用户名: 密码: 验证码:
改性HAP基多孔生物陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔羟基磷灰石(HAP)基生物陶瓷因为与人体骨骼的无机化合成分相似,具有很好的生物相容性和成骨与诱导骨形成的导向作用,已被广泛用作生物体硬组织修复。目前,有关多孔HAP陶瓷在医学领域的研究已经延伸到将其作为药物载体以及抗肿瘤活性上,且发现将多孔陶瓷作为药物载体有广泛的应用前景和重要的研究价值。本论文以多孔陶瓷作为药物控释缓释载体为研究背景,为制备出满足实际需要的多孔体,对材料的组成进行了设计,研制了以纳米生物玻璃作为增强相、纳米炭粉为成孔剂的工艺,并对多孔材料的结构和性能进行了表征。采用不同溶液对多孔陶瓷进行了渗透与反渗透评估,通过体外RSC96细胞与材料的作用,对其进行生物学评价等。主要内容如下:
     合成了形貌不同的羟基磷灰石纳米粒子,并分析讨论了影响HAP形貌的主要参数。通过异质凝结机制,利用TEOS水解对经十二烷醇酯化后的HAP纳米粒子进行表面SiO2包覆改性(HAPSi050),研究了不同SiO2含量对产物包覆率及其在水和酸溶液中溶解性能的影响。改性后获得的粒子通过FT-IR、XRD、 SEM-EDS、HR-TEM、TG-DSC和Zeta电位等分析方法表征合成的SiO2改性HAP的结构与性能,并观察了其在水溶液中的悬浮稳定性能。结果表明:SiO2包覆层厚度大约为3nm,表面改性后,Zeta电势均为负值,粒子在水溶液中的悬浮稳定性提高了5倍,抗酸溶解能力增强。
     通过W/O型微乳液技术合成了SiO2-CaO-P2O5系统生物活性玻璃纳米粒子,探讨了水与表面活性剂的摩尔比ω的变化对合成的纳米粒子结构和性能的影响。并对合成的粒子进行了体外降解和与RSC96细胞联合培养的研究。采用FTIR、 XRD、SEM-EDS、XRF、TEM、BET比表面积分析仪和激光粒度分析仪等手段对合成的和经过降解的纳米玻璃粒子进行表征,结果表明:合成的球形纳米玻璃粒子尺寸在100nnm左右,分布均匀,分散性较好;颗粒之间彼此连接而具有微孔结构,测得的比表面积和孔体积分别为137.9cm3/g和0.37cm3/g。测定降解过程中降解介质pH值、离子溶出行为表明:材料在生理环境中,经过较短的时间即可在玻璃颗粒表面形成类骨HCA,同时有离子溶出现象发生,说明材料具有较高的体外生物活性和良好的降解性能。材料在降解过程中溶液的pH值略呈上升的趋势,基本处于中性。MTT实验测试细胞增殖表明材料能促进细胞的增殖,说明合成的纳米玻璃粒子有良好的细胞亲和性,可作为生物材料使用。
     以HAPSi050纳米粉体为原料,SiO2-CaO-P2O5系统生物玻璃为增强相,纳米活性炭粉作造孔剂,制备出了孔径彼此贯通、分布均匀、且孔隙率可调的多孔生物陶瓷。利用XRD、SEM等手段测试多孔体的相组成及微观形貌,采用万能试验机、硬度计以及渗透率测试仪测定多孔孔体的力学性能及流体渗透率。并应用ANSYS软件和图像处理技术进一步分析孔形貌对力学性能的影响。结果发现:抗折强度随烧结温度和生物玻璃含量的增加而升高,气孔率和渗透率则随相应因素的升高而降低。气孔率和渗透率随炭粉含量增加呈上升趋势,但是抗弯强度却逐渐降低。图像处理和ANSYS分析表明:试样中孔越圆、近圆形孔的数量越多、孔分布越均匀,多孔体力学性能越高。
     多孔陶瓷经模拟体液浸泡,测定矿化过程中材料失重率、抗折强度的变化和采用扫描电子显微镜(SEM)观察材料微观结构变化表明:浸泡初期试样表面即有类骨磷灰石形成,预示着材料有较好的生物矿化能力。但同时,试样的质量和抗折强度降低。之后,随着试样表面类骨磷灰石数量的增多,试样的质量和强度又开始回升并逐渐增加。将RSC96细胞与多孔陶瓷体外联合培养,通过细胞增殖、细胞毒性、SEM观察进行生物学评价。噻唑蓝(MTT)比色法表明多孔体材料能促进细胞的增殖;吉姆萨和荧光探针技术测试细胞毒性表明多孔材料与对照组单相HAP一致;SEM观察表明RSC96细胞在多孔材料上铺展良好,证明多孔体具有良好的细胞亲和性和生物活性。
As a new kind of functional material, porous hydroxyapatite(HAP) bioceramics have been developed and some of them are now applied to repair and reconstruct diseased or damaged bones or tissues. At present, the porous HAP-based ceramic has extended to use as drug carrier and antitumor activity, due to it not only possess good biocompatiblity but also can modulate cellular activities, including cell adhesion, migration, DNA synthesis, and protein secretion, implying a promising application in biomedical field. In this dissertation, A novel porous bioceramics with the good bioactivity, biocompatibility and degradablility were designed and synthesized for bone regeneration and drug delivery. The structure and properties of the synthesized porous body were characterized by different methods. Biological evaluation of materials was carried out, via soaked simulated body fluid(SBF), by cultivating RSC96Schwann cells on the surface of the materials. The major work is summarized as the following:
     The ball,rod and fibrous HAP nanoparticles were synthesized successfully in this part.The influences of reaction temperature, dropping speed of solution,the change of pH value and stirring speed on the particle morphology were investigated.Nanophase HAP particles were coated with silica via the hydrolysis of tetraethyl orthosilicate after a dodecyl alcohol based esterification reaction. The silicate-coated HAP(HAPSi050) particles were characterized by TEM, SEM, XRD, FTIR, thermogravimetry and differential scanning calorimetry (DSC), sedimentation time and zeta potential (ξ) studies. A sequential change in infrared spectral features characteristic of HAP was accompanied by an increase in features characteristic of silica as revealed by FTIR. The results indicate that the SiO2Coating thickness is about3nm. The silica coating enhanced the colloidal stability of HAP in aqueous suspensions and antiacid dissolving capacity. This behavior can be explained based on a heterocoagulation coating mechanism in which silica clusters adsorb onto the HAP particle surface.
     The system of SiO2-CaO-O5bioactive glasses (BG) with a particle size less than100nm were successfully synthesized by W/O microemulsion approach.XRD, SEM and EDX analyses,X-ray fluorescence (XRF), laser particle size analyzer,TEM,FTIR, BET N2gas adsorption analysis techniques were utilized in order to evaluate the phase composition, dimension,morphology,interconnectivity of pores and particle size of the synthesized BG respectiveely. The measured BET specific surface area and pore volume was137.9cm2/g and0.37cm3/g respectively.The results of the degradation in vitro show that the pH value of degradation medium tended to rise but still in the range of neutral during the whole degradation time. That improved the BG is biodegradable.MTT assay showed that BG has been shown to have good biocompatibility and is also beneficial to the survival of Schwann cells,which can promote cell proliferation.
     During the preparation of porous HAPSi050-based ceramics with carbon powder, which was used as pore producer, and the SiO2-CaO-P2O5system bioglass as the reinforced phase.the calcinations temperatures,bioglass content,carbon powder content and the holding time were analyzed. The phase composition and microstructure of porous body were investigated by XRD and SEM. The universal testing machine, hardness tester, and permeability tester were used to determine the mechanical properties and fluid permeability of porous body. Result indicates that The bending strength would improve along with the increase of sintering temperature and bioglass content, the porosity and thepermeability were lower as a result. With the increase of carbon powder content, the porosity and permeability increases, but the bending strength gradually reduce as a result.The number of shapeless inter-agglomerate pores decreased and amount of spherical intra-agglomerate pores increased on increasing the sintering temperature from1100℃to1250℃. The shape of pores also changed with thermal treatment of specimens; the small pores remained spherical while the larger pores became more spherical in shape, as was proved by image analysis. A three-dimensional, finite element unit cell model was applied to evaluate the influence of pore shape on the mechanical strength of HAPSi050-based ceramics. By analyzing the effect of the shape of pores to the fracture toughness of sintered porous bioceramics, it was observed that the more spherical the pores were, the tougher became the bioceramics. After sintering at1250℃for2h, measured toughness was1.29MPa m1/2, which is a relatively high value for this type of bioceramics.
     The sample,which was soaked in SBF solution,lost the mass quickly in the beginning because of the dissolution.The dissolution reduced the decrease of the bending strength.After5days,the bone-like hydroxyapatite layer emerged,and it existed in the form of tiny crystallite,which size was30~50nm,and the mass of sample was growing.The bending strength should increase with the longer time,and the bone-like hydroxyapatite layer over-covered the sample surface completely after25days. After cultivating RSC96Schwann cells on the surface of porous materials, Biological evaluation were carried out through cell proliferation, cytotoxicity and SEM observation. The viability using MTT assay of RSC96cells seeded on porous ceramics disc showed that porous ceramics could promote cells adhesion and proliferation. Giemsa test and Fluorescent probe technology indicated that cytotoxicity of porous ceramics is similar to HAP, which suggested it is non-toxic. The SEM results showed that porous samples has better cell affinity than HAP. All of the above results suggested that the porous ceramic was non-toxic and could support the cell attachment and proliferation.
引文
[1]Kawahara H. Today and tomorrow of bioceramics. J Oral Implantol 1979; 8:411-32.
    [2]L.L. Hench (1990) in Handbook of bioactive ceramics, edited:T. Yamamuro, L. L Hench and J. Wilson, CRC Press, Bocaraton, vol.1, pp.7.
    [3]N. OzguEr Engin et al. Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics, Jo urnal of the European Ceramic Society 19(1999) 2569-2572.
    [4]Liu, D. M., Fabrication and characterization of porous hydroxyapatite granules.Biomaterials, 1996,17,1955-1957.
    [5]Editorial. Current trends on porous inorganic materials for biomedical applications. Chemical Engineering Journal 137(2008) 1-3.
    [6]E.C. Shors, E.W. White, G. Kopchok, Biocompatibility, osteoconduction and biodegradation of porous hydroxyapatite, tricalcium phosphate, sintered hydroxyapatite and calciumcarbonate in rabbit bone defects, Mater. Res. Soc. Symp.Proc.l 10 (1989)211.
    [7]De'an Yang et al.A study of hydroxyapatite/calcium sulphate bioceramics, Ceramics Internatio nal 31 (2005) 1021-1023.
    [8]Y.Huipin,Y.Zongjian,J.D. de Bruijin,K.de Groot,Z.Xingdong,Material-dependent bone induc tion by calcium phosphate ceramics:a 2.5-year study in dog,Biomaterials 22 (2001) 2617.
    [9]L.Dean-Mo,Preparation and characterization of porous hydroxyapatite Bioceramic via a slip-casting route, Ceram.Int.24 (1998)441.
    [10]Jarcho M:Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259-278, 1981.
    [11]Gumaer KI, Sherer AD, Slighter RG, et al:Tissue response in doges to dense hydroxylapatite implantation in the femur. J Oral Maxillofacial Surg 44:618-627,1986.
    [12]Cook SD,Thomas KA, Kay JF, et al:Hydroxyapatite-coated titanium for orthopaedic implant applications.Clin Orthop 232:225-243,1988.
    [13]Manley MT, Kay JF, Uratsuji M, et al:Hydroyxlapatite coating applied to implants subjected to functional loads. Trans Soc Biomater,13th Annual Meeting, New York, NY,1987, p210.
    [14]Hoogendoorn HA, Renooij W, Akkermans LMA, et al:Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora. Clin Orthop 187:281-288,1984.
    [15]Tisdel CL, Goldberg VM, Parr JA, et al:The influence of a hydroxyapatite and tricalcium-phosphate coating on bone ingrowth into titanium fiber-metal implants. J Bone Joint Surg 76A:159-171,1994.
    [16]Sergey V. Dorozhkin:Bioceramics of calcium orthophosphates, Biomaterials 31 (2010) 1465-1485.
    [17]Ducheyne P, Qiu Q. Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function, Biomaterials 1999;20:2287-303.
    [18]S.Sa'lcedo S,D.Arcos,M.Vallet-Regi,Upgrading calcium phosphate scaffolds for tissue engi neering applications, Key Eng. Mater.377 (2008) 19-42.
    [19]Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration.J Biomater Sci Polym Ed 2004; 15:543-62.
    [20]Alexander HoppeA, et al:review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 32 (2011) 2757-2774.
    [21]Valerio P, Pereira MM, Goes AM, Leite MF. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 2009; 4:045011.
    [22]A.Balamurugan,G.Balossier,S.Kannan,J.Michel,A.H.S. Rebelo,J.M.F. Ferreira, Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass,Acta Bio mater.3 (2007)255-262.
    [23]John C.Mitchel et al:Biomimetic dentin desensitizer based on nano-structured bioactive glass, dental materials 27(2011)386-393.
    [24]Siligardi, C., D'Arrigo, M. C. and Leonelli, C., Sintering criteria for glass-ceramic frits belonging to the CaO-ZrO2-SiO2 system. Am. Ceram. Soc. Bull.,2000,79,88-92.
    [25]Zhejun Wang et al:Dentine remineralization induced by two bioactive glasses developed for air abrasion purposes, journal of dentistry 39(2011) 746-756.
    [26]Leonardi E, Ciapetti G, Baldini N, Novajra G,Verne E, Baubi F,et al. Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO-Na2O-K2O phosphate glass ceramic for tissue engineering application. Acta Biomater 2010;6:598-606.
    [27]S.I.Roohani-Esfahani,et al.Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds, Acta Biomaterialia 7 (2011)1307-1318.
    [28]Lin CC, Huang LC, Shen P. Na2CaSi2O6-P2O5based bioactive glasses. Part 1:elasticity and structure. JNon-Cryst Solids 2005;351:3195-203.
    [29]Ziemath EC, Aegerter MA.Raman and infrared investigations of glass and glass-ceramics with composition 2Na2O 1CaO 3SiO2. J Mater Res 1994; 1:216-25.
    [30]Chen QZ, Thompson ID, Boccaccini AR.45S5 Bioglasss-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials.2006;27:2414-25.
    [31]Jones JR,Ahir S,Hench LL.Large-Scale Production of 3D Bioactive glass macroporous scaffolds for tissue engineering.J Sol-Gel Sci Technol 2004;29:179-88.
    [32]Yanfeng Xiao,et al.Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process, Applied Surface Science257 (2011) 1898-1905.
    [33]M.H. Fathi, M. Kharaziha,Two-step sintering of dense, nanostructural forsterite, Materials Letters 63 (2009) 1455-145.
    [34]M. Kharaziha, M.H. Fathi,Synthesis and characterization of bioactive forsterite nanopowder, Ceramics International 35 (2009) 2449-2454.
    [35]C. Wu, J. Changa, J. Wang, S. Ni, W. Zhai, Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials 26 (2005) 2925-2931.
    [36]S. Ni, L. Chou, J. Chang, In vitro studies of novel CaO-SiO2-MgO system composite bioceramics, J. Mater. Sci.:Mater. Med.19 (2008) 359-367.
    [37]G. Polzonetti, G. Iucci, A. Frontini, G. Infante, C. Furlani, L. Avigliano, D. Del Principe, G. Palumbo, N. Rosato, Surface reactions of a plasma-sprayed CaO-P2O5-SiO2-based glass with albumin,fibroblasts and granulocytes studied by XPS,fluorescence and chemilumine scence, Biomaterials 21 (2000)1531-1539.
    [38]M.N. Rahaman et al. Bioactive glass in tissue engineering,Acta Biomaterialia 7 (2011) 2355-2373.
    [39]Fujimura K,Bessho K,Okubo Y,Segami N,Iizuka T.A bioactive bone cement containing Bis-GMA resin and A-W glass-ceramic as an augmentation graft material on man dibular bone. Clin Oral Implants Res 2003;14(5):659-67.
    [40]Yao A,Wang DP,Huang W,Rahaman MN,Day DE.In vitro bioactive characteristics of bo rate-based glasses with controllable degradation behavior.J Am Ceram Soc2007;90:303-6.
    [41]H. Oonishi, L.L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T.Yamamoto, S. Mizokawa, Quantitative comparison of bone growth behavior in granules of Bioglass(?) A-Wglass-ceramic, and hydroxyapatite, J. Biomed. Mater. Res.51 (2000) 37-46.
    [42]王德平,黄文显,陈天丹.多孔微晶玻璃作为药物载体材料的制备及其体外释药研究[J].无机材料学报,2001,16(6):1195-1198.
    [43]M.Mastrogiacomo et al.Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27 (2006) 3230-3237.
    [44]Dong J,Uemura T,Shirasaki Y,Tateishi T. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 2002;23(23):4493-502.
    [45]Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B,et al. Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 1998;42(3):357-67.
    [46]Livingston TL,Gordon S,Archambault M,Kadiyala S,McIntosh K,Smith A,et al. Mesenchym al stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med 2003;14(3):211-8.
    [47]Gauthier O,Muller R,von Stechow D,Lamy B,Weiss P,Bouler JM,et al.In vivo bone regenera tion with injectable calcium phosphate biomaterial:a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 2005;26(27):5444-53.
    [48]A.Macchetta,et al. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method, Acta Biomaterialia 5 (2009) 1319-1327.
    [49]M.Kon et al.Development of calcium phosphate based functional gradient bioceramics, Bio materials 1995, Vol.16 No.9
    [50]Ioku K,Yanagisawa K,Yamasaki N.Kurosawa H.Shibuya K,Yokozeki H.Preparation and characterization of porous apatite ceramics coated with/β-tricalcium phosphate.Biomed Mater Eng 1993; 3:137-145.
    [51]Kon M,Kuwayama N.Effect of adding diamond particles on the fracture toughness of apatite ceramics.Dent Mater J 1993; 12:12-17.
    [52]A.M.Pietal,J.W.REID,M.J.Stott,M.Sayer,Silicon substitution in the calcium phosphate bioce ramics,Biomaterials 28(2007)4023-4032.
    [53]R. Xin et al.A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo, Biomaterials 26 (2005) 6477-6486.
    [54]Y. Zhang et al.Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders, Ceramics International 36 (2010) 107-113.
    [55]Y.Zhang, Y.Yokogawa,T.Kameyama, Synthesis of apatite ceramics with bimodal pore struct ure using mechanochemically prepared fine apatite powder.Key Eng. Mater.280-283 (2005) 1571-1574.
    [56]M. Fabbri.G.C.Celotti, A.Ravaglioli, Granulates based on calcium phosphate with controlled morphology and porosity for medical applications:physico-chemical parameters and production technique, Biomaterials 15 (1994) 474-477.
    [57]X.Miao.Y. Hu,J. Liu,A.P.Wong, Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements,Mater.Lett.58 (2004) 397-402.
    [58]Zhang Y,Zhang M.Three dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load bearing bone implants. J Biomed Mater Res 2002;61:1-8.
    [59]Descamps M,Richart O.Hardouin P,Hornez JC, Leriche A.Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural.Ceram Int2008;34:1131-7.
    [60]Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res Part A 2002; 62:378-386.
    [61]C.T.Begley,M.J.Doherty,R.A.B.Mollan,J.D.Wilson, Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes, Biomaterials 16(1995) 1181-1185.
    [62]T.Chen, X.Miao,Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents, Biomaterials 26 (2005) 1205-1210.
    [63]Kujala S, Ryhanen J,Danilov A. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 2003;24:4691.
    [64]Liu,D.M.Influence of porous microarchitecture on the in-vitro dissolution and biological behaviour of porous calcium phosphate ceramics. Mater. Sci. Forum 1997.250,183-208.
    [65]M.P.Ginebra, et al.,Calcium phosphate cements as drug delivery materials, Adv. Drug Deliv. Rev. (2012),doi:10.1016/j.addr.2012.01.008.
    [66]C.L.Camire,S.J.Saint-Jean,C.Mochales,P.Nevsten,J.-S.Wang,L.Lidgren,et al.,Material charac terization and in vivo behavior of silicon substituted alphatricalcium phosphatecem ent J.Biomed.Mater.Res.BAppl.Biomater.76(2006) 424-431.
    [67]S.J. Saint-Jean,C.L.Camire, P. Nevsten, S. Hansen, M.P. Ginebra, Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements, J. Mater. Sci. Mater. Med.16 (2005) 993-1001.
    [68]M.P.Ginebra,M.Espanol, E.B. Montufar, R.A. Perez, G. Mestres, New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 6(2010)2863-2873.
    [69]H.C.Kroese-Deutman,P.Q. Ruhe, P.H.M. Spauwen, J.A.Jansen, Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits, Biomaterials 26 (2005) 1131-1138.
    [70]Z. Fei,Y.Hu,D.Wu,H.Wu,R.Lu,J. Bai, et al., Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement, J. Mater. Sci. Mater. Med.19 (2008) 1109-1116.
    [71]Hulbert SF,Young FA,Mathew RS,Klawitter JJ, Talbert CD,Stelling FH.Potential of ceramic materials as permanently implantable skeletal prostheses.Journal of Biomedical Materials Research 1970;4:433.
    [72]S.Cazalbou,C.Combes,D.Eichert,C.Rey, Adaptative physico-chemistry of biorelated calcium phosphates, J.Mater.Chem.14 (2004) 2148-2153.
    [73]Y.K.Liu,Q.Z.Lu,R.Pei,H.J.Ji,G.S. Zhou, X.L. Zhao, et al., The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro:implication for bone tissue engineering,Biomed. Mater.4 (2009) 025004
    [74]R.O.Huse, P.Quinten Ruhe, J.G.C.Wolke, J.A.Jansen,The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute, Clin. Oral Implants Res.15(2004)741-749.
    [75]S.Y.Yoon, Y.M. Park, S.S. Park, R.Stevens, H.C.Park, Synthesis of hydroxyapatite whiskers by hydrolysis ofa-tricalcium phosphate using microwave heating,Materials Chemistry and Physics 91 (2005)48-53.
    [76]A.Yasukawa et al.Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions.Colloids and Surfaces A:Physicochem.Eng.Aspects 393(2012)53-59.
    [77]Gary A. Fielding,et al.,Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds, dental materials 28 (2012) 113-12.
    [78]Neamat A.Gawish A,Gamal-Eldeen AM.B-Tricalcium phosphate promotes cell proliferati-on,osteogenesis and bone regeneration in intrabony defects in dogs.Archives of Oral Biology 2009;54:1083-90.
    [79]Enderlea R,Gotz-Neunhoeffera F,Gobbelsa M,Mullerb FA,Greilb P.Influence of magnesi-um doping on the phase transformation temperature of P-TCP ceramics exam ined by Rietveld refinement.Biomaterials 2005;26:3379-84.
    [80]Toth JM, An HA, Lim T, et al. Evaluation of porous biphasic calcium phosphatate ceramics for anterior cervical interbody fusion in a caprine model. Spine 1995;20:2203-10.
    [81]Hara T, Izumi T, Takahashi H, et al. Mechanical property of hydroxyapatite-implanted Swine Tibia. Preprint of the Japan Society of Mechanical Engineers 1995;1995-A:23-4.
    [82]Suetsuna F, Todate K, Yasumura M, et al. Bone formations of hydroxyapatite ceramics and hydroxyapatite ceramics containing bone marrow. J Jpn Orthop Assoc 1996;70:S1387.
    [83]Suetsuna F, Todate K, Makino A, et al. Anterior cervical fusion using hydroxyapatite with or without internal fixations. North American Spine Society annual meeting, San Francisco, CA, September 26,1998.
    [84]Saiz E, Gremillard L, Menendez G, Miranda P, Gryn K, Tomsia AP. Preparation of porous hydroxyapatite scaffolds.Mater Sci Eng C 2007;27:546-50.
    [85]Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials2000;21:1291-8.
    [86]Liu DM. Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic.Ceram Int1997;23:135-9.
    [87]J.Gustavsson,M.Ginebra,E.Engel,J.A. Planell, Ion reactivity of calcium-deficient hydroxya patite in standard cell culture media, Acta Biomater.8 (2012)386-393.
    [88]G.Tripathi,B. Basu. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluationsCeramics International 38 (2012) 341-349.
    [89]K.Shigeru,T.Oku,S.Takagi,Hydraulic property of hydoxyapatite thermal decomposition product and its application as a biomaterial, J.Ceram. Soc. Jpn. Int. Ed.97 (1989) 96-101.
    [90]J.Cesarano III, J.G. Dellinger, M.P. Saavedra, D.D. Gill, R.D. Jamison,B.A.Grosser, J.M. Sinn-Hanlon, M.S. Goldwasser,Customization of load-bearing hydroxyapatite lattice scaffolds, Int. J. Appl. Ceram. Technol.2 (2005) 212-220.
    [91]B.S Chang,C.K.Lee, K.S.Hong,H.J.Youn,H.S.Ryu,S.S.Chung,K.W.Park, Osteoconduction at porous hydroxyapatite with various pore configurations,Biomaterials 21(2000)1291-1298.
    [92]K.Prabakaran,S.Kannan,S.Rajeswari,Development and characterisation of zirconia and hydroxyapatite composites for orthopaedic applications,Trends Biomater. Artif. Organs 18 (2) (2005).
    [93]K. Pal,S.Pal,Development of porous hydroxyapatite scaffolds, Mater. Manuf. Process.21 (3)(2006) 325-328.
    [94]C.Kailasanathan,N.Selvakumar, K.JeyaSubramanian, Effect of calcination in synthesis of nanohydroxyapatite for bone grafting, Mater.Manuf.Process.(2011),doi:10.1080/10426914. 2011.577874.
    [95]D.J. Netz, P. Sepulveda, V.C.Pandolfelli,A.C. Spadaro,J.B.Alencastre, M.V. Bentley,J.M. Marchetti,Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system, Int. J. Pharm.213 (1-2) (2001) 117-125.
    [96]M.Itokazu,W.Yang, T.Aoki, A.Ohara,N.Kato, Synthesis of antibioticloaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing,Biomaterials 19 (7-9) (1998) 817-819.
    [97]P.S.Eggli,W.Muller,R.K.Schenk,Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits.A comparative histomorphometric and histologic study of bony ingrowth and implant substitution, Clin. Orthop.232 (1988) 127-138.
    [98]Azevedo M C, Reis R L, Claase B M,et al. Development and properties of polycaprolactone /hydroxyapatite composite biomaterials[J].J. Mater. Sci.:Mater. Med.,2003,14:103-107.
    [99]LIU Q, WIJN J R de,GROOT KLAAS de, et al. surface modification of nano-apaptite by grafting organic polymer [J]. Biomaterials,1998,19(11-12):1067-1072.
    [100]Choi H W, Lee H J, Kim K J,et al. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups[J]. J.Colloid Interf. Sci.,2006,304: 277-281.
    [101]J.H.Kuhne,R.Bartl,B.Frisch,C.Hammer, V. Jansson,M.Zimmer,Bone formation in coralline hydroxyapatite.Effects of pore size studied in rabbits,Acta Orthop.Scand.65 (3) (1994) 246-252.
    [102]M. Hasegawa,A.Sudo, V.S. Komlev,S.M. Barinov, A. Uchida, High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution, J. Biomed. Mater. Res. Part B:Appl. Biomater.70B (2004) 332-339.
    [103]Schwarlder, A.V.Somers.United States Patent[S],US 3090,094,1963.
    [104]Klein CPAT.DeGrootK, ChenWQ, et al. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues[J].Biomaterials,1994,15:31.
    [105]Engin.NO,TasAC. Preparation of porous Ca10(PO4)6(OH)2 and Beta-Ca3(PO4)2 bioceramics [J]. JamCeramSco,2000,83:1581.
    [106]Mo Liu.Fabrication of hydroxyapatite ceramic with controlled porosity [J].Journal of Material Science:Materials in Medicine,1997,8:227-232.
    [107]Suetsuna et al.Anterior cervical fusion using porous hydroxyapatite ceramics for cervical disc herniation:a two-year follow-up, The Spine Journal 1 (2001) 348-357.
    [108]Liu DM. Fabrication of hydroxyapatite ceramic with controlled porousity.J Mater Sci: Mater Med,1997; 8(4):227.
    [109]姚秀敏,谭寿洪,江东亮.孔径可控的多孔羟基磷灰石的制备工艺研究[J].功能材料与器件学报,2001,7(2):152-156.
    [110]李信勇,王晓燕,董晋等.泡沫原位凝胶法制备多孔生物陶瓷[J].稀有金属材料与工程,2002,31(9):495-497.
    [111]王晓燕,田杰谟.羟基磷灰石骨架的三维凝胶叠层成型[J].稀有金属材料与工程,2002,31(9):500-504.
    [112]Yoon BH, Park CS, Kim HE, Koh YH. In-situ fabrication of porous hydroxyapatite (HAP) scaffolds with dense shells by freezing HA/camphene slurry.Mater Lett2008;62:1700-3.
    [113]M.B.Nair,S.S.Babu,H.K.Varma,A.John. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomaterialia 4 (2008) 173-181.
    [114]S. Zoran,V. Ljiljana,M. Smilja, I. Nenad,U. Dragan, Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite, Mater. Manuf. Process.24(10-11)(2009) 1096-1103.
    [115]I.H.Arita,D.S.Wilkinson,V.M.Castano. Chemistry and sintering behaviour of thin hydroxya patite ceramics with controlled porosity. Biomaterials 16 (1995) 403-408.
    [116]Y.Feng,G.Haifeng,Z.Haijiao,H.Xiulan,Polymericmicelle-templated synthesis of hydroxy apatite Hollow nanoparticles for a drug delivery system,Acta Biomaterials.6(2010) 2212-2218.
    [117]W.Paul, J. Nesamony,C.P.Sharma,Delivery of insulin from hydroxyapatite ceramic micro-spheres:preliminary in vivo studies,J.Biomed. Mater.Res.61 (2002) 660-662.
    [118]A.Lebugle,A.Rodrigues, P.Bonnevialle, J.J.Voigt, P.Canal, F.Rodriguez,Study of implantable calcium phosphate systems for the slow release of methotrexate, Biomaterials 23(16)(2002)3517-3522.
    [119]M.Vallet-Regi, F. Balas, M. Colilla, M. Manzano, Drug confinement and delivery in ceramic implants, Drug Metab. Lett.1(1) (2007) 37-40.
    [120]H.H.Pham,P. Luo, F. Genin, A.K. Dash,Synthesis and characterization of hydroxyapatite ciprofloxacin delivery systems by precipitation and spray drying technique, AAPS Pharm Sci Tech 3(1) (2002) E1.
    [121]B.Kundu et al.Systematic approach to treat chronic osteomyelitis through Ceftriaxone-sulbactam impregnated porous β-tri calcium phosphate localized delivery system,Ceramics International 38 (2012) 1533-1548.
    [122]E. Bernardo et al. Porous wollastonite-hydroxyapatite bioceramics from a preceramic polymer and micro-or nano-sized fillers Journal of the European Ceramic Society 32 (2012) 399-408.
    [123]Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG.Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 2007;28:4078-90.
    [124]Dorozhkin SV.Medical application of calcium orthophosphate bioceramics.BIO2011; 1:1-51,@CCAAS.
    [125]Schwartz R W, Voigt J A. Control of thin film processing behavior through precursor structural modifications[R].US:Department of energy,1998.
    [126]M.B. Nair et al.A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application.Acta Biomaterialia 4 (2008) 173-181.
    [127]M.Okada,T.Furuzono,Low-temperature synthesis of nanoparticle-assembled,transparent,and low-crystallized hydroxyapatite blocksJournal of Colloid and Interface Science 360 (2011) 457-462.
    [128]Her RK.The chemistry of silica and silicates.New York:CornellUniversity Press; 1955.
    [129]Hench LL, Paschall HA.Direct chemical bond of bioactive glass-ceramic materials to bone and muscle.J Biomed Mater Res1993;7:25-42.
    [130]Gibson IR, Best SM, Bonfield W.Chemical characterization of silicon-substituted hydroxya patite.J Biomed Mater Res1999;44:422-8.
    [131]Ishikawa T,Wakamura M, Kawase T, Kondo S.Surface characterization by X-ray photoelec tron spectroscopy and Fourier transform infrared spectroscopy of calcium hydroxyapatite coated with silicate ions.Langmuir 2005;7:596-9.
    [132]郑昌琼,冉均国,尹光福等.湿法制备羟基磷灰石生物活性陶瓷粉末的热力学分析[J].成都科技大学学报,1996,5:67-70.
    [133]刘昌胜,沈卫,崔锦华等.pH为10至11时羟基磷灰石液相生成动力学[J].华东理工大学学报,1995(10):530-535.
    [134]Fujii, S.; Okada, M.; Furuzono, T. J. Colloid Interface Sci.2007,315-287.
    [135]Tanaka H, Futaoka M, Hino R. J. Colloid Interface Sci.2004,269,358-363.
    [136]Ishikawa T. In Adsorption on New and Modifi ed Inorganic Sorbents, A Dabrowski, VA Tertykh, Eds., Amsterdam:Elsevier,1996, p.301.
    [137]Wakamura M, Kandori K, Ishikawa T. Coll. Surf. A Physicochem. Eng. Aspects 1998,142, 107-116.
    [138]T.Takahashi, M. Kamitakahara,G.Kawachi,K.Ioku, Preparation of spherical porous granules composed of rod-shaped hydroxyapatite and evaluation of their protein adsorption properties, Key Eng. Mater.361-363 (2008) 83-86.
    [139]St.ober W, Fink A, Bohn E.Controlled growth of monodisperse silica spheres in the micron range.J Colloid Interface Sci 1968;26:62.
    [140]Tanaka H,Yasukawa A,Kandori K,Ishikawa T.Modification ofcalcium hydroxyapatite using alkyl phosphates. Langmuir 1997;13:821-6.
    [141]Misra DN.Interaction of citric acid with hydroxyapatite:surface exchange of ions and precipitation of calcium citrate. J Dent Res 1996;75:1418.
    [142]Weiss P,Lapkowski M,Legeros RZ,Bouler JM,Jean A, DaculsiG. Fourier transform infrared spectroscopy study of an organicmineral composite for bone and dental substitute materials.J Mater Sci Mater Med 1997;8:621.
    [143]Tanaka H,Yasukawa A,KandoriK,Ishikawa T.Surface modification of calcium hydroxyapa tite with hexyl and decyl phosphates. Colloids Surf A:Physicochem Eng Aspects 1997; 125:53-62.
    [144]Bell LC,PosnerAM,QuirkJP.Thepoint of zerocharge of hydroxyapatiteandfluoroapatite in aqueous solutions[J].ColloidInterfaceSci,2008,42:250-261.
    [145]SlosarczykA,Szymura-OleksiakJ,MycekB.Thekinetics of pentoxifylline release from drug-loaded hydroxyapatiteimplants[J].Biomaterials,2000,12:1215-1221.
    [146]L.L.Hench, J.Wilson,Clinical Perfomance of Skeletal Prostheses[M],Chapman and Hall, London.,1995,558-560.
    [147]Leonardi E,Ciapetti G,Baldini N,Novajra G, Verne E,Baubi F,et al. Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO- Na2O- K2O phosphate glass ceramic for tissue engineering application[J].Acta Biomater 2010,6:598-606.
    [148]Sepulveda,P.Jones,J.R.Hench, L.L. Bioactive sol-gel foams for tissue repair[J].J. Biomed. Mater.Res.2002,59:40-348.
    [149]L.L.Hench,J.Wilson,Clinical Perfomance of Skeletal Prostheses[M],Chapman and Hall, Lon don,1995,558-560.
    [150]Hench,L.L.Wilson, An Introduction to Bioceramic [M].World Scientific, Singapore,1993, 386:75-85.
    [151]Karagiozov C,Momchilova D.Synthesis of nano-sized particles from metal car bonates by the method of reversed micelles[J].Chem Eng Process.2005,44(1):15.
    [152]Misra S. K, Mohn D, Brunner T. J, Stark W. J, Philip S.E, Roy I, et al.Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites [J]. Biomaterials,2008,29(12):1750-1761.
    [153]Kokubo T,Takadama H.How useful is SBF in predicting in vivo bone bioactivity [J]. Biomaterials,2006,27:2907-2915
    [154]赵如娜,生物活性玻璃微纳米粉体的模板仿生合成及其性能研究[D],武汉理工大学博士学位论文,2011.3,P30-32.
    [155]DeBoer J.H.;The structure and properties of porous materials[M].Butterworths, London.1958:68.
    [156](澳)J.R.安德森著,历杜生等译.金属催化剂的结构[M].北京:化学工业出版社.1985:332-440.
    [157]Andrade A, Valerio P, Goes A.M, et al. Influence of morphology on in vitro compatibility of bioactive glasses [J].J Non-Crystalline Solids,2006,352:3508-3511.
    [158]Oliveira J.M,Correia R.N,Fernandes M.H. Effects of Si speciation on the in vitro bioactivity of glasses [J]. Biomaterials,2002,23 (2):371-379
    [159]Leonelli C,Lusvardi G.Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity [J]. J Non-Crystalline Solids,2003,316 (2):198-216.
    [160]Kresge C.T, Leonowicz M.E, Roth W.J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystalline templates mechanism[J]. Nature,1992,359:710-712.
    [161]Yang Xiao-Hong, Wu Qing-Sheng, Li Lia, et al. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,264 (1-3):172-178.
    [162]张金中,王中林,刘俊,等.自组装纳米结构[M].北京:化学工业出版社,2005:26-33.
    [163]Li N, Jie Q, Zhu S, et al, Preparation and characterization of macroporous sol-gel bioglass[J].Ceramics International,2005,31 (5) 641-646.
    [164]Pereira M M, Clark A E, Hench L L, Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro[J].Journal of Biomedical Materials Research,1994,28 (6) 693-698.
    [165]K.Rezwan,Q.Z.Chen,J.J.Blaker,et al.Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J].Biomaterials,2006,27(18):3413-3431.
    [166]Miao X,Tan L.P,Tan L S,et al.Porous calcium phosphate ceramics modified with PLGA-bioactive glass[J].Materials Science and Engineering,2007,27(2):274-279.
    [167]马克昌,冯坤,朱太咏,郭建刚.骨生理学[M].郑州:河南医科大学出版社.2000:310,303-318,138-139.
    [168]Hong Z.,Liu A.,Chen L.,Chen X., Jing X.Preparation of Bioactive Glass Ceramic Nanoparticles by Combination of Sol-Gel and Coprecipitation Method [J].J.Non-Cryst. Solids,2009,355(6):368-372.
    [169]C.C.Ribeiro,C.C.Barrias,M.A.Barbosa, Preparation and characterization of calcium-phos phate porous microspheres with a uniform size for biomedical applications, J. Mater. Sci.: Mater. Med.17(2006)455-463.
    [170]M.Kawata, H.Uchida, K. Itatani,I.Okada, S. Koda,M.Aizawa,Development of porous cera mics with well-controlled porosities and pore sizes from apatite fibers and their evaluations,J.Mater. Sci.:Mater. Med.15(2004) 817-823.
    [171]C.Y. Tang, P.S. Uskokovic, C.P. Tsui, Dj.Veljovic, R. Petrovic, Dj. Janackovic, Influence of microstructure and phase composition on the nanoindentation characterization of bioceramic materials based on hydroxyapatite, Ceram. Int.35 (2009) 2171-2178.
    [172]R.Nazir et al.Rapid synthesis of thermally stable hydroxyapaptite,Ceramics International 38(2012)457-462.
    [173]Kondo N,Ogose A,Tokunaga K,Umezu H, Arai K, Kudo N, et al. Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials 2006;27(25):4419-27.
    [174]S.Zoran,V.Ljiljana,M.Smilja,I.Nenad,U.Dragan,Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite, Mater.Manuf.Process.24(10-11)(2009) 1096-1103.
    [175]Groot K De and Geros R Le.Significance of Porosity and Physical Chemistry of Calcium Phosphate Ceramics.in Bioceramics Material characteristics Versus in Vice Behavior.267-277.
    [176]A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc.59(1976)371-372
    [177]C.Y. Tang, P.S. Uskokovic, C.P. Tsui, Dj. Veljovic, R. Petrovic, Dj.Janackovic, Influence of microstructure and phase composition on the nanoindentation characterization of biocer amic materials based on hydroxyapatite, Ceram. Int.35 (2009) 2171-2178.
    [178]R. Kumar, K.H. Prakash, P. Cheang, K.A.Khor, Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders, Acta Mater.53 (2005) 2327-2335.
    [179]Dj.Veljovic.B.Jokic, R.Petrovic, E. Palcevskis, A. Dindune, I.N. Mihailescu, Dj. Janackovic, Processing of dense nanostructured HAP ceramics by sintering and hot pressing, Ceram. Int. 35 (2009)1407-1413.
    [180]W.D. Callister, Materials Science and Engineering an Introduction, John Wiley and Sons, New York,2003.
    [181]S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials 23 (2002) 1073-1080.
    [182]R.Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. Legeros, Biphasic calcium phosphate bioceramics:preparation, properties and applications, J. Mater. Sci.:Mater. Med.14 (2003) 201-209.
    [183]S. Raynaud, E. Champion, J.P. Lafon, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics, Biomaterials 23 (2002) 1081-1089.
    [184]Y.M.Chiang,D.P.Birnie,W.D.Kingery, Physical Ceramics, John Wiley and Sons, New York, 1997.
    [185]P.V.Landuyt, F. Li, J.P.Keustermans,J.M.Streydio, F. Delannay, E. Munting, The influence of high sintering temperatures on the mechanical properties of hydroxyapatite, J. Mater. Sci.:Mater. Med.6 (1995) 8-13.
    [186]G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceram. Int.26 (2000) 221-230.
    [187]D. Veljovic'et al. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics.Ceramics International 37 (2011) 471-479.
    [188]O H Anderson.G Liu.K H Karlson In vivo behavior of glass in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3.system 1990.
    [189]张敏.高家诚.王勇.陈功明HA生物陶瓷的掺杂改性研究进展[期刊论文]-材料导报2005(2).
    [190]Radin S R.Ducheyne P The effect of calcium phosphate ceramics composition and structure on vitro behavior.Ⅱ.Precipitation1993.
    [191]H.Gou,J.Su,J.Wei,H.Kong,C.Liu.Biocompatibility and osteogenicity of degradable Ca-defi cient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater ialia 5(2009) 268-278.
    [192]G.K. Lim et al. Processing of fine hydroxyapatite powders via an inverse microemulsion route.Materials Letters 28 (1996) 431-436.
    [193]Syuji Fujii, Masahiro Okada, Hydroxyapatite Nanoparticles as Particulate Emulsifier: Fabrication of Hydroxyapatite-Coated Biodegradable Microspheres. Langmuir 2009,25(17), 9759-9766.
    [194]A.J.Nathanael et al. Large scale synthesis of hydroxyapatite nanospheres by high gravity method.Chemical Engineering Journal 173 (2011) 846-854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700