用户名: 密码: 验证码:
OFDM系统的信道估计和信号均衡技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(OFDM)是一种多载波数字调制技术,具有抗多径能力强、频谱利用率高、实现简单等优点,已被许多无线通信标准选为物理层传输方案。
     为了获得较高的数据传输速率和频谱利用率,OFDM系统需要采用相干检测技术,这就要求接收端通过信道估计得到实时、准确的信道状态信息。而且,在自适应调制、波束成形及多天线传输等与OFDM结合的系统中,同样也需要信道状态信息。因此信道估计在OFDM系统中是必不可少的。论文围绕OFDM系统的信道估计展开,在研究现有信道估计与干扰消除技术基础上,提出了新思路和新算法。
     论文首先讨论了无线信道的衰落特性,对信道的时域与频域特性作了简单的分析,详细介绍了常用的确定性衰落信道模型。在深入研究传统LS估计器、LMMSE估计器和基于DFT的变换域估计器的优缺点后,提出了基于统计分析的信道估计方法。
     传统的基于DFT的信道估计算法只消除了信道冲激响应估计中循环前缀长度之外的噪声,循环前缀长度内的噪声并没有得到抑制。大多数基于DFT的信道估计改进算法通过设立一个阈值门限,对循环前缀内CIR估计值进行判断,进一步消除噪声,从而提高信道估计的精度。这些方法的关键是如何找到一个最佳的阈值以获得期望的结果。另外,阈值门限法,难以处理阈值附近的CIR估计值。因为无线信道冲激响应由有用信号部分和噪声部分组成,所以从多元分析方法出发,抑制噪声问题是一个典型的辨别分析问题。为了避免阈值方法无法处理阈值附近的采样值,通过引入Mahalanobis距离进行辨别分析,有效的克服了阈值门限法的缺陷。基于DFT的OFDM信道估计方法适用于采样间隔信道。当信道为非采样间隔信道时,经DFT运算后,会出现信道冲激响应的能量泄漏。通过改变辨别范围,提出的算法也适用于非采样间隔信道。
     通常,假设在一个OFDM符号间隔内移动信道是拟平稳的。随着载频及终端移动速度的提高,信道时变引起的多普勒频移将破坏子载波正交性,由此造成的ICI将严重影响系统性能。针对时变信道估计算法的局限性,Choi等人提出了最小均方误差估计方法,由于该方法计算量较大且需要信道统计信息,所以很难实用。在大多数实际应用条件下,信道在一个OFDM符号周期内的变化近似满足线性模型。根据这一特性对时变信道进行线性建模,然后通过估计线性模型的斜率和参考点值来获得信道响应的估计值。利用线性模型拟合信道在一个符号内的线性时变,难免会带来误差,且信道同时受到噪声的干扰,也会带来误差。根据基于总体最小二乘准则,本文提出了一种新的快变信道估计方法,该方法同时考虑了模型误差和噪声,且不需要信道的统计特性信息。仿真结果表明,当多普勒频移增加时,该方法具有较好的鲁棒性。
     在OFDM系统中通过加入循环前缀来避免符号间干扰,导致了系统利用率的下降。对于延时较长的信道,难免会出现信道长度超过循环前缀长度的情况。论文分析了OFDM系统中由于循环前缀的不充分而导致的符号间干扰和子载波间干扰,并提出了基于总体最小二乘准则的干扰消除算法。
     在无线通信系统中,由于系统终端存在移动性以及信道的多径效应,信道难以保持稳定。当信道参数快速变化时,OFDM系统存在载波间干扰(ICI),这会影响信道估计的精度,导致传统的单抽头频域均衡器不再适用。为了同时兼顾信道估计误差和噪声提出基于正则总体最小二乘准则的信号恢复算法。该方法弥补了现有OFDM均衡估计算法不考虑信道误差的缺陷,确保在均衡时较好的去除信道干扰和噪声。理论分析和仿真结果表明,该算法能有效地恢复传输信号。
Orthogonal frequency division multiplexing (OFDM) is a multi-carrier modulationtechnology. It has many well known advantages such as robustness to multi-path fadingchannels, high bandwidth efficiency, and efficient implementation. OFDM has beenchosen as a solution for physical layer transmission in many wireless communicationstandards.
     In order to transmit data rapidly with high spectral efficiency, the coherentdetection is usually employed in OFDM system, where the real-time and accuratechannel state information (CSI) should be known by the receiver. The CSI also shouldbe known in other situations, which combine OFDM and adaptive modulation, beamforming or multiple-input and multiple-output (MIMO) transmission. Therefore,channel estimation is the essential part of OFDM systems. In this dissertation, newsolutions and algorithms related on OFDM channel estimation and interferencecancellation techniques are proposed for time-varying channels.
     In the first part of the dissertation, the properties of the fading channel and itsmathematical model is discussed. After the briefly introduction of the conventional LSestimator, the LMMSE estimator, the DFT-based transform domain estimator, a newchannel estimation algorithm based on statistical analysis is proposed.
     The traditional DFT-based channel estimator only removes the noise in the channelimpulse response (CIR) beyond the length of the cyclic prefix (CP),while the noisewithin the length of the CP is not suppressed at all.In most of the improved DFT-basedchannel estimation algorithm, one decision threshold is obtained by some methods.When this threshold was applied to the CIR within the length of the CP to remove noise,the accuracy of channel estimation is improved. To obtain the desired results, a crucialproblem is how to find an optimal threshold value. In addition, these kinds of methodsare invalid, when the value of CIR estimation is close to the threshold. From themultivariate analysis method, the noise suppression problem is a typical discriminantanalysis problem, since the CIR is composed of the ideal channel taps and the addednoise taps. To discriminate the uncertain taps, the Mahalanobis distance is used todiscriminate the CIR. By introducing the distance measure, the defects of thethreshold-discrimination method are overcome effectively. The channel estimationmethod based on DFT for OFDM is suitable for sample spaced channel. The energy of channel impulse response will leak to all taps when the non-sample spaced channel istransformed by the DFT. By changing the discriminated range, the improved channelestimation method is presented, which is suitable for the non-sample spaced channelbased on DFT for OFDM systems.
     In the interval of one OFDM symbol, the wireless channel is usually assumed to besmooth. The high speed motion of subscribers gives rise to Doppler effects that destroyorthogonality between sub-carriers, leading to ICI and performance degradation for theOFDM system. An algorithm for fast-varying channel estimation was proposed by Choi.This method need to know the channel statistical knowledge, which cannot be obtainedaccurately in practice. Furthermore, its computational complexity is very high.
     The time-varying channel can be approximated by a linear model during anOFDM block, when the normalized Doppler frequency shift is less than0.2. In this case,the channel is modeled as a linear function, and the CIR can be obtained by onlyestimating the slope and the reference signal of linear model. When the linear model isused to approximate the time variations of channel transmission function, there will becertainly some errors. Based on total least squares (TLS) criterion,a novel method forestimating channel parameters variation within an OFDM symbol is proposed. Thesimulation results show that the new method is more robust when Doppler frequency ishigh.
     Using the CP as the guard interval is a simple way to combat the inter-symbolinterference (ISI). However, it also reduces the transmission efficiency of the system.For some channels with a very long delay spread, it is possible that the length of the CPis beyond the channel length. The interference due to the insufficient CP was analyzedand the SIR was derived for OFDM systems. In order to cancel interference, a newmethod for interference cancellation, based on total least squares (TLS) criterion, isproposed.
     Due system terminal mobility and multi-path effects channel stability is difficult tobe maintained in wireless communication systems. Time variations of doubly-selectivechannels lead to the loss of orthogonality between sub-carriers, resulting in the increaseof the ICI energy and error of the channel estimation at pilot sub-carriers. Furthermore,the one tap frequency equalizer is not applicable any more in this case. The new methodwas proposed for the signal restoration via the regularized constrained total leastsquares. Errors caused by channel inaccuracies can be mitigated after equalization.Theoretical analysis and simulation results show that the method can not only eliminate noise and interference, but also recover the transmitted data.
引文
[1] R. W. Chang, R. A. Gibby. A theoretical study of performance of an orthogonal multiplexingdata transmission scheme. IEEE Trans. Commum.,1968,16(4):529-540.
    [2] B. R. Saltzberg. Performance of an efficient parallel data Transmission System. IEEE Trans.Commum. Tech.,1967,15(6):805-811.
    [3] S. B. Weinstein, P.M. Ebert. Data transmission by frequency-division multiplexing using thediscrete Fourier transform. IEEE Trans. Commum.,1971,19(5):628-634.
    [4] R. Peled, A. Ruiz. Frequency domain data transmission using reduced computationalcomplexity algorithms. IEEE International Conference on Acoustics, Speech, and SignalProcessing,1980, LA. USA,964-967.
    [5] A. Vahlin and N. Holte, Use of a Guard Interval in OFDM on Multipath Channel, IEEEElectronics Letter, Volume:30,1994, Pages:2015-2016.
    [6] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville; Cyclic Prefixing or Zero Padding forMulticarrier Transmissions?, Communications, IEEE Transactions on, Volume:50, NO.12,Decm.2002,:2136-2148.
    [7] ETSI, Digital video broadcasting: framing structure, channel coding, and modulation fordigital terrestrial television, EN1997. Aug.:300-744
    [8] ETSI, Radio broadcasting systems; digital audio broadcasting to mobile, portable and fixedreceivers. ETS300-401ed.2. Mav.1997.
    [9] IEEE802.11a,1999supplement to IEEE standard for information technology andtelecommunications and information exchange bet    [10] ETSI, Broadband radio access networks (BRAN): HIPERLAN type2technical specificationpart I-pyhsical layer, DTS/BRAN030003-1.
    [11] P.S.Chow, J.C Tu,. J.M.Cioffi, Performance evaluation of a multichannel transceiver systemfor ADSL and VHDSL services, IEEE J. Select. Areas Commun.,1991,9(6):909-919.
    [12] O. Tero, P. Ramjee. An Overview of Air Interface Multiple Access for IMT-2000/UMTS.IEEE Communication Magazine,1998(9):82-95.
    [13] A.Doufexi,S.Annour,A.Nix et a1.,Design considerations and initial physical layerperformance results for a space time coded OFDM4G cellular network,in Proc.IEEE PIMRC,Sep.2002:192-196.
    [14] J.Chuang and N.Sollenberger. Beyond3G: wideband wireless data access based on OFDMand dynamic packet assigmnent, IEEE Comm.Mag,2000,38(7):78-87.
    [15]咚学俭,罗涛;OFDM移动通信技术原理与应用,北京:人民邮电出版社,2003.
    [16] Ozdemir Mehmet Kemal, Arslan Huseyin. channel estimation for wireless ofdm systems.IEEE Communications Surveys&Tutorials,2007,9(2):31.
    [17] Stuber G. L., Barrv J. R., et al. Broadband MIMO-OFDM wireless communications.Proceedings of the IEEE,2004,92(2):271-294.
    [18] J.C. Proakis, Digital Communications,3rded, McGraw-Hill Inc.,1995.
    [19] T.S. Rappaport, A.Annamalai, R.M.Tranter, et al; Wireless communications: past events and afuture perspective, IEEE Communication. Magazine, May2002, Pages:148-161.
    [20] A.F. Molisch, Wideband Wireless Digital Communications, Pearson Education, Inc.,2001.
    [21]张贤达,保铮,通信信号处理,北京:国防工业出版社,2000.
    [22] S.M. Alamouti, A simple transmit diversity technique for wireless communications; IEEEJournal on Selected Areas in Communications, Volume:16, Issue:8, Oct.1998, Pages:1451-1458.
    [23] V Tarokh, N.Jafarkhani, and A.Calderbank, Space time block coding for high data ratewireless communications: Performance criterion and construction; Information Theory IEEETrans. on vo1.44, March1998, Pages:744-765.
    [24] Gao F. F., Zeng丫H., Nallanathan A., et al. Robust subspace blind channel estimation forcyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis.IEEE Journal on Selected Areas in Communications,2008,26(2):378-388.
    [25] Li C. Y, Roy S. Subspace-based blind channel estimation for OFDM by exploiting virtualcarriers. in. San Antonio, Texas. IEEE-Inst Electrical Electronics Engineers Inc,2001.141-150.
    [26] Muquet B., de Courville M., Duhamel P. Subspace-based blind and semi-blind channelestimation for OFDM systems. IEEE Transactions on Signal Processing,2002,50(7):1699-1712.
    [27] B. Muquet, M. D. Courvile and P. Duhame. Subspace-Based Blind and Semi-Blind ChannelEstimation for OFDM systems. IEEE Transactions on Signal Processing.2002,50(7):1699-1712.
    [28] Hung Nguyen Le, Tho Le Ngoc, Chi Chung Ko. Joint Channel Estimation andSynchronization for MIMO-OFDM in the Presence of Carrier and Sampling FrequencyOffsets. IEEE Transactions on Vehicular Techology.2009,58(6):3075-3081.
    [29] Jingbo Gao, Xu Zhu, Nandi A K. Non-Redundant Precoding and PAPR Reduction inMIMO-OFDM Systems with ICA Based Blind Equalization. IEEE Transactions on WirelessCommunications.2009,8(6):3038-3049.
    [30] Cai T. T., Levine M., Wang L. Variance function estimation in multivariate nonparametricregression with fixed design. Journal of Multivariate Analysis,2009,100(1):126-136.
    [31] R. W. Heath, G. B. Giannakis. Exploiting Input Cyclostationarity for Blind ChannelIdentification in OFDM System. IEEE Transactions on Signal Processing.1999,147(3):848-856.
    [32] Feifei Gao, Yonghong Zeng, Nallanathan A, Tung-Sang Ng. Robust subspace blind channelestimation for cyclic prefixed MIMO-OFDM systems:algorithm, identifiability andperformance analysis. IEEE Journal on Selected Areas in Communications.2008,26(2):378-388.
    [33] Gorokhov A, Linnartz J.P.Robust. OFDM receivers for dispersive time-varying channels:equalization and channel acquisition. IEEE Transactions on Communications.2007,52(4):572-583.
    [34] Chotikakamthorn N., Suzuki H. On identifiability of OFDM blind channel estimation. in:Vehicular Technology Conference,1999. VTC1999-Fall. IEEE VTS50th.1999. vo1.2354,2358-2361.
    [35] Giannakis Georgios B., Hu Yingbo, Stoica Petre, et al., Trends in Channel Estimation andEqualization, in Signal Processing Advances in Wireless and Mobile Communications,Giannakis, Georgios B., Hu, Yingbo, Stoica, Petre and Tong, Lang, Editor^Editors.2002,Prentice Hall PTR: New Jersey.
    [36] Shengli Zhou, Giannakis G. B. Finite-alphabet based channel estimation for OFDM andrelated multicarrier systems. Communications, IEEE Transactions on,2001,49(8):1402-1414.
    [37] G. B. Giannakis, S. D. Halford. Blind Fractionally Spaced Equalization of Noisy FIRChannels: Direct and Adaptive Solutions. IEEE Transactions on Signal Processing.1997,45(9):2277-2292.
    [38] G J Foschini. Layered space-time architecture for wireless communication in a fadingenvironment when using multiple antennas. Bell Labs Tech. J.1996.1(2):41-59.
    [39] Q.H Spencer, L Swindlehurst, M Haardt. Zero-forcing methods for downlink spatialmultiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing.2007,2(2):461-471.
    [40] Tugnait J K, Luo W. On Channel Estimation Using Superimposed Training and First-orderStatistics. IEEE Communications Letters.2003,7(9):413-415.
    [41] Bertrand Muquet; Marc de Courville; Pierre Duhanrnel; Subspace-based blind and semi-blindchannel estimation for OFDM systems; Signal Processing, IEEE Trans. On, Volume:50, No.7,July2002, Pages:1699-1712.
    [42] Fan Yang; Wee Ser; Adaptive semi-blind channel estimation for OFDM systems; VehicularTechnology Conference,2004. VTC2004-Spring. The59th IEEE Semiannual, Volume:3,May17-19,2004, Pages:1773-1776.
    [43] Weiwei Yang; Yue-ming Cai; A semi-blind channel estimation with superimposed pilotsequence for OFDM systems; ISCIT2005, Beijing, October2005.
    [44] Zhao Ming; Guo Liting; Zhu Jinkang; A low-complexity semi-blind channel estimationmethod for OFDM systems; Vehicular Technology Conference,2005. VTC2005-Fall. The62th IEEE Semiannual, Volume:1,September25-28,2005, Pages:550-553.
    [45] Muquet B.;deCourville M.;Duhamel P.;Buzenac V;A subspace based blind and semi-blindchannel identification method for OFDM Signal Processing Advances in WirelessCommunication,(SPAWC)1999, May9-12,1999, Pages:170-173.
    [46] Muck M.; de Courville M.; Duhamel P.; A pseudorandom postfix OFDM modulatorsemi-blind channel estimation and equalization; Signal Processing, IEEE Trans. On, Volume:54, No.3, March2006, Pages:1005-1017.
    [47] Ito M., Suyama S., Fukawa K., et al. An OFDM receiver with decision-directed channelestimation for the scattered pilot scheme in fast fading environments. in: VehicularTechnology Conference,2003. VTC2003-Spring. The57th IEEE Semiannua1.2003.vo1.361,368-372.
    [48] Wan P., McGuire M. An iterative decision feedback algorithm using the Cholesky update forOFDM with fast fading. in: PacRim2007. IEEE Pacific Rim Conference on Communications,Computers and Signal Processing,2007, Victoria, CANADA. IEEE,2007.522-525.
    [49] Shiu-Hui Lee, Chien-Chun Cheng, Dah-Chung Chang. Modified decision feedbackmethods for OFDM channel tracking. in: ICCCAS2008. International Conference onCommunications, Circuits and Systems,2008.268-272.
    [50] Jung-Hyun Park, Mi-Kyung Oh, Dong-Jo Park. New Channel Estimation Exploiting ReliableDecision-Feedback Symbols for OFDM Systems. in: Communications,2006. IEEEInternational Conference on Communications,2006.,2006.3046-3051.
    [51] J. K. Moon S. Choi. Performance of Channel Estimation Methods for OFDM Systems inMultipath Fading Channels. IEEE Transactions on Consume Electronics.2000,46(1):161-170.
    [52] I. Budiarjo, I. Rashad, H. Nikookar. On the Use of Virtual Pilots with Decision DirectedMethod in OFDM Based Cognitive Radio Channel Estimation Using2x1-D Wiener Filter.IEEE International Conference on Communications, Beijing, China,2008:703-707.
    [53] C. N. Ahamad, Y. Y. Wu.Filtered Decision Feedback Channel Estimation for OFDM BasedDTV Terrestrial Broadcasting System. IEEE Transactions on Broadcasting.1998,44(1):2-10.
    [54] Edfors O., Sandell M., van de Beek J. J., et al. OFDM channel estimation by singularvalue decomposition, IEEE Transactions on Communications,1998,46(7):931-939.
    [55] Z. D. Wang, G. B. Giannakis. Linearly Precoded or Coded OFDM Against Wireless ChannelFades.3rd IEEE Signal Processing workshop on Signal Processing Advances in WirelessCommunications, Taoyuan, Taiwan,2001:267-270.
    [56] I. Barhumi, G Leus, M. Moonen, Optimal training sequences for channel estimation in MIMOOFDM systems in mobile wireless channels, in International Zurich Seminar on BroadbandCommunications, Access, Transmission, Networking,2002:44-1~44-6.
    [57] Zhang Y., Liu H. P. Decision-feedback receiver for quasi-orthogonal space-time coded OFDMusing correlative coding over fast fading channels. IEEE Transactions on WirelessCommunications,2006, S(11):3017-3022.
    [58] Kim W. J., Lee Y J., Kim H. N., et al. Coded decision-directed channel estimation for coherentdetection in terrestrial DMB receivers. IEEE Transactions on Consumer Electronics,2007,53(2):319-326.
    [59] R. Negi, J. Cioffi, Pilot tone selection for channel estimation in a mobile OFDM system, IEEETrans. Consumer Electron.,1998,44(8):1122-1128.
    [60] J. H. Manton, Optimal training sequence and pilot tones for OFDM systems, IEEE Commun.Lett.,2001,5(4):151-153.
    [61] M. Dong, L. Tong, Optimal design and placement of pilot symbols for channel estimation,IEEE Trans. signal process.,2002,50(12):3055-3069.
    [62] Henkel M., Schilling C., Schroer W. Comparison of Channel Estimation Methods forPilot Aided OFDM Systems. in: Vehicular Technology Conference,2007. VTC2007-Spring.IEEE65th.2007.1435-1439.
    [63] Ozdemir M. K., Arslan H., Areas E. Toward real-time adaptive low-rank LMMSEchannel estimation of MIMO-OFDM systems. IEEE Transactions onWirelessCommunications,2006,5(10):2675-2678.
    [64] J.-J. van de Beek, O. Edfors, M. Sandell et al. On channel estimation in OFDM systems. IEEEVehicular Technology Conference,1995,2:815-819.
    [65] Noh.M.,Lee.Y.,Park.H. Low Complexity LMMSE Channel Estimation for OFDM[J]. IEEProceedings Communications.2006,153(5):645-650.
    [66] Morelli, M. Mengali, U.; A comparison of pilot-aided channel estimation methods for OFDMsystems, Signal Processing, IEEE Transactions on, Volume:49, Issue:12, Dec.2001,Pages:3065-3073.
    [67] Dong X. D., Lu W S., et al. Linear interpolation in pilot symbol assisted channelestimation for OFDM. IEEE Transactions on Wireless Communications,2007,6(5):1910-1920.
    [68]高群毅.OFDM系统中一种信道估计频域插值算法.清华大学学报(自然科学版),2006,46(10).
    [69] Coleri, S.; Ergen, M.; Puri, A.; Bahai, A.; Channel estimation techniques based on pilotarrangement in OFDM systems, Broadcasting, IEEE Transactions on Volume:48,Issue:3,Sept.2002, Pages:223-229.
    [70] S.G.Kang, Y. M. Ha, E. K. Joo, A comparative investigation on channel estimation algorithmsfor OFDM in mobile communications, IEEE Trans. Broadcasting,2003,49(2):142-149.[45]
    [71] M. J. Fenrandez-GetinoGareia, J. M. Paez-Borrallo, S. Zazo, DFT based channel estimation in2D-Pilot-symbol-aided OFDM wireless systems, in Proc. VTC, May2001:810-814.
    [72] Rui Yun, Li Mingqi, Zhang Xiaodong. Noise variance optimization method for2×1-dimensional wiener filtered channel estimation.Tien Tzu Hsueh Pao.2008,8(36):1577-1581.
    [73] Fan Jiancun, Ym, Qinye, Wang Wenjie, et al. Pilot-aided channel estimation schemes forOFDM systems with cyclic delay diversity. IEEE Vehicular Technology Conference2009.
    [74] Bossert. M, Donder. A, Zyablov. V Improved channel estimation with decision feedback forOFDM systems. Eletronics Letters,1998,34(11):1064.
    [75] M. Bossert, A. Donder, and A. Trushliin. Channel estimation and equalization in orthogonalfrequency division multiplexing systems [C]. In: Proc ITG-Fachberitcht, MobileKommunikation. Neu-Ulm, Germany.1995.485-492.
    [76] M. J. F. G. Garcia, J. M. Paez-Borrallo, and S. Zazo DFT-based channel estimation in2D-pilot-symbol-aided OFDM wireless systems [C]. In: Proc IEEE Vehic Tech Conf. Rhodes,Greece.2001.810-814.
    [77] Y. Zhao and W. L. and W. Wu. An efficient channel estimation method for OFDM systemswith multiple transmit antennas [C]. In: Proc Int'1Conf Info-Tech and Info-Net. Beijing,China.2001.335-339.
    [78] A. A. Tahat and D. R. Ucci. An extrapolated matched-filter approach to multi-user channelestimation for OFDM in SDMA [C]. In: Proc IEEE Antennas and Propagat Soc Conf. SanAntonio, TX.2002.636-639.
    [79] Y. H. Yeh and S. G. Chen. Efficient channel estimation based on discrete cosine transform [C].In: Proc IEEE Int'1Conf Acoust, Speech, and Signal Processing. Hong Kong, China.2000.676-679.
    [80] Y. H. Yeh and S. G. Chen. Dct-based channel estimation for OFDM systems [C]. Proc IEEEInt'1Conf Commun. Paris France.2004.2442-2446.
    [81] Y. Li and N. R. Sollenberger. Clustered OFDM with channel estimation for high rate wirelessdata [C]. In: Proc IEEE Int'1Wksp Mobile Multimedia Commun. San Diego, CA.1999.43-50.
    [82] Y. Li and N. R. Sollenberger. Clustered OFDM with channel estimation for high rate wirelessdata [J]. IEEE Trans Commun,2001,49(12):2071-2076.
    [83] M. Stege, P. Zillmann, and G. Fettweis. MIMO channel estimation with dimension reduction
    [C]. In: Proc Int'1Symp Wireless Personal Multimedia Commun. Honolulu, HI.2002.417-421.
    [84] Y. Li. Pilot-symbol-aided channel estimation for OFDM in wireless systems [C]. In: ProcIEEE Vehic Tech Conf. Houston, TX.1999.1131-1135.
    [85] B. Yang et al. Channel estimation for OFDM transmission in multipath fading channels basedon parametric channel modeling [J]. IEEE Trans Commun,2001,49(3):467-479.
    [86] B. Yang et al. Robust and improved channel estimation for OFDM systems in frequencyselective fading channels [C]. In: Proc IEEE Globecom Conf. Rio De Janeireo, Brazil.1999.2499-2503.
    [87] Z. J. Wang, Z. Han, and K. J. R. Liu. MIMO-OFDM channel estimation via probabilistic dataassociation based toas [C]. In: Proc IEEE Globecom Conf. San Francisco, Ca.2003.626-630.
    [88] R. Chen and K. B. Letaief. Channel estimation for space-time coded OFDM systems innon-sample-spaced multipath channels [C]. In: Proc IEEE Wireless Commun and NetworkingConf. Orlando, FL.2002.61-66.
    [89] T. A. Thomas and F. W. Vook. Broadband MIMO-OFDM channel estimation via nearmaximum likelihood time of arrival estimation [C]. Proc IEEE Int'1Conf Acoust, Speech, andSignal Processing. Orlando, Fl.2002.2569-2572.
    [90] C.W.Wong,C. L. L and Y. L. Guan. Channel estimator for OFDM systems with2-Dimensionalfiltering in the transform domain [C]. Proc IEEE Vehic Tech Conf. Rhodes, Greece.2001.717-721.
    [91] Y. Zhao and A. Huang. A novel channel estimation method for OFDM mobile communicationsystems based on pilot signals and transform-domain processing [C]. In: Proc IEEE VehicTech Conf. Phoenix, AZ.1997.2089-2093.
    [92] H. Minn and V. K. Bhargava. An investigation into time-domain approach for OFDM channelestimation [J]. IEEE Trans Broadcast,2000,46(4):.
    [93] H. Minn, D. I. Kim, and V. K. Bhargava. A reduced complexity channel estimation for OFDMsystems with transmit diversity in mobile wireless channels [J]. IEEE Trans Commun,2002,50(5):799-807.
    [94] M.R. Raghavendra, S. Bhashyam, and K. Giridhar,"Exploiting hopping pilots for parametricchannel estimation in OFDM systems," IEEE Signal Processing Lett., vol.12, pp.737-740,Nov.2005.
    [95] EDfors O.,Sandell M.,Beek J.J.V.D.,et al. Analysis of DFT-based Channel Estimators forOFDM[J].Wireless Personal Communications.2000,12(1):55-70.
    [96] Li H., D., etc.,"Channel order and RMS delay spread estimation with application to ACpower line communications," Digital Signal Processing: A Rev J., vol.13, no.2, pp.284-300,Apr.2003.
    [97] Raghavendra M. R. and Giridhar K.,"Improving Channel Estimation in OFDM Systems forSparse Multipath Channels,"IEEE Signal Processing Letters, vo1.12, no.l, pp.52-55, Jan.2005.
    [98] Farhang-Boroujeny B. Pilot-based channel identification: proposal for semi-blindidentification of communication channels. Electronics Letters,1995,31(13):1044-1046.
    [99] Meng X., Tugnait J. K. Performance analysis of semi-blind channel estimation usingsuperimposed training. in:2005IEEE6th Workshop on Signal Processing Advances inWireless Communications.2005.32-36.
    [100] Jun Tao, Luxi Yang. A first-order statistical method for time-variant MIMO channel estimation.Signal Processing Advances in Wireless Communications,2004IEEE,pp:209-212.
    [101] Tugnait J. K., Shuangchi He. Performance analysis of an mimo channel esimator based onsuperimposed training and first-order statistics.2005,1336-1341.
    [102] Lidong Wang, Dongmin Lim. Pilot embedded scheme for time-variant channelestimation in OFDM systems. in: ICACT2006. The8th International Conference onAdvanced Communication Technology,2006.5.
    [103] Ghogho M. Channel and DC-offset estimation using data-dependant superimposed training.in:The2nd IEE/EURASIP Conference on DSP enabled Radio,2005(Ref. No.2005/11086).2005.5.
    [104] Tugnait J. K., He S. Doubly-Selective Channel Estimation Using Data-DependentSuperimposed Training and Exponential Basis Models. IEEE Transactions on wirelessCommunications,2007,6(11):3877-3883.
    [105] Shouyin Liu, Jinjing Zhan, Wenwu Xie, et al Channel Estimation Using Frequency-domainSuperimposed Pilot Time-Domain Correlation Method for OFDM Systems. CommunicationTechnology,2006. ICCT '06.
    [106] B.Lindoff,C.Ostberg,H.Eriksson.Channel estimation for the WCDMA system, Performanceand robustness analysis from a terminal PersPeetive.IEEE VTC,SePt.1999,2:1565-1569.
    [107] S. Min and K. B:-Lee. Pilot and traffic based channel estimation for DS/CDMA. ElectronicsLetters, May,1998,34(11):1073-1074P.
    [108] H. N. Lee and G.J, Pottie. Fast.Adaptive Equalization/Diversity Combining forTime-Varying Dispersive Channels. IEEE Trans. On Communications, September,1998,Vo1.46; No:9:1146-1162P.
    [109] L. M. Davis, I. B. Collings and R. J. Evams. Coupled estimators for equalization offast-fading mobile channels. IEEE Trans. On Communications, October;1,998, Vol.46, No.10:1262-1265P.
    [110] J. Rodriguez, T. Jeans and R. Tafazolli.Kalman filter estimator for WCDMA FDD RAKEreceiver.Telecommunications,2003.ICT2003.10th International Conference, March,2003,Vol.2:1151-1156P.
    [111] K. A. D. Teo and S. Ohno.'Optimal MMSE finite`parameter model for doubly-selectivechannels. in proc. IEEE GLOBECOM'0民2005, Vol.6:3503-3507P.
    [112] Won Gi Jeon; Kyung Hi Chang; Yong Soo Cho "An equalization technique for orthogonalfrequency-division multiplexing systems in time-variant multipath channels"Communications, IEEE Transactions on,Volume:47,Issue:1,Jan.1999Pages:27-32.
    [113] A. Goldsmith. Wireless Communications. Cambridge University Press.2005:644.
    [114] T.S. Rappaport, Wireless Communication Principles and Practice, Prentice-Hall Inc.,1996.[4]
    [115] Shuichi Ohno, Member, Georgios B. Giannakis. Capacity maximizing mmse-optimal pilotsfor wireless OFDM over frequency-selective block rayleigh-fading channels. IEEE Trans.Commun on information theory, Sep.2004, vo1.50, no9:503-511P.
    [116] Goldsmith Andrea. WIRELESS COMMUNICATIONS. Cambridge, England: CambridgeUniversity Press,2005.
    [117] J. Sykora, Tapped delay line model of linear randomly time-variant WSSUS channel, IEE Elec.Lett.2000,36(19):1656-1657.
    [118] E. Biglieri, J. Proalis and S. Shamai, Fading channels: information-theoretic andcommunications aspects, IEEE Trans. Inform. Theory,1998,44(6):2619-2692.
    [119] James Cavers, Mobile channel characteristics, Kluwer Academic Publishers,2000:61-83.
    [120] M. R. Souryal and R. L. Pickholtz,"Adaptive modulation with imperfect channel informationin OFDM," in Proc. IEEE ICC '01, June2001, pp1861-1865.
    [121] J. Armstrong,"Analysis of new and existing methods of reducing intercarrier interference dueto carrier frequency offset in OFDM," IEEE Trans. Commun., vol.47, No.3, pp.365-369,Mar.1999.
    [121] C. Muschallik,"Improving an OFDM reception using an adaptive Nyquistwindowing," IEEE Trans. Consumer Electron., vol.42, No.3, pp.259-269, Aug.1996.
    [122] Z. Wang,G B.Giannakis,"Wireless multicarrier communications: where Fourier meetsShannon". IEEE Signal Processing Mag. Vol.17, No.5, pp.29-48, May2000.
    [123] Y. Li. Pilot-symbol-aided channel estimation for OFDM in wireless systems [C]. In: ProcIEEE Vehic Tech Conf. Houston, TX.1999.1131-1135.
    [124] Jean-Jacques Fuchs, Delyon B. Min-max interpolators and Lagrange interpolation formula.IEEE ISCAS,2002:429-432.
    [125] Richard van Nee, Ramjee Prasad, OFDM Wireless Multimedia and Communications, Boston,London: Artech House,2000.
    [126] M. Tuchler. A. C. Singer and R. Koetter,Minimum mean squared error equalization using apriori information[J],IEEE Traps. Signal Processing, vol.50, no.3, pp.673-683,2002.
    [127] Edfors O., Sandell M., van de Beek J. J., et al. OFDM channel estimation by singularvalue decomposition, IEEE Transactions on Communications,1998,46(7):931-939.
    [128] Morelli, M. Mengali, U.; A comparison of pilot-aided channel estimation methods for OFDMsystems, Signal Processing, IEEE Transactions on, Volume:49, Issue:12, Dec.2001,Pages:3065-3073.
    [129] L L Scharf. Statistical Signal Processing:Detection, Estimation, and Time Series Analysis[M].Reading, MA:Addision-Wesley,1991.
    [130]周克,张力军.低复杂度的OFDM信道估计算法.电子科技大学学报.第36卷,第6期2007年12月1489-1492.
    [131] C. L. Wang, H. C. Wang. A Low-Complexity Joint Time Synchronization and ChannelEstimation Scheme for Orthogonal Frequency Division Multiplexing Systems. IEEEInternational Conference on Communications, Istanbul, Turkey,2006,12:5670-5675.[158]
    [132] Noh.M.,Lee.Y.,Park.H. Low Complexity LMMSE Channel Estimation for OFDM[J]. IEEProceedings Communications.2006,153(5):645-650.
    [133]马淑芬,王菊等,离散信号检测与估计,电子工业出版社2010.
    [134] Morelli, M. Mengali, U.; A comparison of pilot-aided channel estimation methods for OFDMsystems, Signal Processing, IEEE Transactions on, Volume:49, Issue:12, Dec.2001,Pages:3065-3073.
    [135] Y. Zhao and A. Huang. A novel channel estimation method for OFDM mobile communicationsystems based on pilot signals and transform-domain processing [C]. In: Proc IEEE VehicTech Conf. Phoenix, AZ.1997.2089-2093.
    [136] Y. H. Yeh and S. G. Chen. Efficient channel estimation based on discrete cosine transform [C].In: Proc IEEE Int'1Conf Acoust, Speech, and Signal Processing. Hong Kong, China.2000.676-679.
    [137] Y. H. Yeh and S. G. Chen. Dct-based channel estimation for OFDM systems [C]. Proc IEEEInt'1Conf Commun. Paris France.2004.2442-2446.
    [138] Dowler A.,Doufexi A Nix A Performance Evaluation of Channel Estimation Techniques for aMohile Fourth Generation Wide Area OFDM System[C].IEEE56th Vehicular TechnologyConference.2002,4:2036-2040.
    [139]何晓群编著.多元统计分析引论.北京:中国人民大学出版社,2004.
    [140]袁志发宋世德编著,多元统计分析,北京:科学出版社,2007.
    [141] S. P. Wu andY B. Ness. OFDM Channel Estimation in the Presence of Frequency Offsetand Phase Noise. ICC'03IEEE International Conference on Communications, Anchorage,Alaska,2003,5:3366-3370.
    [142]周慧强,周世东,王京.MIMO-OFDM系统的时域导频信道估计算法.清华大学学报(自然科学版).2005,45(10):1352-1355.
    [143] Y Li, J. Ciminil, N. R. Sollenberger Robust Channel Estimation for OFDM Systems withRapid Dispersive Fading Channels. IEEE Transactions on Communication.199846:902-915.
    [144] E. G. Larsson, G. Liu, J. Li, G. B Giannakis. Joint Symbol Timing and Channel Estimation forOFDM Based WLANs. IEEE Communication Letters.2001,5(8):325-327.
    [145] G. E. Bottomley, J. C. Chen, D. Koilpillai. System and Methods for Selecting an AppropriateDetection Technique in A Radio Communication System U.S. Patent633395381,Dec.25,2001,325-327.
    [146] J. Chen, Y. Lee. Joint Synchronization, Channel Length Estimation, and Channel Estimationfor the Maximum Likelihood Sequence Estimator for High Speed Wireless Communications.IEEE56th Vehicular Technology Conference, Vancouver, BC.2002,9:1535-1539.
    [147] V. D. Nguyen, H. P. Kuchenbecker, H. Haas, K. Kyamakya, G. Gene. Channel ImpulseResponse Length and Noise Variance Estimation for OFDM Systems with Adaptive GuardInterval. EURASIP Journal on Wireless Communications and Networking.2007,2007(1):1-15.
    [148]李国松,周正欧.无线OFDM系统中CIR有效阶数估计.通信学报.200627(1):113-118.
    [149] I. Nevat, G. W. Peters, J. H. Yuan. OFDM CIR Estimation with Unknown Length via BayesianModel Selection and Averaging. IEEE68th Vehicular Technology Conference, Calgary,Canada,2008,5:1413-1417.
    [150] T. Cui,C. Tellambura. Power Delay Profile and Noise Variance Estimation for OFDM. IEEECommunications Letters.2006,10(1):25-27.
    [151] Guanghui Liu; Weile Zhu;"Compensation of phase noise in OFDM systems using an ICIreduction scheme", IEEE Transactions on Broadcasting, vol.50, pp:399-407, Dec.2004.
    [152] Peng Tan; Beaulieu, N.C.;"Reduced ICI in OFDM systems using the "better than"raised-cosine pulse" Communications Letters, IEEE, vol8, pp:135-137, March2004.
    [153] Hsiao-Chun Wu; Xiaozhou Huang;"Joint phase/amplitude estimation and symbol detectionfor wireless ICI self-cancellation coded OFDM systems", IEEE Transactions onBroadcasting, vol.50, pp:49-55, March2004.
    [154] U.Tureli, D. Kivanc, and N.R. Sollenberger,"Experimental and analytical studies on ahigh-resolution OFDM carrier frequency offset estimator," IEEE Trans. Veh. Technol., vo1.50,pp.629-643, Mar.2001.
    [155] Trautmann, S.; Fliege, N.J.;"A new equalizer for multitone systems without guard time"Communications Letters, IEEE, vol.6,no.1, pp.34-36, Jan.2002.
    [156] Van Duc Nguyen; Kuchenbecker, H.-P.;"Intercarrier and intersymbol interference analysis ofOFDM systems on time-invariant channels" PIIVVIRC, vol.4,15-18pp.1482-1487, Sept.2002.
    [157] Steffen Trautmann and Norbert J.Fliege,"A New Equalizer ofr Multitone Systems WithoutGuard Time”IEEE Comm. Letters, vo1.6. no.1, January2002.
    [158] COST207Management Committee,"COST207: digital land mobile radio communications",Com mission of the European Communities, Luxembourg1989.
    [159] Stantchev.B and Fettweis G."Time-variant distortion in OFDM". IEEE CommunicationLetters2000,4(9):312-314.
    [160] Kim.Y.H, Song I, Kim H G, Chang T, and Kim H M."Performance analysis of a coded OFDMsystem in time-varying multipath Rayleigh fading channels". IEEE Transactions on VehicularTechnology,1999,48(5):1610-1615.
    [161] Steendam.H and Moeneclaey M."Analysis and optimization of the performance of OFDM onfrequency-selective time-selective channels". IEEE Trans.Communications.199947(12):1811-1819.
    [162] Gorokhov.A and Linnartz J-P."Robust OFDM receiver for dispersive time varying channels:equalization and channel acquisition". In Proc. of IEEE Int. conference on communications,vol.l, pp.470-474,2002.
    [163] Choi.Y S Voltz P J, and Cassara F A:' On channel estimation and detection for multicarriersignals in fast and selective Rayleigh fading channels". IEEE Trans. Communications,2001,49(8):1375-1387.
    [164]陈少平,时变信道中的正交频分复用系统ICI分析、消除与系统均衡,华中科技大学博士学位论文.
    [165] Linnartz J P and Gorokhov A.New equalization approach for OFDM over dispersive andrapidly time varying channel.In Proc.of IEEE Int.Symposium Personal Indoor Mobile RadioCommunications,vol.1,pp.1375-1379,2000.
    [166] Per-ke Wedin, perturbation theory for pseudo inverses, BIT,13(1973),217-232.
    [167] Channel Estimation and Interference Cancellation for OFDM Systems Based on Total LeastSquares Solution. Tongliang Fan, Haowei Wu and Hongcheng Huang. Journal ofCommunications2011, Vol.6, No.8pp640-607.
    [168] Tongliang Fan, Two novel channel estimation for OFDM systems by Time-Domain clusterdiscriminant analysis based on parametric channel modeling,, Wireless PersonalCommunications. DOI:10.1007/s11277-011-0455-8.(ISSN0929-6212).
    [169] Golub G H,Van Loan C F.An Analysis of the total least squares problem.SIAM J NumerAnal,1980,17:883-893.
    [170]孙金玮,刘昕,孙圣和.基于总体最小二乘的多功能传感器信号重构方法研究[J].电子学报,2004,32(3):391-394.
    [171]吴军彪,陈进,钟平等.基于总体最小二乘算法的平稳声信号二阶盲分离方法[J].声学学报,2004,29(3):221-225.
    [172]孔祥玉,韩崇昭,魏瑞轩等.一种鲁棒的总体最小二乘自适应辨识算法[J].小型微型计算机系统,2005,26(6):968-971.
    [173]孔祥玉,魏瑞轩,马红光等.一种总体最小二乘算法及在Volterra滤波器中的应用[J].西安交通大学学报,2004,38(4):339-342.
    [174]孔祥玉,魏瑞轩,韩崇昭.一种稳定的总体最小二乘自适应滤波算法[J].西安交通大学学报,2004,38(8):831-834.
    [175]喻胜,闫波.一种提取噪声中正弦信号的总体最小二乘法[J].电子测量与仪器学报,2000,14(2):6-10.
    [176]朱义勇,姚富强,王厚生等.一种优化的自适应总体最小二乘系统辨识算法[J].系统仿真学报,2008,20(18):4843-4846.
    [177]沈睿佼,杨洪耕,吴昊.基于奇异值总体最小二乘法的间谐波估计算法[J].电网技术,2006,30(23):45-49.
    [178]张贤达,矩阵分析与应用,清华大学出版社,2004.
    [179] Golub G H,Van Loan C F.An Analysis of the total least squares problem.SIAM J NumerAnal,1980,17:883-893.
    [180] S Chen,T Yao.BIind aIgorithm for RIBI mitigation in OFDM systems [J].IEE EIectronicsLetters,2002;38(22):1382~1383.
    [181] Chen S.P.and Yao T.R.“Frequency-domain Equalizer for OFDM systems with InsufficientCP”.Computer Engineering And Applications,Beijing China,39(18),PP.31-33,2003.
    [182] D Pal,G N Iyenga,J M Cioffi.A new method of channel shortening Proceedings of withapplications to discrete multi tone systems[e1.In:IEEE Int.Conf Communications,Atlanta,GA,USA,1998-10;6:1234-1237.
    [183]徐湘明.OFDM信道的联合时频域自适应均衡技术研究.汕头大学硕士论文.2006.
    [184]王焕萍,OFDM系统中符号间干扰抑制方法研究,西南交通大学硕士学位论文,2009.
    [185] KIM D,STUBER G L.Residual ISI cancellation for OFDM with application to HDTVbroadcasting [J].IEEE J Select Areas Commun,1998,16(8):1590-1599.
    [186] Kohonen T.Associative memory:a system theoretic approach[M].[S.1]:Springer Verlag,NY,1977.
    [187] Shavitt, C. F. Bender, A. Pipano and R. P. Hosteny, The iterative calculation of several of thelowest or highest eigenvalues and corresponding eigenvectors of of very large symmetricmatrices. J Comput Phys,1973,11:90~108.
    [188] M.Speth,S.A.Fechtel,G.Fock and H.Meyr,“Optimum receiver design for wireless broad-bandsystems using OFDM-partⅠ,”IEEE Trans. Commun.,Vol.47,No.11,pp.1668-1677,Nov.1999.
    [189] X.Tang, M.Alouini and A.J.Goldsmith,“Effect of chanel estimation error on M-QAM BERperformance in Rayleigh fading,”IEEE Trans.Commun.,Vol.47,No.12,pp.1856-1864,Dec.1999.
    [190] A.Leke and J.M.Cioffi,“Impact of imperfect channel knowledge on the performance ofmulticarrier systems,”in Proc.IEEE GLOBECOM'98,Vol.2, Nov.1998,pp.951-955.
    [191]井雅,正交频分复用无线通信系统中信道估计技术研究,东南大学博士学位论文,2006.
    [192] Gleser L J,Estimation in a multivariate“errors in variables”regression model: large sampleresults[J],The Annals of Statistics,1981,9(1):24~44.
    [193] Van Huffel S,Vandewalle J,Analysis and properties of the generalized total least squaresproblem Ax=bwhen some or all columns in A are subject to error[J], SIAM Journal on MatrixAnalysis and Applications,1989,10(3):294~315.
    [194] W. Chen, M.Chen, and J. Zhou. Adaptively Regularized Constrained Total Least-SquaresImage Restoration. IEEE Transactions On Image Processing, VOL.9, NO.4, pp.558-597,APRIL2000.
    [195] P.C.Hansen,”Regularization tools: a Matlab Paekage for analysis and solution of discreteill-Posed Problems,Nume:Algorithms,vol.6,PP.l-35,1994.
    [196] M.HankeandP.C.Hansen,“RegUlarizationmethodsforlarge-",-scale problems," Sun: Math.Ind., voi.3,1993.
    [197] P. C. Hansen,"The L-curve and its use in the numerical treatment of inverse problems," inComputational inverse problems in electrocardiographch.4, WIT Press, Advances inComputational Bioengineering, pp.119-142,2001.
    [198] K. Kunisch and J. Zou,"Iterative choices of regularization parameters in linear inverseproblems," Inverse problems, vol.14, pp.1247-1264,1998.
    [199] R. Fletcher, Practical Methods of Optimization, Wiley, New York,1987.
    [200] X. Fan, The constrained total least squares with regularization and its use in ill-conditionedsignal restoration, Ph.D. Dissertation, Mississippi State University, December1992.
    [201] ITU-R. Guidelines for Evaluarion of Radio Transmission Technologies for IMT2000. ITURECOMMENDATION, ITLJ-R M.1225,1997.
    [202] N.H. Younan, X. Fan. Signal restoration via the regularized constrained total least squares,Signal Processing71(1998)85-93.
    [203] Chen. Pei, Kobayashi. Hisash. Maximum likelihood channel estimation and signal detectionfor OFDM systems. IEEE Int Conf Commun,2002,3:1640-1645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700