用户名: 密码: 验证码:
质子交换膜燃料电池双极板和流场的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)具有较高的功率密度和能量转化效率,最有可能成为电动车的动力源。双极板是质子交换膜燃料电池的关键部件之一,不但影响电池的性能,而且影响电池的成本,成为燃料电池产业化的瓶颈。目前双极板材料的研究主要集中在金属板(主要是不锈钢)和石墨板/碳板两种材料上,而这两种材料各有优缺点。理想双极板应该结合这些材料的优点:高导电性、耐腐蚀、重量轻、强度高、密封性能好、化学稳定性好、导热好而且还要易于加工。
    本论文提出了一种新的复合双极板的制备方法:薄不锈钢板作分隔板,冲压成流场的柔性石墨板代替不锈钢网作为流场板,兼具了金属双极板和石墨双极板的优点。重点研究了金属分隔板的表面改性对燃料电池性能的影响,采用了电镀、化学镀、离子溅射等方法对金属分隔板进行了表面处理,并研究了处理后的不锈钢板的耐腐蚀性及其与柔性石墨流场板之间的接触电阻。测试结果发现,接触电阻的大小顺序依次是电镀银<溅射银<化学镀锡    最后简要介绍了课题组利用该复合双极板组装了电池组,通过在实际过程中的应用,进一步证实了该种复合双极板的可靠性。
Due to the prospects for attaining high power density and energy conversionefficiency, the proton exchange membrane fuel cell (PEMFC) is one of the mostpromising power sources for future electric vehicles. Bipolar plates of PEMFC areone of the critical components which have a major impact not only on theperformance of the stack but also on the cost and have been choke points ofindustrialization.
    The majority of PEMFC stack producers utilize bipolar plate based on graphite,carbon composites or metals (principally, stainless steel). Each of these materials hascharacteristics that are beneficial for fuel cell applications, but are limited by others.An idea bipolar plate would incorporate the merits of these materials, such that itwould be high in electrical conductivity and corrosion protection, of low density butwith high mechanical strength, impermeable to reactant gases, chemically inert,thermal conductivity, and allow for ease of manufacture.
    A novel composite bipolar plate is studied and prepared in this thesis, which isadopted stainless steel plate as its supporting plate and flexible graphite plate as itsflow field plate. The composite bipolar plate combined advantages with graphite andmetal plates, which meets the conditions of an idea bipolar plate.
    The effect of thin stainless steel plate on performance of PEM fuel cell has beenstudied. Coating systems for metal plates are including electroplate, electrolessplating, ion eject and etc. The contact resistance between the flexible graphite plate
    and the coated stainless steel plate has been investigated. At the same time, theflexible graphite flow field plate has been discussed, including gas penetrability,component and body resistance. The dimensions of flow field also have an importanteffect on performance of PEM fuel cell. Stack assembled with composite plates has been used for engine, which furtherconfirmsreliability of the composite plate.
引文
[1] Angelo U.Dufour. Fuel cells –a new contributor to stationary power[J], J PowerSources ,71(1998)19-25.
    [2] Baolian Yi, Ming Han, Enjun Zhang, Zhigang Shao, Hao Liu,Tianxi Qu, HaifengZhang. Development of 1KW proton exchange membrane fuel cellstack, “Workshopon fuel cell technology and applications”,Dalian,China,1998, 75-78.
    [3] Keith B.Parter. Polymer electrolyte fuel cells: a review of recent developments[J].J Power Sources, 51 (1994),129-144.
    [4] 衣宝廉,燃料电池——高效、环境友好的发电方式[M],北京:化学工业出版社,2000. 
    [5] A.J.Appleby. Recently developments in fuel cell materials[J]. Materials ResearchSociety,vol.393 (1995),11-24.[6] 邵志刚,衣宝廉,韩明,乔亚光,刘浩,于景荣. 质子交换膜燃料电极的一种新的制备方法[J],电化学,2000,Vol.6,317-323. 
    [7] J.C.Amphlett, R.F.Mann, B.A.Peppley ,P.R.Roberge, A.Rodrigues. A modelprediction transient responses of proton exchange membrane fuel cells[J], J PowerSources 61(1996) 183-188.
    [8] Xin Wang,I-Ming Hsing, PL.Yue. Electrochemical characterization of binarysupported electrode in polymer electrolyte fuel cells[J]. J Power Sources 96(2001)282-287.
    [9] Peter C.Rieke and Nicholas E.Vanderborgh. Thin film electrode arrays formapping the current-voltage distributions in proton exchange membrane fuel cells[J].J Electrochem Soc,Vol.134,No.5,1099-1104.
    [10] Curtis Marr, Xianguo Li. Composition and performance modeling of catalystlayer in a proton exchange membrane fuel cell[J]. J Power Sources , 77 (1999) 17-27.
    [11] Siyu Ye, Ashok K.Vijh, and Le H. Dao. A new fuel cell electrocatalyst based onhighly porous carbonized polyactylonitrile foam with very low platinum loading[J]. JElectrochem Soc, vol 134,No.6, 1417——1419.
    [12] 韩明,徐洪峰,衣宝廉. 质子交换膜燃料电池新结构[J].电化学,1999,Vol 5:111-114. 
    [13] Mahlou S Wilson. Fuel Cell with Metal Screen FlowField[P]. USP: 5 798 187.
    [14] C.A. Ward, Jose’A. Garcia. Analytical method for determining the internalresistance and electrocatalyst utilization of fuel cells[J]. J Power Sources, 66(1997)83-88.
    [15] Jose’A. Garcia, C.A. Ward, R.D. Venter, S.Ho. Determination of internalresistance and electrocatalyst utilization of fuel cells[J]. J Power Sources,66(1997)89-96.
    [16] R.L.Borup and N.E.Vanderborgh. Design and testing criteria for bipolar platematerials for PEM fuel cell application, vol.393 (1995) 151-155
    [17] Clarence Y.Chow .Vancouver; Bogusiav M. Wozniczka, Coquitiam, both ofCanada ,Electrochemical fuel cell stack with humidification section located upstreamfrom the electrochemically active section[P],USP: 5 382 478.
    [18]Jurgen Stumper,Stephen A.Campbell,David P.Wilkinson, Mark C.Johnson andMike Davis. In-situ methods for the determination of current distributions in PEMfuel cells[J].J Electrochimica Acta,Vol.43,No.24,pp.3773-3783,1998,
    [19] Mahlon S.Wilson, Christine Zawodzinski[P]. Fuel cell with metal screenflow-field. USP: 5 798 187.
    [20] Rock. Mirrored serpentine flow channels for fuel cell[P]. USP: 6 099 984.
    [21] Reginald G Spear. Plastic Platelet Fuel Cells Employing Integrated FluidManagement[P]. USP: 5 863 671.
    [22]Theodore M.Besmann, James W. Klett, John J. Henry, Jr., and Edgar Lara-Curzio.Carbon/Carbon composite bipolar plate for proton exchange membrane fuel cells[J].J Electrochem Soc, 147 (11) 4083-4086(2000).
    [23] F.Barbir, J.Braun and J.Neutzler, Effect of collector plate resistance on fuel cellstack performance, www.energypartners.org.
    [24] Louis A Joo. Johnson City et al. Process for the production of a porousmonolithic graphite plate[P]. USP: 4 782 586.
    [25] Roger C.Emanuelson et al. Separator plate for electrochemical cells[P]. USP: 4301 222.
    [26] Alberto Pellegri ,et al. Bipolar separator for electrochemical cells and method ofpreparation thereof[P]. USP: 4 197 178.
    [27] Grasso, et al. Composite article[P]. USP: 6 039 823.
    [28]RichardJ.Lawrance,Hampstead,N.H. Low cost bipolar current collector-separatorfor electrochemical cells. USP: 4 214 969.
    [29]Edward N.Balko et al. Carbon fiber reinforced fluorocarbon-graphite bipolarcurrent collector-separator[P]. USP: 4 339 322
    [30] Besmanne, et al. Bipolar plate/diffuser for a proton exchange membrane fuelcell[P]. USP: 6 037 073.
    [31]GuyBronoel,Versailles(FR);SergeBesse,IvrySeine(FR);Jean-FrancoisPauvarque,Paris(FR).Bipolar collector for fuel cell[P] .USP:010 006 745.
    [32]Otto J.Adlhart, Newar,N.J. Fuel cell system utilizing ion exchange membranesand bipolar plates[P]. USP:4 175 165.
    [33] George A.Marchetti. Thin graphite bipolar plate with associated gaskets andcarbon cloth flow field for use in an ionomer membrane fuel cell[P]. USP:6 284 401.
    [34] Dufner, et al. Electrochemical cell with a porous support plate[P]. USP: 6 024848.
    [35] Walsh. Fuel cell assembly fluid flow plate having conductive fibers andrigidizing material therein [P] .USP: 6 096 450.
    [36] Philip L.Hentall, J.Barry Lakeman, Gary O.Mepsted ,Paul L.Adcock, JonM.Moore. New materials for polymer electrolyte membrane fuel cell currentcollectors[J]. J Power Sources ,80(1999)235-241.
    [37] Cisar;Alan J.; Murphy; Oliver J. Bipolar separator plates for electrochemicalcell stacks[P]. USP:6 146 780.
    [38] Spear, et al. Metal platelet fuel cells production and operation methods[P].USP:5 683 828.
    [39] G.Larang and M.Da Cunha Belo. Chemical composition of passive films onAISI 304 stainless steel[J]. J Eletrochem Soc,Vol.141,No.12,November 1994.
    [40] N.Ramasubramanian,N.Preocanin,and R.D.Davidson. Analysis of Passive filmon stainless steel by cyclic voltammetry and auger spectroscopy[J].J EletrochemSoc,Vol.132,No.4,April,1985.
    [41] A.M.P.Simoes,M.G.S.Ferreira,G.Lorang and M.DA Cunha Belo. Influence oftemperature on the properties of passive films formed on AISI 304 stainless steel[J].JElectrochimica Acta ,vol.36,No.2,315-320,1991.
    [42] G.Lorang and M.Da Cunha Belo. Chemical composition of passive films onAISI 304 stainless steel[J]. J Electrochem Soc, Vol.141,No.12,3347-3356.
    [43] R.Hornung,G.Kappelt. Bipolar plate materials development using Fe-basedalloys for solid polymer fuel cells[J]. J Power Sources ,72(1998)20-21.
    [44] Yang Li, Wen –jin Meng, et al. Corrosion resistant PEM Fuel Cell[P]. USP: 5624 769.
    [45] Thomas,Ieuan et al. Bipolar plate for fuel cells[J]. WO 00/22689.
    [46] J.Barry Lakeman ,Gary O.Mepsted ,Paul L.Adcock, Philip J.Mitchell ,JonM.Moore. Solid Polymer fuel cells for pulse power delivery[J]. J Power Sources65(1997) 179-185.
    [47] Dacong Weng, Gordon Woodcock, Tim Rehg, Zafar Iqbal, Jim Guiheen, JamesMatrunich. Low cost-high performance PEM fuel cell bipolar plates. Fuelcells-powering the 21st century,October 30-November 2,2000,Portland Oregon,106-109.
    [48] Oliver J.Murphy et al.J Eletrochemica Acta,(43) 1998 ,3829~3840.
    [49] Herbert John Davis. Composite bipolar plate separator structures for polymerelectrolyte membrane (PEM) electrochemical and fuel cells[P]. GB 2 359 186.
    [50] Robert Angelo Mercuri, Seven Iiills,Jeffrey John Gough, olmstead township,both of Ohio. Flexible graphite composite for use in the form of a fuel cell flow fieldplate[P]. USP: 6 037 074.
    [51] Carl A Reiser. Solid Polymer Electrolyte Fuel Cell Stack Water ManagementSystem[P]. US: 4 769 297,1988
    [52] Carl A Reiser. Water and Heat Management in Solid Polymer Fuel Cell Stack[P].USP:4 826 742,1989
    [53] David P Wilkinson. Lightweight Fuel cell Membrane Electrode Assembly withIntegral Reactant Flow Passages[P]. USP: 5 252 410, 1993.
    [54] David S Wasfins. Novel Fuel Cell Fluid Flow Field Plate[P]. USP:4 988583,1991
    [55] David S Watkins. Fuel Cell Fluid Field Plate[P]. USP: 5 108 849,1992
    [56] Reginald G Spear. Plastic Platelet Fuel Cells Employing Integrated FluidManagement[P]. USP: 5 863 671,1999.
    [57]D.R.Hodgson, B.May,et al.New lightweight bipolar plate system for polymerelectrolyte membrane fuel cells[J]. J Power Sources 96(2001)233-235.
    [58]Jari Ihonen, Frederic Jaouen,Goran Lindbergh,Georan Sundholm. A novelpolymer electrolyte fuel cell for laboratory investigations and in-situ contactresistance measurements[J].Electrochemica Acta 46(2001) 2899-2911.
    [59]Paul Adcock, Damian Davies, Stuart Rowen and Mark Turpin, Rapid fabricationof bipolar plates for solid polymer fuel cells, Hydrogen energy conference,826-830.
    [60]大连理工大学化工原理教研室编.化工原理,大连理工大学出版社,1993 年。 
    [61]机械设计手册,第二版,第一卷,徐濠,机械工业出版社,3-141。
    [62]GIBB,Peter,R. Fuel cell fluid flow field plate and methods of making fuel cellflow field plates[P].WO 00/41260,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700