用户名: 密码: 验证码:
透湿性可控的智能聚合物薄膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对形状记忆聚氨酯和温敏性水凝胶的制备作了尝试,对其结构与件能进行了测试及分析,并在此基础上探讨了透湿性可控的智能复合薄膜的制备及其性能表征。
     以聚己二酸丁二醇酯(PBAG)、聚己内酯(PCL)和聚乙二醇(PEG)为软段材料,甲苯-2,4-二异氰酸酯(TDI)为硬段,1,4-丁二醇(BDO)为扩链剂,采用溶液聚合法。合成了系列形状记忆聚氨酯。由此,系统讨论了软段分子量、硬度含量对聚氨酯热学性能、结晶结构及透湿性能的影响。随着软段分子量和硬段含量的增加,形状记忆聚氨酯软硬链段的相分离程度增加,从而导致薄膜的透湿性能有所增加。同时,随着软段分子量的增加和硬段含量的降低,聚氨酯的触发温度T_(s.m)向高温区域移动。选取PBAG基形状记忆聚氨酯系列中两种具有代表性的形状记忆聚氨酯,以不同比例进行了物理混合,进而探讨不同混合比例对混合所得的混合型聚氨酯的相转变温度的影响,以及寻找混合型聚氨酯的相转变温度与其组分中各单一聚氨酯的相转变温度之间的关系。基于相同软段材料但不同分子量和硬段含量所得的聚氨酯混合体,其触发温度的变化与其组分中各单一聚氨酯的含量呈现线性变化关系。这种物理共混方法可以成为控制形状记忆聚氨酯触发温度的一种有效方法。并应用于可呼吸织物及膜的制备上,尤其适用于基于相同合成材料的形状记忆聚氨酯。通过在软段材料中引入亲水性聚合物聚乙二醇(PEG)可以获得在室温温度范围的触发温度,且由于聚乙二醇的加入增加了整个聚氨酯体系的亲水性,因此其透湿量也显著提高。
     以N,N'-亚甲基双丙烯酰胺(BIS)为扩链剂,过硫酸铵(APS)和四甲基乙二胺(TEMED)分别为引发剂和加速剂,采用自由基聚合法合成聚(N-异丙基丙烯酰胺-丙烯酸钠)[poly(NiPAAm-co-SA)]水凝胶。系统研究了聚(N-异丙基丙烯酰胺-丙烯酸钠)凝胶体系在不同丙烯酸钠含量、交联剂浓度、溶液浓度(共聚单体在水溶液中的百分率)及其不同溶胀介质中的溶胀性能。同时,也研究了在不同pH和温度下,凝胶体系的激发响应性能。研究结果表明丙烯酸钠(SA)含量控制在相对于总单体的10%(mol/mol)之内,才能获得有显著热敏性的聚(N-异丙基丙烯酰胺-丙烯酸钠)水凝胶,即水凝胶溶胀率在最低临界溶液温度区域附近的变化幅度可达到和超过50%。由于亲水性共聚单体丙烯酸钠的引入,极大地提高了水凝胶网络的溶胀性能,其溶胀能力相比与未加入丙烯酸单体的水凝胶。提高了20~40倍。在此基础上,采用相分离技术,制备出了具有快速响应性和强溶胀性能的聚(N-异丙基丙烯酰胺-丙烯酸钠)凝胶体系。
     最后,采用两种方法制备了智能透湿复合薄膜。方法一,是将干凝胶微颗粒与非离子型形状记忆聚氨酯进行复合涂层后,采用湿法成膜工艺制备成膜,方法二,是将溶胀平衡状态下的水凝胶微颗粒与离子型形状记忆聚氨酯进行复合涂层后,采用干法成膜工艺制备成膜。所得到的智能透湿复合薄膜,其透湿原理在于热敏型(形状记忆)聚氨酯随温度升高,链段热运动加剧,产生暂时的缝隙,即膜的自由体积,而自由体积增加导致透气导湿性能的增加。由于在触发温度区域,自由体积会发生突变,故透湿性能突变。与水凝胶微颗粒混合后,形成智能共混体系,由于凝胶微颗粒物质具有热缩冷胀的性能,在外界水汽(如雨滴或者汗液)的环境中,当温度升高时(高于最低临界溶液温度),水凝胶的体积相转变性能被激发,聚合物网络急剧脱水,表现为体积快速收缩。这会在聚氨酯薄膜中形成孔道,使得膜的透气导湿性能大大提高。当温度降低时,由于水凝胶颗粒遇湿溶胀,孔道封闭,透气导湿性能下降。对制得的智能复合薄膜进行测试后发现,其透湿性能要超越单一组分的形状记忆聚氨酯薄膜,并可以实现薄膜的“双开关”效应,即由组分中的两种智能材料共同控制。
Shape memory polyurcthanes (SMPUs) and temperature-sensitive hydrogels were synthesized and prepared. The structure and properties of these two kinds of smart polymers were tested and analyzed. Then these two kinds of polymers were assembled to prepare smart composite membranes, and the water vapor permeability of the membranes could be controlled by temperature.
     Segmented shape memory polyurethanes were synthesized by solution synthesis method. Poly(butylenes adipate) glycol (PBAG), polycaprolactone polyol (PCL) and polyethylene glycol (PEG) were used as soft segment, toluene-2,4-diisocyanate (TDI) as hard segment, and 1,4-butanediol (BDO) as chain extender in order to prepare segmented SMPUs. The influence of soft segment molecular weight and hard segment content on the thermal properties, crystallization structures and water vapor permeability was investigated. The phase separation of soft/hard segment of SMPUs was enhanced when the higher hard segment content and larger molecular weight of soft segment was used, which resulted in larger water vapor permeability of shape memory polyurethane membranes. Meanwhile, the trigger temperature T_(s.m) (the crystalline melting temperature) shifted to higher temperature region with the increase of molecular weight of soft segment and the decrease of hard segment content. Two representative PBAG-based SMPUs were mixed according to different weight ratios in order to adjust the trigger temperature and water vapor permeability of the obtained mixture. The results showed that the shape recovery temperature of mixed polyurethanes based on the same soft segment with differing molecular weight and hard segment contents, changed linearly as a function of the content of either polyurethane. This occurred within the range of the shape recovery temperature of the two kinds of simplex polyurethanes, providing a practical method to control the shape recovery temperature of shape memory polyurethanes. Hydrophilic polymer PEG was used as soft segment with PCL, which could induce a trigger temperature around 30℃. The water vapor permeability of PCL/PEG based SMPUs was enhanced greatly.
     Poly(N-isopropylacrylamide-co-sodium acrylate) gels with N,N-methylene bisacrylamide (BIS) as crosslinker, ammonium persulfate (APS) and Tetramethylethylenediamine (TEMED) as initiator and accelerator were prepared by free radical polymerization method. The swelling behavior of Poly(NiPAAm-co-SA) hydrogels was investigated systematically by varying the SA contents, crosslinker concentrations, the pre-gel solution concentrations ( total monomer content in water and also in different swelling solution medium) for obtaining higher swellabilities to study the stimuli-sensitive behavior in the solutions with different pH and temperature. The results indicated that the swelling rate of poly(NiPAAm-co-SA) hydrogel with small content of SA can changed about 50% which proved that the content of SA should be controlled within 10% (mol/mol) in order to obtain the hydrogels with distinctive thermo-sensitivity. The introduction of hydrophilic comonomer SA did greatly enhance the swelling ability of poly(NiPAAm-co-SA) hydrogels, which can improve the swelling rate of poly(NiPAAm-co-SA) hydrogels 20-40 times when compared with pure PNiPPAm hydrogels. Phase separation technique was employed to prepare fast response and strong swelling hydrogels.
     Finally, two methods were used to prepare smart composite membranes. Membrane A was made using dry process by multi-coating poly(NiPAAm-co-SA) hydrogel dry micro-particles and non-ionic shape memory polyurethane. Membrane B was made using wet process by multi-coating poly(NiPAAm-co-SA) hydrogels swollen micro-particles and ionic shape memory polyurethane. The mechanism of water vapor transmission of the membranes is as follow. In the composite system, the water vapor permeability of shape memory polyurethanes can increase dramatically at the trigger temperature, which is provided by the enhanced micro-brown motions of polyurethane molecules around the soft segment crystalline melting temperature (?)s.m· Meanwhile, the hydrogels micro-particles assembled with polyurethane exhibit a reversible volume transition at a transition temperature or lower critical solution temperature (LCST), that is. the hydrogel particles could swell and deswell dramatically with the change of temperature. When the composite membranes were heated to the temperature above the LCST with the presence of water, the hydrogel particles dispelled greatly and pores were created around the particles. As a result, the water vapor permeability of composite membranes was enhanced greatly. When the temperature decreases, the hydrogel particles swelled and the pores disappeared. The water vapor permeability of the composite membranes decreases. The results showed that the water vapor permeability of composite membranes is superior to the single component membranes, and the "double on-off" effect of water vapor permeability of the composite membranes can be achieved.
引文
1.The Gore Fabric Technology.2000,W.L.Gore & Associates,Inc.:Elkton MD.
    2.Colhlka,J.D.and Tanner,J.,Gore-Tex Waterproof,Breathable Laminate.Journal of Coated Fabrics,1976.16(7):p.18-27.
    3.http://www.gore-tex.com/remote/Satellite/content/fabric-technologies,Our Technologies.2007,W.L.Gore & Associates,Inc.
    4.贾娟、王革辉,防水透湿层织物的现状及发展趋势.中国皮革,2006.35(15):p.38-41,47.
    5.刘雍、马敬安,防水透湿织物的研究现状及发层赵势.中原工学院学报,2004 15(3):p.56-59,62.
    6.潘莺、王善元,Gore-tex防水透湿层压织物的概述.中国纺织大学学报,1998.24(5):p.110-114.
    7.邵改芹,防水透湿织物研究新进展.产业用纺织品,2004.22(6):p.42-45
    8.Asahi,K.,Polyurethane Permeable Fabric.Japan Textiles News,1996(2):p.48.
    9.Kramar,L.,Recent and Future trends for High Performance Fabric Providing Breathability and Waterproofness.Journal of Coated Fabrics,1998.10(28):p.106-115.
    10.Lomax,G.R.,Development on Waterproof and Vapor-permeable Coated Fabrics.Journal of Coated Fabrics,1990.67(10):p.176-180.
    11.Rekha,v.D.,Breathable Coatings.Man-made Textiles in India,1999(2):p.67-70.
    12.http://www.diaplex.com/extremehp.html,The Intelligent Materila DiAPLEX 2007,Mitsubishi International Corporation.
    13.顾振亚、陈莉,智能纺织品设计与应用.2005,北京:化学工业出版社.25.
    14.Kannekens,A.,Breathable Coatings and Laminates Journal of Coated Fabrics,199424(7):p.51-59.
    15.Painter,C.J.,Wterproof,Breathable.Fabric Laminates:A Perspective from Film to Market Place.Journal of Coated Fabrics,1996.26(10):p.107-130.
    16.Roey,M.V.,Water-resistant Breathable Fabrias.Journal of Coated Fabrics,1991.21(10)p.20-31.
    17.Ward,D.,Growing Global Interest in Weahterproof Membranes.Textile Month,1998(3):p.14-17.
    18 郝新敏,防水透湿织物原理及加工现状.国际纺织品动态,1994(4):p.42-45.
    19.曾跃民、严灏景、胡金莲.,防水透气织物的发展.上海纺织科技.2001.29(1):p.28-30.
    20.张建春、黄机质.,防水透湿织物的发展与展望.毛纺织科技,2003.21(2):p.5-8
    21.张建春、黄机质、郝新敏,织物防水透湿原理与层压织物生产技术 2003.5,北京:中国纺织出版社.49-53.
    22.王炜、华载文,聚氨酯防水透湿织物新进展.印染,1998(10):p.47-50.
    23 张兴祥、朱民儒,新型涂层织物.产业用纺织品,1994.14(1):p.4-7.
    24 赵文艳,提高聚氨酯涂层透湿性研究.纺织科学研究,1991(4):p.5-9
    25.Drinkmann,M.,Structure and Processing of Sympatex Laminates.Journal of Coated Fabrics,1992.21(1):p.199-211.
    26 Mondal,S and Hu,J.L.,Water Vapor Permeability of Cotton Fabrics Coated with Shape Memory Polyurethane.Carbohydrate Polymers,2007.67(3):p.282-287.
    27.Wang,Z.F.,et al.,Effect of Temperature and Structure on the Free Volume and Water Vapor Permeability in Hydrophilic Polyurethanes Journal of Membrane Science,2004.241(2):p.355-361.
    28 Wang,Z.F.,et al.,Free Volume and Water Vapor Permeability and Properties in Polyurethane Membranes Studies by Positrons.Materials Chemistry and Physics,2004.88(1):p.212-216.
    29 胡金莲、范浩军、叶光斗、刘岩、杨国荣,一种形状记忆纤维及其制备方法.2004:中国.
    30.胡金莲、杨国荣、杨卓鸿、叶光斗、黄元华,-种由形状记忆聚氨酯制备的形状记忆纤维及其制备方法.2004:中国.
    31.胡金莲、杨鸿卓、具有形状记忆性的聚氨酯、含其的组合物及尤其制备的形状记忆织物.2004.
    32.林仕国,形状记忆高分子材料的研究进展.1995,1995.26(2):p.107-111.
    33.傅玉成,杜仲胶记忆材料的性质与应用.高分子材料科学与工程,1992(4):p.123-126.
    34.Norihiko,A.,The materials heating recovery,in 日本公开特许公报(日文).1984.
    35.Hayashi,S.and Shirai,Y.,Development of Polymers Elasticity Memory Materials.Mitsubishi Technical Bulletin,1998(184):p.213-220.
    36.Lin,J.R.and Chen,L.W,Study on Shape-Memory Behavior of Polyether-based Polyurethanes.Ⅰ.Influence of the Hard-Segment Content Journal of Applied Polymer Science,1998.69(8):p.1563-1574.
    37 Lin,J R and Chen,L W,Study on Shape-Memory Behavior of Polyester-Based Polyurethanes.Ⅱ.Influence of Soft-Segment Molecular Weight.Journal of Applied Polymer Science,1998.69(8):p.1575-1586.
    38.Andreas,L.and Steffen,K.,Shape-memory Polymers.Angewandte Chemic International Edition,2002.41(12):p.2035-2057.
    39.Han,M.J.and Ji,H.S.,A,Miscibility and Shape Memory Property of Poly(vinyl chloride)/Thermoplastic Polyurethanes Blends.Journal of Materials Science,2001.36:p.5457-5463.
    40.Han,M.J.,Kim,B.K.,and Choi,Y.J.,Synthesis and Properties of Thermotropic Liquid Polyurethanes Elastomers.Polymer,2000.41(5):p.1849-1855.
    41.Kim,B.K.,et al.,Shape-memory Behavior of Segmented Polyurethanes with an Amorphous Reversible Phase:the Effect of Block Length and Content.Journal of Polymer Science.Part B:Polymer Physics,2000.38(20):p.2652-2657
    42.胡金莲等,形状记忆纺织材料.2006.6,北京:中国纺织工业出版社
    43.Flory,P.J.and Fox,T.G.,Molucular Configuration and Thermodynamic Parameters from Intrinsic Viscosities.Journal of Polymer Science,1950.5(6):p.745-747.
    44 Fox,T.G.and Flory,P.J.,The Glass Temperature and Related Properties of Polystryrene:Influence of Molecular Weight.Journal of Polymer Science,1954.14(75):p.315-319.
    45.Fox,T.G.and Loshaek,S.,Influence of Molecular Weight and Degree of Crosslinking on the Specific Volume and Glass Temperature of Polymers.Journal of Polymer Science,1955.15(80):p.371-390.
    46.Cho,J.W.,et al.,Water Vapor Permeability and Mechanical Properties of Fabrics Coated with Shape-memory Polyurethane.Journal of Applied Polymer Science,2004.92(5):p.2812-2816.
    47 Hu,J.L.and Mondal,S.,Structural Charactertization and Mass Transfer Properties of Segmented Polyurethane:Influence of Block Length of Hydrophilic Segments.Polymer International,2005.54(5):p.764-771.
    48.Yang,B.,et al.,Effect of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer.Polymer,2006.47(4):p.1348-1356.
    49.Yilgor,I.and Yilgor,E.,Hydrophilic Polyurethaneurea Membranes:Influence of Soft Block Composition on the Water Vapor Permeation Rates.Polymer,1999.40(20):p.5575-5581.
    50.Kim,B.Y.,et al.,Polyurethane Ionomers Having Shape Memory Effects.Polymer,1998.39(13):p.2803-2808.
    51.Jeong,H.M.,et al.,Water Vapor Permeability of Shape Memory Polyurethane with Amporous Reversible Phase.Journal of Polymer Science:Part B:Polymer Physics,2000.38(23):p.3009-3019.
    52.Jeong,H.M.,Ahn,B.K.,and Kim,B.K.,Temperature Sensitive Water Vapor Permeability and Shape Memory Effect of Polyurethane with Crystalline Revesible Phase and Hydrophilic Segments.Polymer International,2000.49(12):p.1714-1721.
    53 Norikiko,A.,The Material of Heating Recovery.1984:Japan
    54.Li,F.K.,et al.,Crystallinity and Morphology of Segmented Polyurethanes with Different Soft-segment Length.Journal of Applied Polymer Science,1996.62:p.631-638.
    55.Fu,B.,X.,et al.,2001.Polymer,Structural Development During Deformation of Polyurethane Containing Polyedral Oligomeric Silsesquioxanes(POSS) Molecules.42(2):p.599-611.
    56 喻春红、陈强、侯向辉、沈健,化学交联型形状记忆聚氨酯材料研究.机械科学与技术,2001.20(1):p.69-70.
    57 Schneider,N.,et al.,Water Vapor Transport in Structurally Varied Polyurethanes Journal of Macromolecular Science Physics,1969(B3):p.341-350.
    58.Hsieh,K.H.,Tsai,C.C.,and Tseng,S.M.,Vapor and Gas Permeability of Polyurethane Membranes.Part Ⅰ.Structure-property Relationship.Journal of Membrane Science,1990.49(3):p.341-350.
    59 Hsieh,K.H.,Tsai,C.C.,and Chang.D.M.,Vapor and Gas Permeability of Polyurethane Membranes.Part.Ⅱ.Effect of Functional Group.Jounal of Membrane Science,1991.56(3):p.279-287.
    60 Hayashi,S.and Ishikawa,N.,High Moisture Permeability Polyurethane for Textile Applwations.Journal of Coated Fabrics,1993(23):p.74-87.
    61.Chattopadhyay,D.K.,Sreedhar,B.,and Raju,K.V.S.N.,Thermal Stability of Chemically Crosslinked Moisture-cured Polyurethane Coatings.Journal of Applied Polymer Science,2005.95(6):p.1509-1518.
    62.Peng,C.C.and Abetz,V.A.,Simple Pathway Toward Quantitative Modification of Polybutadiene:A New Approach to Thermoreversible Cross-linking Rubber Comprising Supramolecular Hydrogen-bonding Networks.Macromolecules,2005.38(13):p.5575-5580.
    63.Yen,M.S.and Kuo,S.C.,Effects of Mixing Propedure on the Structure and Physical Properties of Ester-ether-type Soft Segment Waterbone Polyurethane.Journal of Applied Polymer Science,1996.61(10):p.1639-1647.
    64 Yen,M.S.and Kuo,S.C.,PCL-PEG-PCL Triblock Copolydiol-based Waterborne Polyurethane.Ⅰ.Effects of the Soft-segment Composition on the Structure and Physical Properties.Journal of Applied Polymer Science,1997.65(5):p 883-892.
    65.Yen,MS.and Kuo,S.C.,PCL-PEG-PCL Triblock Ester-ether Copolydiol-based Waterborne Polyurethane.Ⅱ.Effect of NCO/OH Mole Ratio and DMPA Content on the Physical Properties.Journal of Applied Polymer Science,1998.67(7):p.1301-1311.
    66.Briber,R.M.and Thomas,E.L.,Investigation of Two Crystal Forms in MDI/BDO-based Polyurethanes.Journal of Macromolecular Science Physics,1983.22(4):p.509-528.
    67.Foks,J.and Janik,H.,Electron-microscopical Investigation of the Morphology of Segmented Polyurethanes.Journal of Applied Polymer Science,1989.31(5):p.1281-1291.
    68.Foks,J.and Janik,H.,Microscopic Studies of Segmented Urethanes with Different Hard Segment Content.Polymer Engineenng & Science,1989.29(2):p.113-119.
    69 Foks,J.,et al.,Morphology and Thermal Properties of Polyurethanes Prepared Under Different Conditions.European Polymer Journal,1989.25(1):p.31-37.
    70.Foks,J.,Janik,H.,and Russo,R.,Morphology,Thermal and Mechanical Properties of Solution-cast Polyurethane Films.European Polymer Journal,1990.26(3):p.309-314.
    71.Gibson,P.E.,Bonart,J.W.V.,and Cooper,S.L.,Small-angle X-ray Scattering Studies of Thermally-induced Morphological Changes in Segmented Polyurethane Elastomers.Journal of Polymer Science.Part B:Polymer Physics,1986.24(4):p.885-907.
    72.Hesketh,T.R.,Bogart,J.W.C.v.,and Cooper,S.L.,Differential Scanning Calorimetry Ananlysis of Morphological Changes in Segmented Elastomers.Polymer Engineering &Science,1980.20(3):p.190-197.
    73.Ishihara,H.,Studies on Segmented Polyurethane-urea Elastomers:Structure and Properties of Segmented Polyurethane-ureas Having the Binary Hard Segment Components.Journal of Macromolecular Science Physics,1983.22(5&6):p.763-782.
    74.Ishihara,H.,Kimura,I.,and Yoshihara,N.,Studies on Segmented Polyurethane-urea Elastomers:Structure of Segmented Polyurethane-ureabased on Poly(tetramethylene glycol) 4,4'-diphenylenethane diisocyanate,and 4.4'-diaminodiphenylmethane.Journal of Macromolecular Science Physics,1983.22(5&6):p.713-733.
    75.Kazmierczak,M.E.,et al.,Inverstigation of a Seris of PPDI-based Polyurethane Block Copolymers.Ⅰ.General Morphology.Journal of Polymer Science.Part B:Polymer Physics,1989.27(11):p.2173-2187.
    76.Kazmierczak,M.E.,et al.,Investigation of a Series of PPDI-based Polyurethane Block Copolymer.Ⅱ.Annealing Effects.Journal of Polymer Science.Part B:Polymer Physics,1989.27(11):p.2789-2202.
    77.Koberstein,J.and Galambos,A.F.,Multiple Melting in Segmented Polyurethane Block Copolymers.Macromolecules,1992.25(21):p.5618-5624.
    78.Koberstein,J.and Russell,T.P.,Simultaneous SAXS-DSC Study of Multiple Endothermic Behavior in Polyether-based Polyurethane Block Copolymers.Macromoleculcs,1986.19(3):p.714-720.
    79 Neumuller,W.and Bonarat,R.,Inverstigation of the Domain Structure in Segmented Polyurethanes By Means of Small-angle X-ray Scattering Journal of Macromolecular Science Physics,1982.21(2):p.203-217.
    80.Spathis,G.,et al.,Relaxation Phenomena and Morphology of Polyurethane Block Copolymers.Journal of Macromolecular Science Physics,1990.22(1):p.31-48.
    81.Woo,E.J.,et al.,Sturcture-property Relationships in Thermoplastics Elastomers:Ⅰ.Segmented Polyether-polyurethanes.Polymer Engineering & Science,1985.25(13):p.834-840.
    82.Lin,C.Y.,et al.,Smart Temperature-controlled Water Vapor Permeable Polyurethane Film.Jounal of Membrane Science,2007.299(1-2):p.91-96.
    83.Lin,J.R.and Chen,L.W.,Shape-memorized Crosslinked Ester-Type Polyurethane and Its Mechanical Viscoelastic Model.Journal of Applied Polymer Science,1999.73(7):p.1305-1319.
    84.严冰、邓剑如,形状记忆聚氨酯的结构与性能研究.聚氨酯工业,2003.18(3):p.11-14.
    85.严冰、邓剑如·离子型形状记忆聚氨酯的合成和性能研究.合成纤维,2004(3):p.16-19.
    86.Annaka,M.and Tanaka,T.,Multiple Phases of Polymer Gels.Nature,1992.355:p.430-432
    87.Hu,Z.B.,Zhang,X.M.,and Li,Y.,Synthesis and Application of Modulated Polymer Gels.Science,1995.269(5223):p.525-527.
    88.Osada,K,Okuzaki,H.,and Hori,H.,A Polymer Gel with Electrically Driven Motility Nature,1992.355(16):p.242-244.
    89.Peppas,N.A.and Langer,R.,New Chanllenges in Biomatenals.Science,1994.263(5154):p.1715-1720.
    90.Zhang,X.M.and Hu,Z.B.,Bending of Bi-gels.Journal of Chemical Physics,1996.105(9):p.3794-3800.
    91.Flory,P.J.,Principle of Polymer Chemistry.1953,New York:Cornel University Press.
    92.Scarpa,J.S.,Mueller,D.D.,and Klotz,I.M.,Slow Hydrogen-deuterium Exchange in a Non-a-helical Polymaide.Journal of American Chemistry and Society,1967.89:p.6024-6030.
    93.Dusek,K.and Patterson,D.,Transition in Swollen Polymer Networks Induced by Intramolecular Condesation.Journal of Polymer Science Part A-2,1968.6(1):p.1209-1216
    94.Tanaka,T.,Collapse of Gels and the Critical Endpoint.Physical Review Letters,1978.40(2):p.820-828.
    95.Tanaka,T.,Filmore,D.,and Sun,S.T.,Phase Transition in Ionic Gels.Physical Review Letters,1980.45(20):p.1636-1639.
    96.Tanaka,T.,Nishio,Z.,and Sun,S.T.,Collapse of Gels in an Electric Field Science,1982.218:p.467-469.
    97.Iwata,H.,et al.,Preparation of Temperature-sensitive Membranes by Graft Polymerizationonto a Porous Membrane.Journal of Membrane Science,1999.55(1-2):p.119-130.
    98.Kokufuta,E.,et al.,Effects of Surfactants on the Phase Transition of Poly(N-isopropylacylamide) Gel.Macromolecules,1993.26(5):p.1053-1059.
    99.Lin,S.Y.,Chen,K.S.,and Liang,R.C.,Thermal Micro ATR/FT-IR Spectroscopic System for Quantitative Study of the Molecular Structure of Poly(N-isoprogpylacrylamide) in Water.Polymer,1999.40(10):p.2619-2624.
    100.石艳丽、李珍、张高奇、马敬红、梁伯润,CMC/PNiPAAm半互传网络水凝胶的溶胀动力学研究.功能高分子学报,2005.18(1):p.111-116
    101.张高奇、查刘生、周美华、马敬红、梁伯润,海藻酸钠和聚N-异丙基丙烯酰胺半互穿网络水凝胶的溶胀动力学研究.高分子学报,2005(1):p.36-39102.张先正、卓仁喜.,快速温度敏感聚(N-异丙基丙烯酰鞍-co-丙烯酰胺)水凝胶的制备及性能研究.高等学校化学学报,2000.21(8):p.1309-1311.
    103.张先正、卓仁喜.,温度敏感聚(N-异丙基丙烯酰胺)/聚(乙烯醇)水凝胶的制备及性能研究.高等学校化学学报,2000.21(11):p.1776-1778
    104.朱健、朱秀林、陆建美、郭卫华、袁永坤,pH敏感性和温敏性聚丙烯酸钠与聚N-异丙基丙烯酰胺互穿网络材料的合成及其溶胀行为的研究.高校化学工程学报,2005.16(3):p.302-305
    105.Gehrke,S.H.,Andrews.G.P,and Cussler,E.L.,Chemical Aspects of Gel Extraction.Chemical Engineering Science,1980.47(8):p.2153-2160.
    106.Hoffman,A.S.,Applications of Thermally Reversible Polymers and Hydrogels in Therapeutics and Diagnostics.Journal of Controlled Release,1987.6(1):p.297-305
    107.Hoffman,A.S.,Afrassiabi,A.,and Dong,L.C.,Thermally Reversible Hydrogels:Ⅱ.Delivery and Selective Removal of Substances from Aqueous Solution.Journal of Controlled Release,1986.1986(4):p.4.
    108.Park,T.G.and Hoffman,A.S.,Effect of Temperature Cycling on the Activity and Productivity of Immobilized β-galactosidase in a Thermally Reversible Hydrogels Bead Reactor Applied Biochemistry and Biotechnology,1988.19(1):p.1-9.
    109.Tanaka,T.,Collapse of Gels and the Critical Endpoint.Physical Review Letters,1978.40(12):p.820-823
    110.Flory,P.J.,Theory of Elasticity of Polymer Networks:the Effect of Total Constraints on Junctions.Journal of Chemical Physicis,1977.66(12):p 5720-5729.
    111.Ricka,J.and Tanaka,T.,Swelling of Ionic Gels Quantitative Performance of the Donnan Theory.Macromolecules,1984.17(12):p.2916-2921.
    112.Bajaj,P.,Thermally Sensitive Materials.Smart Fibers,Fabrics and Clothing,ed.X.M.Tao.2001,Cambriage:Woodhead Publishing.
    113.Chung,H.and Cho,G,Thermal Properties and Physiological Response of Vapor-Permeable Water-Repellent Fabrics Treated with Microcapsule-Containing PCMs.Textile Research Journal,2004.74(4):p.571-575.
    114.Shim,H.,McCullough,E.A.,and Jones,B.W.,Using Phase Change Materials in Clothing.Textile Research Journal,2001.71(6):p.495-502.
    115.Zhang,X.,Heat-storage and Thermo-regulated Textiles and Clothing Smart Fibers,Fabrics and Clothing,ed.X.M.Tao.2001,Cambriage:Woodhead Publishing.
    116.Rossi,R.M.and Bolli,W.P.,Phase Change Materials for the Improvement of Heat Protection.Advanced Engineering Materials,2005.7(5):p.368-373.
    117.Gontard,N.,Guilbert,S.,and Cuq,J.L.,Water and Glycerol as Palsticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film.Journal of Food Science,1993.58(1):p.206-211.
    118.Schuman,T.,Wilkstrom,M,and Rigdahl,M.,Dispersion Coating with Carboxylated and Cross-linked Styrene-butadiene Latices.1.Effect of Some Polymer Characteristics on Film Properties.Progress in Organic Coatings,2004.51(3):p.220-227.
    119.Ding,X.M.,et al.,Preparation of Temperature-Sensitive Polyurethane for Smart Textiles.Textile Research Journal,2006.76(51):p.406-413.
    120.Park,Y.S.,Ito,Y.,and Imanishi,Y.,Permeation Control Porous Membranes Immobilized with Thermosensitive Polymer.Langmuir,1998.14(4):p.910-914.
    121.Huang,J.,et al.,Temperature-Sensitive Membranes Prepared by the Plasma-Induced Graft Polymerization of N-isopropylacrylamide into Porous Polytheylene Membranes.Journal of Applied Polymer Science,2003.89(7):p 3180-3187.
    122.Liang,L,et al.,Temperature-sensitive Polypropylene Membranes Prepared by Plasma Polymerization.Journal of Membrane Science,2000.177(1-2):p.97-108.
    123.Chen,K.S.,et al.,Effects of Additives on the Photo-induced Grafting Polymerization of N-isopropylacrylamide Gel onto PET Film and PP Nonwoven Fabric Surface.Materials Science and Englneering:C,2002.20(1-2):p.203-208.
    124.Lee,Y.M.and Shim,J.K.,Permeation Control Through Stimuli-responsive Polymer Membrane Prepared by Plasma and Radiation Grafting Techniques.Tao,X.M.,ed F.a.C.Smart Fiber.2001,Cambriage:Woodhead Publishing.109-123.
    125.Xie,J.B.and Hiseh,Y.L.,Thermosensitive Poly(N-isopropylacrylamide) Hydrogels Bonded on Cellulose Supports.Journal of Applied Polymer Science,2003.89(4):p.999-106.
    126.Kubota,H.and Shiobara,N.,Photografting of N-isopropylacrylamide on Cellulose and Temperature-responsive Character of the Resulting Grafted Celluloses.Reactive and Functional Polymer,1998.37(1-3):p.219-224.
    127.Liu,J.Q.,Zhai,M.L.,and Ha,H.F.,Pre-irradiation Grafting of Temperature Sensitive Hydrogel on Cotton Cellulose Fabric.Radiation Physics and Chemistry,1999.55(1):p.55-59.
    128.Save,N.S.,Jassa,M.,and Agrawal,A.K.,Smart Breathable Fabric.JOurnal of Industrial Textiles,2005.34(3):p.139-155.
    129.Crespy,D.and Rossi,R.M.,Mini-Review Temperature-responsive Polymers with LCST in the Physiological Range and Their Applications in Textiles.Polymer International,2007.56(1):p.1461-1468.
    130.Li,X.,et al.,Fast Responsive poly(N-isopropylacrylamide) Hydrogels Prepared in Phenol Aqueous Solutions.European Polymer Journal,2006.42(10):p.2458-2463.
    131.Hirokawa,Y.and Tanaka,T.,Volume Phase Transition in a Nonionic Gel.Journal of Chemical Physicis,1984.81(12):p.6379-6380.
    132.Hirose,H.and Shibayama,M.,Kinetics of Volurae Phase Transition in Poly(N-isopropylacrylamide-co-acrylic acid)Gels.Macromolecules,1998.31(16):p.5336-5342.
    133.Okano,T.,et al.,Thermally on-off Switching Polymers for Drug Permeation and Release.Journal of Controlled Release,1990.12(1):p.255-265.
    134.Xue,W.,et al.,Rapid Swelling and Deswelling in Cryogels of Crosslinked poly(N-isopropylacrylamide-co-acrylic acid).European Polymer Journal,2004.40(3):p.467-476.
    135.Xue,W.and Hamley,I.W.,Thermoreversible Swelling Behavior of Hydrogels based on N-isopropylacrylamide with a Hydrophobic Comonomer.Polymer,2002.43(10):p.3069-3077.
    136.Xue,W.,Hamley,I.W,and Huglin,M.B.,Rapid Swelling and Deswelling of Thermoreversible Hydrophobically Modified poly(N-isopropylacrlamide) Hydrogels Prepared by Freezing Polymerisation.Polymer,2002.43(19):p.5181-5186.
    137.Asoh,T,et al.,Rapid Deswelling of Semi-IPNs with Nanosized Tracts in Repsonse to pH and Temperature Journal of Controlled Release,2006.42(2):p.387-394.
    138.Otake,K.,et al.,Pressure Effects on the Aggregation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) in Aqueous Solutions.Macromolecules,1993.26(9):p.2194-2197.
    139.Huglin,M.B.,Liu,Y.,and Velada,J.L.,Thermoreversible Swelling Behavior of Hydrogels Based on N-isopropylacylamide with Acidic Comonomers.Polymer,1997.38(23):p.5785-5791.
    140.Liu,Y.and Velada,J.L.H.,M.B.,Thermoreversible Swelling Behavior of Hydrogels based on N-isopropylacrylamide with Sodium Acrylate and Sodium Methacrylate.Polymer,1999.40(15):p.4299-4306.
    141.Yu.H.;Grainger,D.W.,Thermo-sensitive Swelling Behavior in Crosslinked N-isopropylacrylamide Networks:Cationic,Anionic,and Ampholytic Hydrogels.Journal of Applied Polymer Science,1993.49(9):p.1553-1563.
    142.Yu.H.;Grainger,D.W.,Amphiphilic Thermoreversible N-isopropylacrylamide Terpolymer Hydrogels Prepare by Micellar Polymerization in Aqueous Media Macromolccules,1994.27(16):p.4554-4560.
    143.Yu.H.;Grainger,D.W.,Modified Release of Hydrophilic,Hydrophobic and Peptide Agents from Ionized Amphiphilic Get Networks.Journal of Controlled Release,1995.34(2):p.117-127.
    144.Morhan,Y.W.,et al.,Stimuli-responsive poly(N-isopropylacrylamide-co-sodium acrylate)Hydrogels:A Swelling Study in Surfactant and Polymer Solutions.Reactive and Functional Polymer,2007.67(9):p.844-858.
    145.Yoo,M.K.,et al.,Effect of Polyelectrolyte on the Lower Critical Solution Temperature of Poly(N-isopropylacrylamide) in the poly(NiPPAm-co-acrylic acid) Hydrogel.Polymer,2000.41(15):p.5713-5719.
    146.Dong,L.C.and Hoffman,A.S.,Thermally Reversible Hydrogels:Ⅲ.Immobilization of Enzymes for Feedback Rection Control Journal of Controlled Release,1986.4(3):p.223-227.
    147.Muller,K.F.,Thermotropic Aqueous Gels and Solutions of N,N-dimethylacrylamide-acrylate copolymers.Polymer,1992.33(16):p.3470-3476.
    148.Zhang,X.Z.and Chu,C.C.,Fabrication and Characterization of Microgel-impregnated,Thermosensitive PNiPAAm Hydrogels.Polymer,2005.46(23):p.9664-9673.
    149.Zhuo,R.X.and Li,W.,Preparation and Characterization of Macroporous poly(N-isopropylarcylamide) Hydrogels for the Controlled Release of Proteins.Journal of Polymer Science:Part A:Polymer Chemistry,2003.41:p.152-159.
    150.Kabra,B.G.and Gehrke,S.H.,Synthesis of Fast Response,Temperature-Sensitive poly(N-isopropylacrylamide) Gel.Polymer Communications,1991.32:p.322-323.
    151.Wu,X.S.and Hoffman,A.S.,Synthesis of fast repsonse,temperature sensitive poly(N-isopropylacrylamide) gel.Journal of Polymer Science:Part A:Polymer Chemistry,1992.30(10):p.2121-2129.
    152.Gehrke,S.H.,Palasis,M.,and Akhtar,M.K.,Effect of Synthesis Conditions on Properties of poly(N-isopropylacrylamide) Gels.Polymer International,1992.29(1):p.29-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700