用户名: 密码: 验证码:
基于偏氯乙烯嵌段共聚物的多级多孔炭的制备、结构和电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔炭材料具有孔隙结构丰富和比表面积大等特点,应用广泛。多级多孔炭(Hierarchical porous carbons, HPCs)是包含了微孔、中孔和/或大孔的新型多孔炭材料,结合了微孔炭比表面积大与中/大孔炭孔隙尺寸大等优点,在超级电容器、大分子尺寸物质吸附分离和催化剂负载等方面具有良好的应用前景。目前,HPCs的制备方法主要有多模板法、催化活化法、有机凝胶碳化法和共混聚合物碳化法等,大多存在制备工艺复杂,对孔结构控制有限等问题,制约了它们的应用。
     本文提出一种自模板(self-templating)直接碳化制备高比表面积、高孔容HPC的新方法,即通过活性自由基聚合构建由可碳化形成含微孔碳骨架的偏氯乙烯(VDC)聚合物和可热解聚合物组成的嵌段共聚物,选择合适的可热解聚合物和嵌段共聚物组成而形成微相分离结构,由可热解聚合物的热解形成中孔/大孔,最终得到具有微孔、中孔和/或大孔的HPCS。
     以聚乙二醇(PEG)、聚丙烯酸丁酯(PBA)、聚丙烯酸(PAA)和聚苯乙烯(PS)为热解聚合物,通过可逆加成断裂链转移聚合(RAFT)制备由VDC聚合物和以上可热解聚合物组成的嵌段共聚物。发现以2-(十二烷基三硫代碳酸酯基)-2-异丁酸(TTCA)为链转移剂(CTA)可以实现以VDC为主单体的RAFT溶液聚合,反应具有活性聚合的特性;但由于VDC聚合易向单体链转移,导致聚合得到的VDC聚合物分子量较低且分子量分布较宽。通过加入热解聚合物的相应单体(丙烯酸丁酯、丙烯酸和苯乙烯)进行再引发反应,制备了PVDC-b-PBA、PVDC-b-PAA和PVDC-b-PS共聚物;利用PEG与TTCA酯化合成大分子CTA,制备了PVDC-b-PEG-b-PVDC共聚物;利用S,S'-双(2-甲基-2-丙酸基)三硫代碳酸酯合成了PS-b-PVDC-b-PS共聚物,并考察了嵌段共聚物平均分子量及分子量分布,发现溶液聚合得到的嵌段共聚物的分子量较低且受链长限制。
     鉴于溶液聚合的不足,以两亲性大分子RAFT试剂PAA-b-PS-TTCA为乳化剂,实现了以VDC为主单体的RAFT乳液聚合,考察了乳液中和方式、乳化剂结构和浓度以及乳液固含量对聚合动力学的影响,并对聚合成核机理进行了探讨。发现RAFT乳液聚合速率远大于RAFT溶液聚合,聚合产物具有高分子量(Mn=25kg/mol)且分子量分布较窄,反应具有良好的可控性;以VDC聚合物乳胶粒子为种子,进一步通过RAFT种子乳液法制备了高分子量的PVDC-b-PS共聚物。
     采用原子力显微镜(AFM)、透射电镜(TEM)和小角X光散射(SAXS)进行嵌段共聚物的微相结构分析。由于热解聚合物嵌段与VDC聚合物嵌段的热力学不相容,嵌段共聚物都具有微相分离结构,PVDC-b-PEG-b-PVDC徼相分离尺寸较小,约为10~20nm,PVDC-b-PAA共聚物微相分离尺寸约为30~70nm,PVDC-b-PS共聚物微相分离尺寸约为20~100nm。热重分析仪(TGA)和差示扫描量热仪(DSC)对嵌段共聚物的热性能分析表明,嵌段共聚物都有两个明显的转变温度,分别对应PVDC和热解聚合物嵌段的玻璃化转变,并随着VDC聚合物嵌段的减少和热解聚合物嵌段的增加,热焓有相应的变化。碳化过程中,VDC聚合物嵌段和PBA、PS嵌段可独立分解,但与PEG、PAA嵌段分解温度较近,其中PAA嵌段不能完全热解,生成少量残碳。
     采用扫描电镜和比表面积分析仪对嵌段共聚物基多孔炭结构进行了表征,结果表明,以设计的嵌段共聚物碳化后均具有多级多孔结构,并可通过调节两种结构嵌段的比例,获得不同孔径范围的多级孔结构。PVDC-b-PEG-b-PVDC共聚物基多孔炭的中孔含量较低,最大比表面积可达1242m2/g,孔容达0.49cm3/g,中孔率达14.5%。PVDC-b-PBA共聚物基多孔炭最大比表面积达957m2/g,孔容达0.52cm3/g,中孔率达44.2%。PVDC-b-PAA碳化后PAA不能完全分解对孔结构有影响,最大比表面积可达1093m2/g,孔容达0.51cm3/g,中孔率达22.6%。PS可完全降解,多孔炭具有高比表面积和较高中孔率。PVDC-b-PS共聚物基多孔炭最大比表面积达1220m2/g,孔容达0.92cm3/g,中孔率达57.5%; PS-b-PVDC-b-PS共聚物基多孔炭大比表面积达839m2/g,孔容达0.42cm3/g,中孔率达54%;种子乳液法PVDC-b-PS共聚物基多孔炭最大比表面积达1226m2/g,孔容达1.86cm3/g,中孔率达77.9%。
     采用不同结构的多级多孔炭制备了电容器电极,采用循环伏安法和恒电流法进行HPC材料的电化学性能测试,发现多级孔结构对材料电性能起到关键作用,利用微孔-中/大孔结构,既可以充分利用多孔炭的高比表面积,增大电容,又可以加快电解质离子迁移,快速达到电位平衡,保持比电容对大放电倍率的稳定性,提高电极性能。当电流密度为0.5A/g时,PVDC-b-PEG-b-PVDC共聚物基、PVDC-b-PAA共聚物基、PVDC-b-PS共聚物基、PS-b-PVDC-b-PS共聚物基和种子乳液法PVDC-b-PS共聚物基多孔炭的比电容分别最大达到180F/g、233F/g、216F/g、218F/g和216F/g。中孔结构明显改善了材料在大电流下性能,随着电流密度和扫描速率的增加,中孔较多的多孔炭电容衰减较少。
Porous carbons exhibit a great number of pores and great specific surface area, and have wide applications in many fields. Hierarchical porous carbons (HPCs) possess a multimodal pore size distribution of micro-, meso-and/or macro-pores, and combine the feature of high surface area of the micro-porous carbons and the large pore diameter of meso-/macro-porous carbon. Thus, HPCs have excellent application properties as they used in the electrodes for electrochemical double layer capacitors, catalyst supports, and macromolecules adsorption and separation. Up to now, HPCs have been generally prepared by the methods of multi-templating carbonization, catalytic activation, carbonization of polymer blend and organic gel. However, needing of complicate process and low controllability on pore structure have limited their applications.
     This dissertation presented a facile, novel self-template approach to fabricate HPCs with high surface area and large pore volume by direct carbonization of micro-phase separated block copolymers composed of poly(vinylidene chloride)(PVDC) and pyrolyzable polymer blocks. Micro-porous carbon skeleton would formed by the carbonization of PVDC block, and the properly selected pyrolyzable blocks would transfer to the mesopores or meso-/macro-pores after their pyrolysis. Thus, porous carbons exhibited a multimodal pore size distribution of micro-, meso-and/or macro-pores would be obtained.
     A series of block copolymers comprising the PVDC block and the pyrolyzable block including polyethylene glycol (PEG), polybutyl acrylate (PBA), polyacrylic acid (PAA) and polystyrene (PS) were synthesized via reversible addition fragmentation-chain transfer (RAFT) polymerization. RAFT copolymerization of VDC was successfully carried out using2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (TTCA) as a chain transfer agent (CTA). The kinetics studies showed the obvious living/controlling radical polymerization behavior. The significant transfer reaction of macro-radicals to VDC monomer was considered to address the relatively broad polydispersity index (PDF) and low molecular weights. PVDC-b-PBA, PVDC-b-PAA and PVDC-b-PS copolymers were synthesized via reinitiation reactions of corresponding monomers.PVDC-b-PEG-b-PVDC copolymers were synthesized via RAFT polymerization of VDC using PEG-TTCA macro-CTA prepared by the esterification of PEG and TTCA. PS-b-PVDC-b-PS was synthesized by using S,S'-bis(α,α'-dimethyl-α"-acetic acid)-trithiocarbonate (BDMAT) as CTA. The variations of the molecular weight of block copolymers with conversion indicated that the chain growth depended on the molecular weight of macro-CTAs and the phase separation during the solution RAFT copolymerization of VDC, and the molecular weight of block copolymers were relatively low in the solution copolymerization.
     Considering disadvantages of the solvent polymerization, an amphiphilic PAA-b-PS-TTCA copolymers containg trithiocarbonate reactive groups were used in the ab initio RAFT emulsion copolymerization of VDC. Effects of macro-RAFT agent structure and concentration, neutralization policy of PAA-b-PS-TTCA macro-RAFT agent, initiator type and polymerization temperature on the kinetics and controllability of polymerization, the stability and particle size distribution of latexes were investigated. It was found that the RAFT emulsion copolymerization of VDC showed greater polymerization rates than the solution polymerization, and PVDC with high molar masses (25kg-mol-1) and low PDI could be obtained. The determined molecular weights of PVDC were increased continuously and were in good agreement with the corresponding theoretical values, indicating well controllability of polymerization. The as-prepared PVDC latexes were further used as seeds in the emulsion polymerization of styrene, enabling the preparation of novel PVDC-b-PS copolymers with a high molar mass and a relatively low PDI.
     The micro-phase separation of block copolymers were investigated by using atomic force microscopy (AFM), transmission electron microscope (TEM) and small-angle x-ray scattering (SAXS) methods. Due to the thermodynamic incompatibility between pyrolyzable polymer block and PVDC block, all block copolymers showed micro-phase separation structures. The dimensions of the micro-dispersed phase in PVDC-b-PEG-b-PVDC, PVDC-b-PAA and PVDC-b-PS copolymers were10~20nm,30-70nm and20~100nm, respectively. The differential scanning calorimetry (DSC) results indicated the block copolymers exhibited two glass transition temperatures corresponding to the glass transition temperatures of PVDC and pyrolyzable polymer block. The thermogravimetric analysis (TGA) indicated that PVDC block and PBA (or PS) block were decomposed independently, while the degradation temperatures of PEG and PAA blocks were closed to that of PVDC block. Furthermore, PAA block showed an incomplete pyrolysis at even higher temperature, which might jam the pores of the corresponing porous carbons.
     The micrographs and microstructure parameters of the carbons prepared from the block copolymers were characterized by field emission scanning electron microscopy and N2absorption/desorption analysis. The results indicated that hierarchical porous structures could be accomplished via well-designed self-templates, Multimodal pore size dimensions could also be obtained via adjusting ratio of two blocks structures. The carbons prepared from PVDC-b-PEG-b-PVDC copolymers exhibited a maximum specific surface area (SBET) of1242 m2/g, a maximum total pore volume (Vtotai) of0.49cm3/g and a low mesoporosity of14.5%. The carbons prepared from PVDC-b-PBA copolymers exhibited a maximum SBET of957m2/g, a maximum Vtptal of0.52cm3/g and a mesoporosity of44.2%. PVDC-b-PAA based carbon exhibited a maximum SBET of1093m2/g, a maximum Votal of0.51cm3/g and a mesoporosity of22.6%. Due to complete pyrolysis of PS block, the carbons with higher SBET and mesoporosity could be obtained from PVDC-b-PS copolymers. PVDC-b-PS copolymers based carbon exhibited a maximum SBET of1220m2/g, a maximum Vtotai of0.92cm3/g and a mesoporosity of57.5%. PS-b-PVDC-b-PS copolymers based carbon exhibited a maximum SBET of839m2/g, a maximum Vtotal of0.42cm3/g, and a mesoporosity of54%. The carbon prepared from the seeded emulsion polymerized PVDC-b-PS copolymer exhibited a maximum SBET of1226m2/g, a maximum Vtotai of1.86cm3/g, and a mesoporosity of77.9%.
     The electrochemical performances of as-prepared HPCs used as supercapacitor electrodes were studied via galvanostatic cycling and cyclic voltammetry. The results showed that the hierarchical porous structures played a key role in electrochemical performances. The specific capacitances of the electrodes were increased with the specific surface areas of HPCs. The presence of larger pore size in HPCs could improve the ion transportation, keep the stability of specific capacitance under high current density and enhance electrodes performance. The highest specific capacitance values of252F/g,233F/g,216F/g,218F/g and216F/g were obtained at0.5A/g for HPCs prepared from PVDC-b-PEG-b-PVDC. PVDC-b-PAA, PVDC-b-PS, PS-b-PVDC-b-PS and seed emulsion polymerized PVDC-b-PS copolynmers, respectively. With increase of current density and scan rate, larger mesoporosity led to less decrease of specific capacitance, which indicated meso-pore structure could obviously enhance performance under high current.
引文
[1]Li Q., Jiang R., Dou Y., Wu Z., Huang T., Feng D., Yang J., Yu A., Zhao D. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor [J]. Carbon,2011.49. (4):1248-1257
    [2]Yu D., Goh K., Wei L., Wang H., Zhang Q., Jiang W., Si R., Chen Y. Multifunctional nitrogen-rich "brick-and-mortar" carbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts [J]. Journal of Materials Chemistry A,2013.1. (36): 11061-11069
    [3]Mahmood N., Zhang C., Yin H., Hou Y. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells [J]. Journal of Materials Chemistry A,2014.
    [4]Jariwala D., Sangwan V. K., Lauhon L. J., Marks T. J., Hersam M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing [J]. Chemical Society Reviews, 2013.42. (7):2824-2860
    [5]Huang X., Kim S., Heo M. S., Kim J. E., Suh H., Kim I. Easy Synthesis of Hierarchical Carbon Spheres with Superior Capacitive Performance in Supercapacitors [J]. Langmuir, 2013.
    [6]Moon S., Jung Y. H., Jung W. K., Jung D. S., Choi J. W., Kim D. K. Encapsulated Monoclinic Sulfur for Stable Cycling of Li-S Rechargeable Batteries [J]. Advanced Materials,2013.25. (45):6547-6553
    [7]Kim K., Choi M., Ryoo R. Ethanol-based synthesis of hierarchically porous carbon using nanocrystalline beta zeolite template for high-rate electrical double layer capacitor [J]. Carbon,2013.60.175-185
    [8]Zhang C. L., Zhang Q. Y., Kang S. F., Li X., Wang Y. G. Facile Synthesis of Hierarchically Porous Metal-TiO2/graphitic Carbon Microspheres by Colloidal Crystal Templating Method [J]. International Journal of Electrochemical Science,2013.8. (6):8299-8310
    [9]Park J., Lee J., Yoon C. S., Sun Y. Ordered Mesoporous Carbon Electrodes for Li-O2 Batteries [J]. ACS Applied Materials & Interfaces,2013.5. (24):13426-13431
    [10]Xu G., Xu Y., Fang J., Peng X., Fu F., Huang L., Li J., Sun S. Porous Graphitic Carbon Loading Ultra High Sulfur as High-Performance Cathode of Rechargeable Lithium- Sulfur Batteries [J]. ACS Applied Materials & Interfaces,2013.5. (21):10782-10793
    [11]Zhang K., Li J., Li Q., Fang J., Zhang Z., Lai Y., Tian Y. Synthesis of spherical porous carbon by spray pyrolysis and its application in Li-S batteries [J]. Journal of Solid State Electrochemistry,2013.17. (12):3169-3175
    [12]Zheng D., Jia M., Xu B., Zhang H., Cao G., Yang Y. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors [J]. New Carbon Materials,2013.28. (2):151-154
    [13]Li Q. A., Yang J. P., Feng D., Wu Z. X., Wu Q. L., Park S. S., Ha C. S., Zhao D. Y. Facile, synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture [J]. Nano Research,2010.3. (9):632-642
    [14]Liu H. J., Wang X. M., Cui W. J., Dou Y. Q., Zhao D. Y., Xia Y. Y. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells [J]. Journal of Materials Chemistry,2010.20. (20):4223-4230
    [15]乔松,孙刚伟,张建华,宋文华,乔文明,凌立成.分级多孔炭的制备及其电化学性能研究[J].炭素技术,2010.29.(1):14-19
    [16]杨常玲.超级电容器炭基电极材料制备及其电容性能研究[D].太原理工大学.2010
    [17]You C. P., Xu X., Tian B. Z., Kong J. L., Zhao D. Y., Liu B. H. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions [J]. Talanta,2009.78. (3):705-710
    [18]任军,徐斌,张世超,朱红.PVDC基活性炭的制备与电容性能[J].电池,2008.38.(3):136-138
    [19]Li F. B., Qian Q. L., Yan F., Yuan G. Q. Nitrogen-doped porous carbon microspherules as supports for preparing monodisperse nickel nanoparticles [J]. Carbon,2006.44. (1): 128-132
    [20]Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting Physisorption Data for Gas/Solid Systems [J]. Pure and Applied Chemistry,1985.57. (4):603-619
    [21]Zhang X., Wang H., Bourgeois L., Pan R., Zhao D., Webley P. A. Direct electrodeposition of gold nanotube arrays for sensing applications [J]. Journal of Materials Chemistry,2008. 18. (4):463-467
    [22]Deng Y., Cai Y., Sun Z., Liu J., Liu C., Wei J., Li W., Liu C., Wang Y., Zhao D. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System [J]. Journal of the American Chemical Society,2010. 132. (24):8466-8473
    [23]Yang Y. X., Bourgeois L., Zhao C. X., Zhao D. Y., Chaffee A., Webley P. A. Ordered micro-porous carbon molecular sieves containing well-dispersed platinum nanoparticles for hydrogen storage [J]. Microporous and Mesoporous Materials,2009.119. (1-3):39-46
    [24]Zhang X. Y., Lu W., Da J. Y., Wang H. T., Zhao D. Y., Webley P. A. Porous platinum nanowire arrays for direct ethanol fuel cell applications [J]. Chemical Communications, 2009. (2):195-197
    [25]Wan Y., Shi Y., Zhao D. Supramolecular Aggregates as Templates:Ordered Mesoporous Polymers and Carbonst [J]. Chemistry of Materials,2008.20. (3):932-945
    [26]Li F. B., Huang J., Zou J., Pan P. L., Yuan G. Q. Preparation and characterization of porous carbon beads and their application in dispersing small metal crystallites [J]. Carbon,2002. 40. (15):2871-2877
    [27]Tamai H., Kouzu M., Yasuda H. Preparation of highly mesoporous and high surface area activated carbons from vinylidene chloride copolymer containing yttrium acetylacetonate [J]. Carbon,2003.41. (8):1678-1681
    [28]Hulicova D., Oya A. The polymer blend technique as a method for designing fine carbon materials [J]. Carbon,2003.41. (7):1443-1450
    [29]Pierre A. C., Pajonk G. M. Chemistry of Aerogels and Their Applications [J]. Chemical Reviews,2002.102. (11):4243-4266
    [30]Xiao X., Beechem T. E., Brumbach M. T., Lambert T. N., Davis D. J., Michael J. R., Washburn C. M., Wang J., Brozik S. M., Wheeler D. R., Burekel D. B., Polsky R. Lithographically Defined Three-Dimensional Graphene Structures [J]. ACS Nano,2012.6. (4):3573-3579
    [31]Liang C., Li Z., Dai S. Mesoporous Carbon Materials:Synthesis and Modification [J]. Angewandte Chemie International Edition,2008.47. (20):3696-3717
    [32]Kowalewski T., Tsarevsky N. V., Matyjaszewski K. Nanostructured Carbon Arrays from Block Copolymers of Polyacrylonitrile [J]. Journal of the American Chemical Society, 2002.124.(36):10632-10633
    [33]Fang Y., Lv Y., Che R., Wu H., Zhang X., Gu D., Zheng G., Zhao D. Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets:Synthesis and Efficient Lithium Ion Storage [J]. Journal of the American Chemical Society,2013.135. (4):1524-1530
    [34]Sun F., Wang J., Chen H., Li W., Qiao W., Long D., Ling L. High Efficiency Immobilization of Sulfur on Nitrogen-Enriched Mesoporous Carbons for Li-S Batteries [J]. ACS Applied Materials & Interfaces,2013.5. (12):5630-5638
    [35]Guo Z., Zhou D., Dong X., Qiu Z., Wang Y., Xia Y. Ordered Hierarchical Mesoporous/Macroporous Carbon:A High-Performance Catalyst for Rechargeable Li-O2 Batteries [J]. Advanced Materials,2013.25. (39):5668-5672
    [36]Thomassin J., Debuigne A., Jerome C., Detrembleur C. Design of mesoporous carbon fibers from a poly(acrylonitrile) based block copolymer by a simple templating compression moulding process [J]. Polymer,2010.51. (14):2965-2971
    [37]Deng Y., Liu J., Liu C., Gu D., Sun Z., Wei J., Zhang J., Zhang L., Tu B.. Zhao D. Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-b-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander [J]. Chemistry of Materials,2008.20. (23):7281-7286
    [38]Ho R., Wang T., Lin C, Yu T. Mesoporous Carbons from Poly(acrylonitrile)-b-poly(ε-caprolactone) Block Copolymers [J]. Macromolecules,2007.40. (8):2814-2821
    [39]Zou C., Wu D., Li M., Zeng Q., Xu F., Huang Z., Fu R. Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains [J]. Journal of Materials Chemistry,2010.20. (4):731-735
    [40]Xu F., Cai R., Zeng Q., Zou C., Wu D., Li F., Lu X., Liang Y., Fu R. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. [J]. Journal of Materials Chemistry.2011.21. (6):1970-1976
    [41]Zou C., Wu D.; Li M., Zeng Q., Xu F., Huang Z., Fu R. Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains [J]. Journal of Materials Chemistry,2010.20. (48):10945
    [42]Fu J., Xu Q., Chen J., Chen Z., Huang X., Tang X. Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. [J]. Chemical Communications,2010.46. (35):6563-6565
    [43]Zou C., Wu D., Li M., Zeng Q., Xu F., Huang Z., Fu R. Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains. [J]. Journal of Materials Chemistry,2010.20. (4):731-735
    [44]Ding S., Zhang C., Qu X., Liu J., Lu Y., Yang Z. Porous carbon and carbon composite hollow spheres. [J]. Colloid and Polymer Science,2008.286. (8-9):1093-1096
    [45]Deng L. Comprehensive study of porous polymeric stationary phases for chromatography. [J]. Journal of Chromatography,1979.186.317-338
    [46]Bailey A., Everett D. H. New Evidence for Fine Structure of Porous Carbons [J]. Nature, 1966.211.(5053):1082-1083
    [47]Gibbs D. S., Wessling R. A., Obi B. E., Delassus P. T., Howell B. A. Vinylidene Chloride Monomer and Polymers:A Technical Report on VDC and PVDC [J]. Kirk-Othmer Encyclopedia of Chemical Technology,1997.24.882-923
    [48]Yang J., Bao Y., Pan P. One-step preparation of hierarchical porous carbons from poly(vinylidene chloride)-based block copolymers [J]. Journal of Materials Science,2014. 49.(3):1090-1098
    [49]Xu B., Wu F., Chen S., Zhou Z. M., Cao G. P., Yang Y. S. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs [J]. Electrochimica Acta, 2009.54. (8):2185-2189
    [50]Tamai H., Nagoya H., Shiono T. Adsorption of methyl mercaptan on surface modified activated carbon [J]. Journal of Colloid and Interface Science,2006.300. (2):814-817
    [51]Rodriguez R. C., Moncada A. B., Acevedo D. F., Planes G. A., Miras M. C., Barbero C. A. Electroanalysis using modified hierarchical nanoporous carbon materials. [J]. Faraday Discussions,2013.164.147-173
    [52]Baena-Moncada A. M., Morales G. M., Barbero C, Planes G. A., Florez-Montano J., Pastor E. Formic acid oxidation over Hierarchical Porous Carbon containing PtPd catalysts [J]. Catalysts,2013.3. (4):902-913
    [53]Mahurin S. M., Gorka J., Nelson K. M., Mayes R. T., Dai S. Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon. [J]. Carbon,2014.67.457-464
    [54]Wang Q., Yan J., Wang Y., Wei T., Zhang M., Jing X., Fan Z. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. [J]. Carbon,2014.67.119-127
    [55]Wu B., Cheng Q., Jiang L., Li C. Synthesis and electrochemical performance of polypyrrole-hierarchical porous carbons nanocomposites. [J]. Gongneng Gaofenzi Xuebao, 2013.26. (2):162-167
    [56]Wang D., Li F., Liu M., Lu G. Q., Cheng H. Mesopore-Aspect-Ratio Dependence of Ion Transport in Rodtype Ordered Mesoporous Carbon [J]. The Journal of Physical Chemistry C,2008.112. (26):9950-9955
    [57]Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer [J]. Science,2006.313. (5794):1760-1763
    [58]Zhao Q., Fellinger T., Antonietti M., Yuan J. A novel polymeric precursor for micro/mesoporous nitrogen-doped carbons [J]. Journal of Materials Chemistry A,2013.1. (16):5113-5120
    [59]栾广贵.模板法中孔炭材料的制备及吸附性能研究[D].东华大学.2006
    [60]Zhou S., Wu H., Wu Y., Shi H., Feng X., Huang H., Li J., Song W. Large surface area carbon material with ordered mesopores for highly selective determination of L-tyrosine in the presence of L-cysteine. [J]. Electrochimica Acta,2013.112.90-94
    [61]Rodriguez R. C., Moncada A. B., Acevedo D. F., Planes G. A., Miras M. C., Barbero C. A. Electroanalysis using modified hierarchical nanoporous carbon materials. [J]. Faraday Discussions,2013.164.147-173
    [62]Antonietti M., Fechler N., Fellinger T. Carbon Aerogels and Monoliths:Control of Porosity and Nanoarchitecture via Sol-Gel routes. [J]. Chemistry of Materials,2013. Ahead of Print
    [63]Chen X. Y., Chen C., Zhang Z. J., Xie D. H. Nitrogen-doped porous carbon spheres derived from polyacrylamide. [J]. Industrial & Engineering Chemistry Research,2013.52. (34): 12025-12031
    [64]Zhang Z. J., Chen C., Cui P., Chen X. Y. Nitrogen-doped porous carbons by conversion of azo dyes especially in the case of tartrazine [J]. Journal of Power Sources,2013.242.41-49
    [65]Tang Z., Han Z., Yang G., Zhao B., Shen S., Yang J. Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture. [J]. Xinxing Tan Cailiao,2013.28. (1): 55-60
    [66]Chen X. Y., Chen C, Zhang Z. J., Xie D. H. High performance porous carbon through hard-soft dual templates for supercapacitor electrodes. [J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability,2013.1. (25):7379-7383
    [67]Estevez L., Dua R., Bhandari N., Ramanujapuram A., Wang P., Giannelis E. P. A facile approach for the synthesis of monolithic hierarchical porous carbons-high performance materials for amine based CO2 capture and supercapacitor electrode. [J]. Energy & Environmental Science,2013.6. (6):1785-1790
    [68]Wang X., Liu J., Xu W., Cao T., Song X., Cheng C. Preparation of carbon microstructures by thermal treatment of thermosetting/thermoplastic polymers and their application in water purification. [J]. Micro & Nano Letters,2012.7. (9):918-922,5
    [69]Zhao Y., Zhao L., Yao K. X., Yang Y., Zhang Q., Han Y. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. [J]. Journal of Materials Chemistry,2012.22. (37):19726-19731
    [70]Thubsuang U., Ishida H., Wongkasemjit S., Chaisuwan T. Novel template confinement derived from polybenzoxazine-based carbon xerogels for synthesis of ZSM-5 nanoparticles via microwave irradiation. [J]. Microporous and Mesoporous Materials,2012.156.7-15
    [71]Brun N., Prabaharan S. R. S., Surcin C., Morcrette M., Deleuze H., Birot M., Babot O., Achard M., Backov R. Design of Hierarchical Porous Carbonaceous Foams from a Dual-Template Approach and Their Use as Electrochemical Capacitor and Li Ion Battery Negative Electrodes. [J]. Journal of Physical Chemistry C.,2012.116. (1):1408-1421
    [72]Chuenchom L., Kraehnert R., Smarsly B. M. Recent progress in soft-templating of porous carbon materials. [J]. Soft Matter,2012.8. (42):10801-10812
    [73]Kubo S., White R. J., Yoshizawa N., Antonietti M., Titirici M. Ordered Carbohydrate-Derived Porous Carbons. [J]. Chemistry of Materials,2011.23. (22): 4882-4885
    [74]Hu Y., Adelhelm P., Smarsly B. M., Maier J. Highly stable lithium storage performance in a porous carbon/silicon nanocomposite. [J]. ChemSusChem,2010.3. (2):231-235
    [75]Fang Y., Gu D., Zou Y., Wu Z., Li F., Che R., Deng Y., Tu B., Zhao D. A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size [J]. Angewandte Chemie International Edition,2010.49. (43):7987-7991
    [76]Dai M., Song L., Labelle J. T., Vogt B. D. Ordered Mesoporous Carbon Composite Films Containing Cobalt Oxide and Vanadia for Electrochemical Applications. [J]. Chemistry of Materials,2011.23. (11):2869-2878
    [77]Vogt B. D., Chavez V. L., Dai M., Arreola M. R. C., Song L., Feng D., Zhao D., Perera G. M., Stein G. E. Impact of Film Thickness on the Morphology of Mesoporous Carbon Films Using Organic-Organic Self-Assembly. [J]. Langmuir,2011.27. (9):5607-5615
    [78]Song L., Feng D., Lee H., Wang C., Wu Q., Zhao D., Vogt B. D. Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement. [J]. Journal of Physical Chemistry C,2010.114. (21): 9618-9626
    [79]Song L., Feng D., Campbell C. G., Gu D., Forster A. M., Yager K. G., Fredin N., Lee H., Jones R. L., Zhao D., Vogt B. D. Robust conductive mesoporous carbon-silica composite films with highly ordered and oriented orthorhombic structures from triblock-copolymer template co-assembly. [J]. Journal of Materials Chemistry,2010.20. (9):1691-1701
    [80]Song L., Feng D., Fredin N. J., Yager K. G., Jones R. L., Wu Q., Zhao D., Vogt B. D. Challenges in Fabrication of Mesoporous Carbon Films with Ordered Cylindrical Pores via Phenolic Oligomer Self-Assembly with Triblock Copolymers. [J]. ACS Nano,2010.4. (1): 189-198
    [81]Ramanathan M., Darling S. B. Mesoscale morphologies in polymer thin films [J]. Progress in Polymer Science.2011.36. (6):793-812
    [82]Meuler A. J., Hillmyer M. A., Bates F. S. Ordered Network Mesostructures in Block Polymer Materials [J]. Macromolecules,2009.42. (19):7221-7250
    [83]Olson D. A., Chen L., Hillmyer M. A. Templating Nanoporous Polymers with Ordered Block Copolymers [J]. Chemistry of Materials,2007.20. (3):869-890
    [84]Jackson E. A., Hillmyer M. A. Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration [J]. ACS Nano,2010.4. (7):3548-3553
    [85]Zhang S., Chen L., Zhou S., Zhao D., Wu L. Facile Synthesis of Hierarchically Ordered Porous Carbon via in Situ Self-Assembly of Colloidal Polymer and Silica Spheres and Its Use as a Catalyst Support [J]. Chemistry of Materials,2010.22. (11):3433-3440
    [86]Zhao Y., Zheng M., Cao J., Ke X., Liu J., Chen Y., Tao J. Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors [J]. Materials Letters,2008.62. (3):548-551
    [87]Wang Z., Kiesel E. R., Stein A. Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity [J]. Journal of Materials Chemistry,2008.18. (19):2194-2200
    [88]Balach J., Tamborini L., Sapag K., Acevedo D. F., Barbero C. A. Facile preparation of hierarchical porous carbons with tailored pore size obtained using a cationic polyelectrolyte as a soft template [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012.415.343-348
    [89]Tamai-H., Kakii T., Hirota Y., Kumamoto T., Yasuda H. Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules [J]. Chemistry of Materials,1996.8. (2):454-462
    [90]Tamai H., Kouzu M., Yasuda H. Preparation of mesoporous carbons from polymer materials using organometallics [J]. Molecular Crystals and Liquid Crystals,2002.388. 447-451
    [91]Yan Y., Wei J., Zhang F., Meng Y., Tu B., Zhao D. The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres [J]. Microporous and Mesoporous Materials,2008.113. (1-3):305-314
    [92]Xing W., Huang C. C., Zhuo S. P., Yuan X., Wang G. Q., Hulicova-Jurcakova D., Yan Z. F., Lu G. Q. Hierarchical porous carbons with high performance for supercapacitor electrodes [J]. Carbon,2009.47. (7):1715-1722
    [93]Gorka J., Zawislak A., Choma J., Jaroniec M. KOH activation of mesoporous carbons obtained by soft-templating [J]. Carbon,2008.46. (8):1159-1161
    [94]Wang G., Huang C., Xing W., Zhuo S. Micro-meso hierarchical porous carbon as low-cost counter electrode for dye-sensitized solar cells [J]. Electrochimica Acta,2011.56. (16): 5459-5463
    [95]Wang X., Lee J. S., Tsouris C., Depaoli D. W., Dai S. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions [J]. Journal of Materials Chemistry,2010.20. (22):4602-4608
    [96]Zhao N., Wu S.. He C., Shi C., Liu E., Du X., Li J. Hierarchical porous carbon with graphitic structure synthesized by a water soluble template method [J]. Materials Letters, 2012.87.77-79
    [97]Tamon H., Ishizaka H., Mikami M., Okazaki M. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde [J]. Carbon,1997.35. (6):791-796
    [98]Li W., Lu A., Guo S. Control of Mesoporous Structure of Aerogels Derived from Cresol-Formaldehyde [J]. Journal of Colloid and Interface Science,2002.254. (1):153-157
    [99]Xu F., Cai R., Zeng Q., Zou C, Wu D., Li F., Lu X., Liang Y., Fu R. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors [J]. Journal of Materials Chemistry,2011.21. (6):1970-1976
    [100]Ozaki J., Endo N., Ohizumi W., Igarashi K., Nakahara M., Oya A., Yoshida S., lizuka T. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend [J]. Carbon,1997.35. (7):1031-1033
    [101]Howard G. J., Knutton S. Porous polymer carbons. Ⅰ. Preparation and properties of porous poly(vinylidene chloride) precursor copolymers [J]. Journal of Applied Polymer Science, 1975.19. (3):683-695
    [102]Howard G. J., Knutton S. Porous polymer carbons. Ⅱ. Preparation and properties of porous poly(vinylidene chloride) carbons [J]. Journal of Applied Polymer Science,1975.19. (3): 697-711
    [103]Howard G. J., Szynaka S. Porous polymer carbons.Ⅲ. Surface structure of precursor polymers [J]. Journal of Applied Polymer Science,1975.19. (9):2629-2631
    [104]Howard G. J., Szynaka S. Porous polymer carbons. Ⅳ. Fused and unfused carbons from poly(vinylidene chloride) [J]. Journal of Applied Polymer Science,1975.19. (9): 2633-2639
    [105]Centeno T. A., Fuertes A. B. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride) [J]. Carbon,2000.38. (7):1067-1073
    [106]Li F. B., Huang J., Zou J., Pan P. L., Yuan G. Q. Polymer-derived carbon-supported group VIII metals catalysts for vapor phase carbonylation of methanol [J]. Applied Catalysis A: General,2003.251. (2):295-304
    [107]Xu B., Wu F., Chen S., Cao G. P., Zhou Z. M. A simple method for preparing porous carbon by PVDC pyrolysis [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008.316. (1-3):85-88
    [108]Cai J., Lv X., Xing Y., Zhao X. Carbon dioxide adsorption on poly(vinylidene chloride)-based carbons with ultrahigh microporosities prepared by facile carbonization [J]. Materials Letters,2014.114.37-39
    [109]Choma J., Lak A. Z., Gorka J. Synthesis and adsorption properties of colloid-imprinted mesoporous carbons using poly(vinylidene chloride-co-vinyl chloride) as a carbon precursor [J]. Adsorption,2009.15. (2):167-171
    [110]吴启强,包永忠.偏氯乙烯共聚物/纳米水滑石复合材料及多孔炭的制备与表征[J].化工学报,2011.(4):1130-1135
    [111]Kim K., Park S. Synthesis and electrochemical performance of well-balanced mesopore/micropore contained carbons by activation-free method [J]. Electrochemistry Communications,2012.22.89-92
    [112]Rixens B., Severac R., Boulevin B., Lacroix-Desmazes P. Migration of additives in polymer coatings:fluorinated additives and poly(vinylidene chloride)-based matrix [J]. Polymer,2005.46. (11):3579-3587
    [113]Rixens B., Severac R., Boutevin B., Lacroix-Desmazes P., Hervaud Y. Migration of additives in polymer coatings:Phosphonated additives and poly(vinylidene chloride)-based matrix [J]. Macromolecular Chemistry and Physics,2005.206. (14):1389-1398
    [114]Severac R., Lacroix-Desmazes P., Boutevin B. Reversible addition-fragmentation chain-transfer (RAFT) copolymerization of vinylidene chloride and methyl acrylate [J]. Polymer International,2002.51. (10):1117-1122
    [115]潘祖仁主编.高分子化学[M].化学工业出版社,2007,88-92
    [116]Matsuo K., Nelb G. W., Nelb R. G., Stockmayer W. H. Kinetics of Free-Radical Polymerization of Vinylidene Chloride in Homogeneous N-Methylpyrrolidone Solution [J]. Macromolecules,1977.10. (3):654-658
    [117]汤鑫焱,翟光群,孔立智.一种新的活性自由基聚合:单电子转移-活性自由基聚合[J].高分子通报,2010.(8):85-91
    [118]Percec V., Sienkowska M. J. Synthesis of the four-arm star-block copolymer [PVC-b-PBA-CH(CH3)COOCH2]4C by SET-DTLRP initiated from a tetrafunctional initiator [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009.47. (2):628-634
    [119]Coelho J., Carvalho E. Y., Marques D. S., Popov A. V., Goncalves P. M, Gil M. H. Synthesis of poly(lauryl acrylate) by single-electron transfer/degenerative chain transfer living radical polymerization catalyzed by Na2S2O4 in water [J]. Macromolecular Chemistry and Physics,2007.208. (11):1218-1227
    [120]Coelho J. F. J., Silva A. M. F. P., Popov A. V., Percec V., Abreu M. V., Goncalves P. M. O. F., Gil M. H. Synthesis of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl chloride) by the competitive single-electron-transfer/degenerative-chain-transfer-mediated living radical polymerization in water [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006.44. (9):3001-3008
    [121]Coelho J., Carreira M., Popov A. V., Goncalves P., Gil M. H. Thermal and mechanical characterization of poly(viny) chloride)-b-poly(butyl aerylate)-b-poly(vinyl chloride) obtained by single electron transfer-degenerative chain transfer living radical polymerization in water [J]. European Polymer Journal,2006.42. (10):2313-2319
    [122]Percec V., Popov A. V. Functionalization of the active chain ends of poly(vinyl chloride) obtained by single-electron-transfer/degenerative-chain-transfer mediated living radical polymerization:Synthesis of telechelic α, ω-di(hydroxy)poly(vinyl chloride) [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005.43. (6):1255-1260
    [123]Percec V., Popov A. V., Ramirez-Castillo E. Single-electron-transfer/degenerative-chain-transfer mediated living-radical polymerization of vinyl chloride catalyzed by thiourea dioxide/octyl viologen in water/tetrahydrofuran at 25℃ [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005.43. (2):287-295
    [124]Percec V., Guliashvili T., Popov A. V. Ultrafast synthesis of poly(methyl acrylate) and poly(methyl acrylate)-b-poly(vinyl chloride)-b-poly(methyl acrylate) by the Cu(0)/tris(2-dimethylaminoethyl)amine-catalyzed living radical polymerization and block copolymerization of methyl acrylate initiated with 1,1-chloroiodoethane and α,ω-Di(iodo)poly(vinyl chloride) in dimethyl sulfoxide [J]. Journal of Polymer Science Part A: Polymer Chemistry,2005.43. (9):1948-1954
    [125]Percec V., Guliashvili T., Popov A. V., Ramirez-Castillo E., Hinojosa-Falcon L. A. Ultrafast synthesis of poly(methyl methacrylate)-b-poly(vinyl chloride)-b-poly(methyl methacrylate) block copolymers by the Cu(0)/tris(2-dimethylaminoethyl)amine-catalyzed living radical block copolymerization of methyl methacrylate initiated with α,ω-di(iodo)poly(vinyl chloride) in the presence of dimethyl sulfoxide at 25 ℃ [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005.43. (8):1660-1669
    [126]Velasquez E., Pembouong G., Rieger J., Stoffelbach F., Boyron O., Charleux B., D Agosto F., Lansalot M., Dufils P., Vinas J. Poly(vinylidene chloride)-Based Amphiphilic Block Copolymers [J]. Macromolecules,2013.46. (3):664-673
    [127]Lu H. S., Li Z. X., Feng Y. G., Pu J. L. Preparation and Properties of Anionic Polymer Emulsion in the Presence of a Reactive Surfactant [J]. Applied Mechanics and Materials, 2013.262.430-434
    [128]Warnant J., Gamier J., van Herk A., Dufils P., Vinas J., Lacroix-Desmazes P. A CeO2/PVDC hybrid latex mediated by a phosphonated macro-RAFT agent [J]. Polymer Chemistry,2013.
    [129]Matyjaszewski K., Davis T. P. Handbook of Radical Polymerization. [M]. Hoboken, NJ:Wiley-Interscience,2002,59-61
    [130]Rixens B., Severac R., Boutevin B., Lacroix-Desmazes P. Synthesis of phosphonated copolymers with tailored architecture by reversible addition-fragmentation chain transfer polymerization (RAFT) [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006. 44.(1):13-24
    [131]谢静薇,江明.嵌段聚合物的微相分离和血液相容性[J].高分子材料科学与工程,1987.(4):7-15
    [132]M W. M. The standard Gaussian model for block copolymer melts [J]. Journal of Physics: Condensed Matter,2002.14. (2):R21
    [133]莫伟星.嵌段共聚物相分离形态及形变回复行为研究[D].哈尔滨工业大学.2007
    [134]Mester Z., Mohan A., Fredrickson G. H. Macro-and Microphase Separation in Multifunctional Supramolecular Polymer Networks [J]. Macromolecules,2011.44. (23): 9411-9423
    [135]Woo E. M., Barlow J. W., Paul D. R. Phase behavior of blends of aliphatic polyesters with a vinylidene chloride/vinyl chloride copolymer [J]. Journal of Applied Polymer Science, 1986.32. (3):3889-3897
    [136]Woo E. M., Barlow J. W., Paul D. R. Miscible blends of a vinylidene chloride/vinyl chloride copolymer with aliphatic polyesters [J]. Journal of Applied Polymer Science,1983. 28.(4):1347-1360
    [137]Leibler L. Theory of Microphase Separation in Block Copolymers [J]. Macromolecules, 1980.13.(6):1602-1617
    [138]Bates F. S., Fredrickson G. H. Block Copolymer Thermodynamics:Theory and Experiment [J]. Annual Review of Physical Chemistry,1990.41.525-557
    [139]Jung H. J., Chang J., Park Y. J., Kang S. J., Lotz B., Huh J., Park C. Shear-Induced Ordering of Ferroelectric Crystals in Spin-Coated Thin Poly(vinylidene fluoride-co-trifluoroethylene) Films [J]. Macromolecules,2009.42. (12):4148-4154
    [140]Angelescu D. E., Waller J. H., Adamson D. H., Deshpande P., Chou S. Y., Register R. A., Chaikin P. M. Macroscopic Orientation of Block Copolymer Cylinders in Single-Layer Films by Shearing [J]. Advanced Materials,2004.16. (19):1736-1740
    [141]Olszowka V., Kuntermann V., Boker A. Control of Orientational Order in Block Copolymer Thin Films by Electric Fields:A Combinatorial Approach [J]. Macromolecules, 2008.41. (15):5515-5518
    [142]Schmidt K., Schoberth H. G., Ruppel M., Zettl H., Hansel H., Weiss T. M., Urban V., Krausch G., Boker A. Reversible tuning of a block-copolymer nanostructure via electric fields [J]. Nature Materials,2008.7. (2):142-145
    [143]Morkved T. L., Lu M., Urbas A. M., Ehrichs E. E., Jaeger H. M., Mansky P., Russell T. P. Local control of microdomain orientation in diblock copolymer thin films with electric fields [J]. Sciences,1996.273. (5277):931-933
    [144]Shinichi S. Progress in control of microdomain orientation in block copolymers-Efficiencies of various external fields [J]. Polymer,2008.49. (12):2781-2796
    [145]Bohme M., Kuila B., Schlorb H., Nandan B., Stamm M. Thin films of block copolymer supramolecular assemblies:Microphase separation and nanofabrication [J]. physica status solidi (b),2010.247. (10):2458-2469
    [146]Reiter G., Castelein G., Hoerner P., Riess G., Blumen A., Sommer J. U. Nanometer-scale surface patterns with long-range order created by crystallization of diblock copolymers [J]. Physical Review Letters,1999.83. (19):3844-3847
    [147]Tang C., Tracz A., Kruk M., Zhang R., Smilgies D., Matyjaszewski K., Kowalewski T. Long-Range Ordered Thin Films of Block Copolymers Prepared by Zone-Casting and Their Thermal Conversion into Ordered Nanostructured Carbon [J]. Journal of the American Chemical Society,2005.127. (19):6918-6919
    [148]Cowie J. M. G., Harris J. H. Phase behaviour of blends comprising poly(butadiene-stat-acrylonitrile) and several chlorinated polymers [J]. European Polymer Journal,1994.30. (6):707-709
    [149]Woo E. M., Barlow J. W., Paul D. R. Phase behavior of blends of aliphatic polyesters with a vinylidene chloride/vinyl chloride copolymer [J]. Journal of Applied Polymer Science, 1986.32. (3):3889-3897
    [150]Hsu W. Phase Behavior of Ternary Blends of Tactic Poly(methyl methacrylate)s and Poly(vinylidene chloride-co-acrylonitrile) [J]. Polymer Journal,2000.32. (10):849-853
    [151]Howell B., Zhang J. Thermal degradation of vinylidene chloride/vinyl chloride copolymers in the presence of N-substituted maleimides [J]. Journal of Thermal Analysis and Calorimetry,2006.83. (1):83
    [152]Howell B. A., Ahmed Z., Ahmed S. I. Thermal degradation of vinylidene chloride/butyl acrylate copolymers [J]. Thermochimica Acta,2000.357.103-111
    [153]Howell B. A., Smith P. B. Thermal degradation of vinylidene chloride/4-vinylpyridine copolymers [J]. Journal of Thermal Analysis and Calorimetry,2006.83. (1):71-73
    [154]Howell B. A., Spears D. A., Smith P. B. Thermal degradation of vinylidene chloride/[4-(t-butoxycarbonyloxy)phenyl]methyl acrylate copolymers [J]. Journal of Thermal Analysis and Calorimetry,2006.85. (1):115-117
    [155]Howell B. A. Kinetics of the thermal dehydrochlorination of vinylidene chloride barrier polymers [J]. Journal of Thermal Analysis and Calorimetry,2006.83. (1):53-55
    [156]Howell B. A., Rajaram C. V. Degradation of vinylidene chloride/methyl acrylate copolymers in the presence of metal formates [J]. Journal of thermal analysis,1993.40. (2): 575-585
    [157]Obi B. E., Delassus P. T., Howell B. A., Dangel B. Crystallization kinetics for semicrystalline random copolymers of vinylidene chloride (VDC) with methyl acrylate (MA), and the effects on the internal morphology of the resin particles formed during synthesis [J]. Journal of Polymer Science Part B:Polymer Physics,1995.33. (14): 2019-2032
    [158]Wessling R. A., Gibbs D. S., Obi B. E., Beyer D. E., Delassus P. T., Howell B. A. Vinylidene chloride polymers [J]. Kirk-Othmer Encyclopedia of Chemical Technology, 1999.25.691-745
    [159]Wessling R. A. The solubility of poly(vinylidene chloride) [J]. Journal of Applied Polymer Science,1970.14. (6):1531-1545
    [160]Wessling R. A., Harrison I. R. Kinetics of heterogeneous free-radical polymerization of vinylidene chloride [J]. Journal of Polymer Science Part A:Polymer Chemistry,1971.9. (12):3471-3489
    [161]Penzel E., Haberkorn H., Heilig J. C. Some properties of copolymers of vinylidene chloride with acrylates and methacrylates, Part 1 [J]. Angewandte Makromolekulare Chemie,1999.273.15-27
    [162]李娜,王先友,魏建良,安红芳,郑丽萍.中孔炭的制备及其在超级电容器中的应用[J].中南大学学报(自然科学版),2009.(03):601-607
    [163]Hernandez P., Sanchez I., Paton F., Hernandez L. Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode [J]. Talanta,1998.46. (5):985-991
    [164]Kissinger P. T., Heineman W. R. Cyclic voltammetry [J]. Journal of Chemical Education, 1983.60. (9):702-706
    [165]Imanishi N., Kashiwagi H., Ichikawa T., Takeda Y., Yamamoto O., Inagaki M. Charge-Discharge Characteristics of Mesophase-Pitch-Based Carbon Fibers for Lithium Cells [J]. Journal of The Electrochemical Society,1993.140. (2):315-320
    [166]Pell W. G., Conway B. E., Marincic N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations [J]. Journal of Electroanalytical Chemistry,2000.491. (1-2):9-21
    [167]Jiang C., Yang T., Jiao K., Gao H. A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene [J]. Electrochimica Acta,2008.53. (6):2917-2924
    [168]Wu S. L., Cui Z. D., Zhao G. X., Yan M. L., Zhu S. L., Yang X. J. EIS study of the surface film on the surface of carbon steel from supercritical carbon dioxide corrosion [J]. Applied Surface Science,2004.228. (1-4):17-25
    [169]Tamai H., Kunihiro M., Morita M., Yasuda H. Mesoporous activated carbon as electrode for electric double layer capacitor [J]. Journal of Materials Science,2005.40. (14): 3703-3707
    [170]Xue C., Tu B., Zhao D. Evaporation-Induced Coating and Self-Assembly of Ordered Mesoporous Carbon-Silica Composite Monoliths with Macroporous Architecture on Polyurethane Foams [J]. Advanced Functional Materials,2008.18. (24):3914-3921
    [171]Huang Y., Cai H. Q., Feng D., Gu D., Deng Y. H., Tu B., Wang H. T., Webley P. A., Zhao D. Y. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities [J]. Chemical Communications,2008. (23):2641-2643
    [172]Zhang J., Deng Y., Wei J., Sun Z., Gu D., Bongard H., Liu C., Wu H., Tu B., Schu'th F., Zhao D. Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness [J]. Chemistry of Materials,2009.21. (17):3996-4005
    [173]Deng Y., Cai Y., Sun Z., Gu D., Wei J., Li W., Guo X., Yang J., Zhao D. Controlled Synthesis and Functionalization of Ordered Large-Pore Mesoporous Carbons [J]. Advanced Functional Materials,2010.20. (21):3658-3665
    [174]Lai J. T., Filla D., Shea R. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents [J]. Macromolecules,2002.35. (18): 6754-6756
    [175]Dacey J. R., Barradas R. G. Structure of Pyrolyzed Polyvinylidene Chloride [J]. Canadian Journal of Chemistry,1963.41. (1):180-190
    [176]Brandrup J., Immergut E. H. Polymer handbook [M]. New York:Wiley,1999, Ⅱ309-Ⅱ 319
    [177]Matyjaszewski K., Poli R. Comparison of Bond Dissociation Energies of Dormant Species Relevant to Degenerative Transfer and Atom Transfer Radical Polymerization [J]. Macromolecules,2005.38. (19):8093-8100
    [178]Moad G., Rizzardo E., Thang S. H. Living radical polymerization by the RAFT process [J]. Australian Journal of Chemistry,2005.58. (6):379-410
    [179]Chenal M., Bouteiller L., Rieger J. Ab initio RAFT emulsion polymerization of butyl acrylate mediated by poly(acrylic acid) trithiocarbonate [J]. Polymer Chemistry,2013.4. (3):752-762
    [180]Xu S., Huang J., Xu S., Luo Y. RAFT ab initio emulsion copolymerization of γ-methyl-α-methylene-γ-butyrolactone and styrene [J]. Polymer,2013.54. (7):1779-1785
    [181]Delassus P. T., Schmidt D. D. Solubilities of vinyl chloride and vinylidene chloride in water [J]. Journal of Chemical & Engineering Data,1981.26. (3):274-276
    [182]王晓光.RAFT乳液聚合机理及聚(苯乙烯-b-丙烯酸丁酯-b-苯乙烯)的制备[D].浙江大学.2011
    [183]Chen Y., Luo W., Wang Y., Sun C., Han M., Zhang C. Synthesis and self-assembly of amphiphilic gradient copolymer via RAFT emulsifier-free emulsion polymerization [J]. Journal of Colloid and Interface Science,2012.369. (1):46-51
    [184]Wiener H. Polymerization in the system vinylidene chloride-potassium laurate-potassium persulfate [J]. Journal of Polymer Science,1951.7. (1):1-20
    [185]Nomura M., Sakai H., Kihara Y., Fujita K. Emulsion copolymerization of vinylidene chloride and methyl methacrylate. I. Effects of operating variables on the kinetic behavior [J]. Journal of Polymer Science Part A:Polymer Chemistry,2002.40. (9):1275-1284
    [186]Flory P. J. Principles of polymer chemistry [M]. New York:Cornell University Press, 1953,495-534
    [187]Emerson J. A., Toolan D. T. W., Howse J. R., Furst E. M., Epps T. H. Determination of Solvent-Polymer and Polymer-Polymer Flory-Huggins Interaction Parameters for Poly(3-hexylthiophene) via Solvent Vapor Swelling [J]. Macromolecules,2013.46. (16): 6533-6540
    [188]Obi B. E., Delassus P., Grulke E. A. Model for the Solid-Liquid Phase Transitions (Melting) of Undiluted Random Semicrystalline Copolymers of Vinylidene Chloride with Methyl Acrylate Monomers [J]. Macromolecules,1994.27. (19):5491-5497
    [189]Hsieh T. H., Ho K. S. Thermal dehydrochlorination of poly(vinylidene chloride) [J]. Journal of Polymer Science Part A:Polymer Chemistry,1999.37. (13):2035-2044
    [190]Bohme R. D., Wessling R. A. The thermal decomposition of poly(vinylidene chloride) in the solid state [J]. Journal of Applied Polymer Science,1972.16. (7):1761-1778
    [191]Huang J., Tang C., Lee H., Kowalewski T., Matyjaszewski K. A Novel Route for the Preparation of Discrete Nanostructured Carbons from Block Copolymers with Polystyrene Segments [J]. Macromolecular Chemistry and Physics,2007.208. (21):2312-2320
    [192]Sperling L. H. Introduction to physical polymer science [M]. Hoboken, N.J:Wiley,2006,
    [193]Lattimer R. P. Pyrolysis mass spectrometry of acrylic acid polymers [J]. Journal of Analytical and Applied Pyrolysis,2003.68-69.3-14
    [194]Xu B., Wu F., Mu D., Dai L., Cao G., Zhang H., Chen S., Yang Y. Activated carbon prepared from PVDC by NaOH activation as electrode materials for high performance EDLCs with non-aqueous electrolyte [J]. International Journal of Hydrogen Energy,2010. 35. (2):632-637
    [195]Tamai H., Nobuaki U., Yasuda H. Preparation of Pd supported mesoporous activated carbons and their catalytic activity [J]. Materials Chemistry and Physics,2009.114. (1): 10-13
    [196]Zhou D., Liu H., Wang Y., Wang C., Xia Y. Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors [J]. Journal of Materials Chemistry,2012.
    [197]Horvath G., Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon; [J]. Journal of Chemical Engineering of Japan,1983.16. (6): 470-475
    [198]袁国辉.电化学电容器[M].北京市:化学工业出版社,2006,184-186
    [199]Celzard A., Collas F., Mareche J. F., Furdin G., Rey I. Porous electrodes-based double-layer supercapacitors:pore structure versus series resistance [J]. Journal of Power Sources,2002.108. (1-2):153-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700