.Bonekamp, L.A.Correia, H.J.Veringa.A Computer Simulation Method for Sintering in 3-Demensional Powder Compacts [J].J Mater Sci. 1994, 29:754-761.
    89 C.R.Reid.Numerical Simulation of Free Shrinkage Using a Continuum Theory for Sintering [J]. Powder Technol. 1994, 81 (3):287-291.
    90 M.F.Ashby. A First Report on Sintering Diagrams [J]. Acta Metall. 1974, 22(3):275-289.
    91 R.T.Dehoff.A Cell Model for Microstructural Evolution during Sintering,pp.23-24in Materials Science Research,Vol 16,Sintering and Heterogeneous Catalysis,Edited by G.C.Kuczynski,A.E.Miller,and G.A.Sargent.Plenum Press,New York,1984.
    92 J.Wang and R.Raj.Activation energy for the sintering of two-phase alumina/zirconia ceramics [J].J Am Ceram Soc,1991,74(8):1959-1963.
    93 Chu M Y,Rahaman N N,Brook R J,et al.Effect of Heating Rate on.Sintering and Coarsening[J].J Am Ceram Soc,1991,74(6):1217- 1225
    94 Cutler I B.Sintering of Glass Powder During Constant Rates of Heating[J].J Am Ceram Soc,1969,52(1 ):14-21
    95 Young W S,Cutler I B.Initial Sintering With Constant Rates of Heating[J].J Am Ceram Soc,1970,53(12):659-663
    96 Woolfrey J L,Bannister M J.Non-isothermal Techniques for Studying Initial-Stage Sintering[J].J Am Ceram Soc,1972,55(8):390-398
    97 Lange F F.Powder Processing Science and Technology for Increased Reliability[J].J Am Ceram Soc,1989,72:3-15
    98 J.M.G.Amores,V.S.Escribano,GBusca,Anatase crystal growth and phase transformation to rutile in high-area TiO_2,Moo.TiO_2 and other TiO_2- supported ocide catalytic[J].Mater Chem,1995,5:1245
    99 J.F.Banfield,B.L.Bischof,M.A.Anderson,TiO_2 accessory minerals:coarsening,and transformation kinetics in pure and doped synthetic nanocrystalline materials[J],Chem.Geology,(1993)211-231
    100 H.Z.Zhang,J.F.Banfield,Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation[J],J.Mater.Res.,2000,15:437
    101 SHI J L.Solid state sintering of ceramics:pore microstructure models,densification equations and applications[J].Journal of Materials Science,1999,34:3801-3812
    102 熊晓东.氧化铪烧结行为研究[J].稀有金属材料与工程.1999,28(5):298-301
    103 Chu M Y,Rahaman N N,Brook R J,et al.Effect of Heating Rate on Sintering and Coarsening[J].J Am Ceram Soc,1991,74(6):1217- 1225
    104 雷燕,雄惟皓.陶瓷材料纳米烧结研究进展[J].材料导报,2003,17(5):28-30.
    105 Koji Matsuiw Akira Matsumoto,Masato Uehara,Naoya Enomoto,and Junichi Hojo.Sintering kinetics at isothermal shrinkage:effect of specific surface area on the initial sintering stage of fine zirconia powder[J].J Am Ceram Soc,2007,90(1):44 - 49.
    106 B.-G.Guillaume and G.Christian.Apparent activation energy for the densification of a commercially available granulated zirconia powder[J].J Am Ceram Soc,2007,90(4):1246-1250.
    107 P.-M.Luis,Jose Manuel Criado,and Concepcion Real.Kinetics of the initial stage of sintering from shrinkage data:simultaneous determination of activation energy and kinetic model frown a single nonisothermal experiment[J].J Am Ceram Soc,2002,85(4):763-768.
    108 T.-T.Fang,J.-T.Shiue,F.-S.Shiau.On the evaluation of the activation energy of sintering[J].Mater Chem and Phys,2003,80:108 - 113.
    109 E.Sato and C.P.Carry.Yttria doping and sintering of submicrometer-grained-alumina[J].J Am Ceram Soc,1996,79:2156-2160.
    110 K.Matsui,N.Ohmichi,and M.Ohgai.Sintering Kinetics at Constant Rates of Heating:Effect of Al_2O_3 on the Initial Sintering Stage of Fine Zirconia Powder[J].J Am Ceram Soc,2005,88:3346-3352.
    111 W.S.Young and I.B.Cutler.Initial sintering with constant rates of heating[J].J Am Ceram Soc,1970,53(12):659 - 663.
    112 E.Sato and C.Carry.Effect of powder granulometry and pretreatment on sintering behavior of submicron-grained -alumina[J].J Eur Ceram Soc,1995,15:9-16.
    113 S.Hirai,K.Shimakage,Y.Saitou,T.Nishimura,Y.Uemura,M.Mitomo,and L.Brewer.Syntesis and sintering of cerium(Ⅲ) sulfide powders[J].J Am Ceram Soc,1998,81:145-151.
    114 Yah R Q,CHU F F,MA Q L,Sintering kinetics of samarium doped ceria with addition of cobalt oxide[J].Mater Lett,2006,60:3605 - 3609.
    115 W.J.Lee and T.-T.Fang.Effect of the strontium:barium ratio and atmosphere on the sintering behavior of strontium barium niobate[J].J Am Ceram Soc,1998,81:300-304.
    116 吴刚.材料结构表征及应用[M].北京:化学工艺出版社,2002
    117 李余增.热分析[M].北京:清华大学出版社,1987
    118 袁新恒,彭宗林,张勇,等.甲基丙烯酸镁补强丁腈橡胶的硫化反应动力学[J].上海交通大学学报,2001,35(4):587-590
    119 V.A.Khonik,K.Kitagawa,and H.Morii.On the determination of the crystallization activation energy of metallic glasses[J].J.Appl.Phy.2000,87(12):8440-8443
    120 Leonard C.Thomas.Use of multiple heating rate DSC and modulated temperature DSC to detect and analysis temperature-time-depedent transitions in materials.2001,1:
    121 E.M.Hunt and M.L.Pantoya.Ignition dynamics and activation energies of metallic thermites:From nano- to micron-scale particulate composites[J].J.Appl.Phys.2005,98:1-8
    122 Fausto Rubio,J.Rubio,J.L.Oteo.Analysis by DSC of the drying and sintering processes of alkoxide-derived SiO_2-ZrO_2 gels[J].Thermochimica Acta,1998,320:231-238
    123 Run-hua Fana,Bing Liua,Jing-de Zhanga,et al.Kinetic evaluation of combustion synthesis 3TiO2 + 7Al→3TiAl + 2Al_2O_3 using non-isothermal DSC method[J].Materials Chemistry and Physics.2005,91:140-145
    124 Jana Holubova,Zdenek Cernosek,Eva Cernoskova.Crystallization of supercooled liquid of selenium:The comparison of kinetic analysis of both isothermal and non-isothermal DSC data[J].Materials Letters,2006,60:2429-2432
    125 孙翠娜,乔小晶,张同来等.用差示扫描量热法测定含能化合物的比热容[J].含能材料,2006,14(3):181-183
    126 HU Shao qiang,ZHANG Shao min.Determination of the continuous heat capacity of polypropene heat isolating material[J].Chemical Propellants & Polymeric Materials,2005,3(3):35-37.
    127 邓晓燕,崔作林,杜芳林等.纳米二氧化钛的热分析表征[J].无机材料学报,2001,16(6):1089-1093
    128 肖凡平,张世英,陈振华等.溶胶-乳化-凝胶法制备TiO_2纳米粉体的晶化过程[J].硅酸盐通报,2007,(02).
    129 I.-W.Chen and X.-H.Wang,Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth[J].Nature,2000,404,168-71
    130 Katarina Bodigova' and Pavol S ajgalik.Two-Stage Sintering of Alumina with Submicrometer Grain Size[J],J.Am.Ceram.Soc.,2007,90(1):330-332
    131 X.-H.Wang,P.-L.Chen and I.-W.Chen.Two-Step Sintering of Ceramics with Constant Grain-Size,I.Y_2O_3[J],J.Am.Ceram.Soc.,2006,89(2) 431-7
    132 X.-H.Wang,X.-Y.Deng,H.-L.Bai,Z.Zhou,W.-G.Qu,L.-T.Li and I.-W.Chen,Two-Step Sintering of Ceramics with Constant Grain-Size,Ⅱ:BaTiO_3 and Ni-Cu-Zn Ferrite[J],J.Am.Ceram.Soc.,2006,89,438-43.
    133 A.Polotai,K.Breece,E.Dickey,C.Randall,and A.Ragulya,A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramics[J],J.Am.Ceram.Soc.,2005,88(11) 3008-12.
    134 Y.-I.Lee,Y.-W.Kim,M.Mitomo,and D.Y.Kim,Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two-Step Sintering[J].J.Am.Ceram.Soc.,2003,86,1803-5
    135 Frank J.T.Lin and Lutgard C.De Jonghe.Microstructure Refinement of Sintered Alumina by a Two-Step Sintering Technique[J].J.Am.Ceram.Soc.,1997,80(9):2269-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700