用户名: 密码: 验证码:
物化型软岩电化学改性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物化型软岩是指含有大量黏土矿物,在工程扰动下易于发生失水-吸水产生胀缩性和工程特性持续降低的软弱岩体,它是矿业工程、岩土工程、水电工程、地下储库等领域经常涉及到的重大岩石力学问题之一。常用的软岩与软岩工程控制方法为锚喷与注浆加固、强力棚式支护、砌碹或封闭混凝土反拱等,这些方法均是从力的平衡角度来考虑,没有从改变软岩自身的物理、化学特性和力学特性的角度来考虑。为此,本文提出了采用电化学固结改性技术改变有代表性软岩的矿物成分和组织结构,实现软岩与软岩工程长期稳定性的研究方法,为软岩工程灾害的控制提供卓有成效理论依据和技术支持,对减少和防止软岩工程灾害的发生具有十分重要的科学意义和广泛的应用价值。
     针对物化型软岩的晶层结构和阳离子交换能力,本文分别选取蒙脱石含量为主的软岩(蒙脱石软岩)和伊利石含量为主的软岩(伊利石软岩)作为研究对象,根据物化型软岩电化学固结改性过程中的双电层理论,理论分析物化型软岩电化学固结改性过程中的电化学机理;分析蒙脱石软岩和电化学改性相关的矿物学性质,主要为带电性、电荷来源、电荷种类、双电层、pH值、零净电荷点、永久电荷密度、比表面积、孔容和孔径等;分析蒙脱石软岩在电化学改性过程中的矿物成分和晶层结构的变化规律;分析电化学作用对蒙脱石软岩颗粒物沉降与体积膨胀性的影响;分析电化学作用对伊利石软岩孔隙结构和力学特性的影响。以下为本文的主要研究成果:
     1、总结出黏土矿物和软岩在电化学固结改性过程中的电化学机理,即黏土矿物和软岩的电渗现象、电泳现象和电解现象等电化学现象。在电化学作用下,软岩的矿物成分会发生改变并生成新的矿物,电渗脱水固结使软岩的物理力学特性发生变化。
     2、使用X-射线衍射、X-射线荧光光谱、快速电位滴定、电泳和氮气物理吸附等方法对物化型软岩的阳离子类型、零净电荷点、永久电荷密度、ζ电位、等电点、比表面积、孔容-孔径分布等矿物学参数在电化学改性前后进行了系统分析研究。
     3、在不同CaCl2电解液浓度和不同电位梯度条件下,电化学作用能够改变软岩的矿物成分,软岩中蒙脱石的含量降低且生成新的矿物,新生矿物为方解石、三水铝石、硬石膏和水铝英石。电化学作用后软岩阳极和中间区域的蒙脱石含量降低较小,阴极区域的蒙脱石含量降低较大。电化学作用后软岩中蒙脱石晶层结构的层间距和平均晶粒大小均发生了变化,软岩各区域层间距均呈指数规律递增。在不同CaCl2电解液浓度条件下,软岩阳极和中间区域蒙脱石的平均晶粒大小随电解液浓度的增加呈指数规律变化,阴极区域蒙脱石的平均晶粒大小随电解液浓度的增加呈高斯规律变化;在不同电位梯度条件下,软岩各区域蒙脱石的平均晶粒大小均随电位梯度的增加呈高斯规律变化。
     4、蒙脱石软岩颗粒物在蒸馏水中的沉降过程为缓慢润湿、加速沉降和体积稳定等3个阶段。电化学作用能够加速颗粒物的沉降速度,但不能改变岩样颗粒物沉降稳定后的体积膨胀特性。
     5、使用Matlab对CT单张图像进行数字图像处理,生成CT图像序列,使用可视化重构算法中的体绘制算法对其进行三维重构,生成岩石的二值化三维数字图像。根据岩石的二值化三维数字图像就可以计算出岩石的孔隙率;对岩石的CT单张图像进行压缩,再进行数字图像处理和三维重构,生成不同分辨率的岩石二值化三维数字图像,可以确定基于CT图像序列岩石的孔隙率随孔隙孔径的变化规律。电化学作用能够提高泥岩自身的力学特性,伊利石软岩原岩样的平均抗拉强度为1.31MPa,浸入蒸馏水中平均抗拉强度为0.81MPa;电化学改性后,平均抗拉强度均提高,提高了16.79%~116.03%。在泥岩的阳极区域,电化学改性后泥岩的孔隙率小于改性前的孔隙率;在泥岩的阴极区域,电化学改性后泥岩的孔隙率大于改性前的孔隙率。
The physicochemical soft rock is a kind of rock in which containing a great amount of clay minerals. Under engineering disturbance conditions, it is easy to produce swell and shrink by wetting and drying and to reduce rapidly its engineering properties. It is one of the biggest rock mechanics problems in geotechnical engineering. It is usually controlling methods about soft rock engineering that bolting and shotcreting, grouting reinforcement, strengthening rack supporting, arching and close concrete camber. These methods all base on equilibrium of forces and not base on its physical, chemical and mechanical properties. In the paper electrochemical modified method is introduced, which can change mineralogical composition, crystal structure, the pore stuctue, and control the stability of soft rock engineering. The method can provide the theoretical reference and technical supporting for the controlling of the disaster of soft rock engineering, and has significant scientific value and extensive application value for decreasing and preventing the disaster of soft rock engineering.
     According to the crystal structure and anodic exchange capacity, the montmorillonitic soft rock and illitic soft rock are taken as the researth object. Based on the theory of electric double layer in the electrochemical treatment, the electrochemical modified mechanism of the physicochemical soft rock was theoretical analyzed; the mineral properties of montmorillonitic soft rock related to the electrochemical modification was experimental analyzed, which main including in charge property, electric double layer, the pH value, the point of zero charge(pHZPNC), the permanent charge density(σP), the specific surface area, porosity and pore aperture; the change rule of mineralogical composition and crystal structure of montmorillonitic soft rock was analyzed; the effect on subsidence and expandability of montmorillonitic soft rock particles was studied; and the modification about the pore structure and mechanical property of illitic soft rock was analyzed. The following is main research results:
     1. The electrochemical modified mechanism about clay minerals and soft rock in electrochemical modification was summarized, which is the electrochmical phenomenon of clay mineral and soft rock, such as electroosmosis, electrophoresis, and electrolysis. Under the electrochemical treatment, the mineralogical composition of soft rock will alert and generate new minerals, and change the physical and mechanical properties by electroosmotic drainage.
     2. The mineral parameters of the physicochemical soft rock which including in cation types, pHZPNC,σP, theζpotential, the isoelectric point, the specific surface area, the pore volume–diameter distribution, et al. was analyzed systemically by X-ray diffraction, X-ray fluorescence spectral analysis, potentiometric titration, electrophoresis, and nitrogen adsorption isotherm under modified and unmodified conditions.
     3. With different CaCl2 electrolyte concentration and different electric gradient, the mineralogical composition of soft rock is altered; the newly formed minerals are calcite, gibbsite, anhydrite and allophane. The montmorillonitic content in the anodic, cathodic and intermediate zones of soft rock decreases under electrochemical treatment. The electrochemical modification can result in a change of montmorillonitic crystal structure in soft rock also, and the crystallographic planes in all zones exponent increases. Under different CaCl2 electrolyte concentration, with increasing the concentration, the crystalline size in anodic and intermediate zones change by exponent rule, and the size in cathodic zone change by Gauss rule. Under different electric gradient, with increasing the electric gradient, the crystalline sizes in all zones change by Gauss rule.
     4. The subsidence process of montmorillonitic soft rock particles is wetting slowly, subsiding accelerately, and volume steady. The treatment of electrochemical modification can change subsidence rate of soft rock particles in distilled water and not affect its volume expandability when the subsidence is in stable state.
     5. The combination of micro-CT, digital image processing and three-dimensional reconstruction can provide a new, simple and feasible method for the analysis of rock pore structure. The single digital image is processed by image segmentation, binarization and compression, and the new images with different resolutions are generated. When the pixel size of the new image is taken as the pore aperture, the rule of the rock porosity variation with the pore aperture is estimated from Micro-CT single image. The volume rendering algorithm of visualized reconstruction can make the single image become the image sequence, and generate three-dimensional digital image. The rule of the rock porosity variation with the pore aperture is estimated on the base of the image sequence. Electrochemical modification can increase the mechanical property of soft rock. The mean tensile strength of the original sample is 1.31MPa; after merging in distilled water it changes to 0.81MPa, and with electrochemical modification it will increase by 16.79%-116.03%.
引文
[1]何满潮,景海河,孙晓明,著.软岩工程力学[M].北京:科学出版社,2002.
    [2]何满潮.中国煤矿软岩粘土矿物特性研究[M].北京:科学出版社, 2006.
    [3]康天合.物化型软岩包覆改性的基础理论研究[国家自然科学基金申请书]. 2004.
    [4]柴肇云,康天合,李义宝.物化型软岩微结构单元特征及其胀缩性研究[J].岩石力学与工程学报. 2006,25(06):1265-1269.
    [5]柴肇云,康天合,李义宝,等.物化型软岩包覆改性和改性机理[J].辽宁工程技术大学学报(自然科学版). 2008,27(01):42-44.
    [6]康天合,柴肇云,王栋,等.物化型软岩块体崩解特性差异的试验研究[J].煤炭学报. 2009,34(07):907-911.
    [7]柴肇云,康天合,杨永康,等.有机硅改性树脂对蒙脱石软岩包覆及其效果评价[J].岩石力学与工程学报. 2009,28(01):81-87.
    [8] Madsen F T, Vonmoos M. The swelling behaviour of clays[J]. Applied Clay Science. 1989, 4(2): 143-156.
    [9] Tuller M, Or D. Hydraulic functions for swelling soils: pore scale considerations[J]. Journal of Hydrology. 2003, 272(1-4): 50-71.
    [10] Prostov S, Khyamyalyainen V, Bakhaeva S. Interrelation among electrophysical properties of clay rocks, their porosity and moisture saturation[J]. Journal of Mining Science. 2006, 42(4): 349-359.
    [11] Schifano V C. Electrical treatment of clays[D]. United States -- Illinois: University of Illinois at Urbana-Champaign, 2001.
    [12] B F, Flahaut E, Linares-Solano A, et al. Surface Properties, Porosity, Chemical and Electrochemical Applications[J]. Understanding Carbon Nanotubes. 2006: 495-549.
    [13] Revil A, Linde N, Cerepi A, et al. Electrokinetic coupling in unsaturated porous media[J]. Journal of Colloid and Interface Science. 2007, 313(1): 315-327.
    [14] Engelmann W H, Watson P J, Tuzinski P A, et al. Electrochemcial effects on rock drilling.[J]. Journal of the Electrochemical Society. 1988, 135(4): 1043-1044.
    [15] Roberts J J, Detwiler R L, Ralph W, et al. Fracture Surface Area Effects on Fluid ExtractionAnd the Electrical Resistivity of Geothermal Reservoir Rocks[C]. Reno, NV, United States: Geothermal Resources Council, 2002.
    [16]康天合.物化型软岩电化学改性效果与机理研究[国家自然科学基金申请书]. 2009.
    [17] Adamson L U. Application of electrokinetic phenomena in Dewatering,Consolidation and Stabilization of Soils and Weak Rocks in Civil and Pertoleum Engineering, and Augmenting Reservoir Energy during Petroleum Production.[D]. United States -- California: University of Southern California, 1966.
    [18] Amirat Y, Shelukhin V. Electroosmosis law via homogenization of electrolyte flow equations in porous media[J]. Journal of Mathematical Analysis and Applications. 2008, 342(2): 1227-1245.
    [19] Shang J Q. Electrical strengthening of clays by dielectrophoresis[D]. Canada: The University of Western Ontario (Canada), 1993.
    [20]沈钟,王果庭.胶体与表面化学(第二版)[M].北京:化学工业出版社,1997.
    [21] Li S X. Experimental studies of electrokinetic phenomena in brine-saturated porous materials[D]. University of Massachusetts Amherst, 1996.
    [22] Velde B, Meunier A. The Origin of Clay Minerals in Soils and Weathered Rocks[M]. Springer Berlin Heidelberg, 2008: 3-73.
    [23] Casagrande L. Full scale experiment to increase bearing capacity of piles by electrochemical treatment[J]. Bautechnique. 1937, 15(1): 14-16.
    [24] Casagrande L. The application of electroosmosis to practical problems in foundations and earthworks[J]. Bldg.res.,Tech,paper. 1947, 30: 1-22.
    [25] Casagrande L. Structures produced in clays by electrical potentials and their relation to natural structures[J]. Nature. 1947, 160: 470.
    [26] Casagrande L. Electroosmosis[J]. Proc.Intern.Conf.Soil Mech.Found.Eng. 1948(2): 218-223.
    [27] Casagrande L. Electroosmosis in soils[J]. Geotechnique. 1949, 1(3): 166-168.
    [28] Casagrande L. Review of past and current work on electroosmotic stabilization of soil[J]. Harvard Soil Mech. 1953.
    [29] Adamson L G, Quigley D W, Ainsworth H R, et al. Electrochemical strengthening of clayey sandy soils[J]. Engineering Geology. 1966, 1(6): 451-459.
    [30] Nikolaev B A. Application of electroosmosis in sinking piles[J]. Transp.Stroit. 1956.
    [31] Boykov N D. Measurements of the electrical properties of coal measure rocks[D]. United States -- West Virginia: West Virginia University, 2006.
    [32] Zhinkin G N. Strengthening of structural bonds in clay soils as the result of electrochemical stabilization.[J]. Transl.Consultants Buerau,new york. 1960.
    [33] Esrig M I. Electrokinetic stabilization of an illitic clay[J]. J.Soil Mech.Found.Div.,Am.Soc.Civil Engrs. 1967.
    [34] D. H. Gray J S. electrochemical alteration of clay soils[J]. clay and clay minerals. 1969.
    [35] A. J. Sethi A J H A. Electrochemical modifications in kaolinite-glass bead plugs.[J]. clays and clay minerals. 1973.
    [36] Lockhart N C. Electroosmotic dewatering of clays. I. Influence of voltage[J]. Colloids and Surfaces. 1983, 6(3): 229-238.
    [37] Lockhart N C. Electroosmotic dewatering of clays. II. Influence of salt, acid and flocculants[J]. Colloids and Surfaces. 1983, 6(3): 239-251.
    [38] Lockhart N C. Electroosmotic dewatering of clays, III. Influence of clay type, exchangeable cations, and electrode materials[J]. Colloids and Surfaces. 1983, 6(3): 253-269.
    [39] Fleurea J M, Dupeyrat M. Influence of an electric field on the interfacial parameters of a water/oil/rock system: Application to oil enhanced recovery[J]. Journal of Colloid and Interface Science. 1988, 123(1): 249-258.
    [40]肖英D. J.胶体与表面化学[M].北京:化学工业出版社,1988.
    [41]雷斯苏юC.地电化学勘探法[M].北京:地质出版社, 1986: 244.
    [42]奥尔芬美H.范.粘土胶体化学导论[M].北京:化学工业出版社,1982.
    [43]谢德列茨基著苏ид.胶体分散矿物学[M].北京:化学工业出版社,1957.
    [44]王铁军,孙维林.粘土理化性能[M].第1版.北京:地质出版社, 1992.
    [45]任磊夫.粘土矿物与粘土岩[M].北京:地质出版社,1992.
    [46] Wong P Z, Pengra D. Pore Size, Permeability and Electrokinetic Phenomena[J]. Access in Nanoporous Materials. 2002: 295-317.
    [47] Vijh A. Electro-Osmotic Dewatering of Clays, Soils, and Suspensions[J]. Modern Aspects of Electrochemistry. 2002: 301-332.
    [48] Nergaard L. Electron and ion motion in oxide cathodes[J]. Halbleiterprobleme. 1956: 154-202.
    [49] Martinez-Bofill J, Corominas J, Soler A. Behaviour of the Weak Rock Cut Slopes and Their Characterization Using the Results of the Slake Durability Test[J]. Engineering Geology for Infrastructure Planning in Europe. 2004: 405-413.
    [50]于天仁编著.土壤的电化学性质及其研究法[M].北京:科学出版社,1965.
    [51] Lockhart N C. Electroosmotic dewatering of clays, III. Influence of clay type, exchangeable cations, and electrode materials[J]. Colloids and Surfaces. 1983, 6(3): 253-269.
    [52] Shang J Q, Lo K Y. Electrokinetic dewatering of a phosphate clay[J]. Journal of Hazardous Materials Electrochemical Decontamination of Soil and Water. 1997, 55(1-3): 117-133.
    [53]张国范,冯其明,卢毅屏,等.六偏磷酸钠在铝土矿浮选中的作用[J].中南工业大学学报(自然科学版). 2001,32(02) : 127-130.
    [54] Lockhart N C, Stickland R E. Dewatering coal washery tailings ponds by electroosmosis[J]. Powder Technology. 1984, 40(1-3): 215-221.
    [55] Shang J Q, Lo K Y. Electrokinetic dewatering of a phosphate clay[J]. Journal of Hazardous Materials. 1997, 55(1-3): 117-133.
    [56] Mattson E D, Bowman R S, Lindgren E R. Electrokinetic ion transport through unsaturated soil: : 2. Application to a heterogeneous field site[J]. Journal of Contaminant Hydrology. 2002, 54(1-2): 121-140.
    [57] Acar Y B, Alshawabkeh A N, Gale R J. Fundamental aspects of electrokinetic remediation of soils[J]. Waste Management 1993 Symposium on emerging technologies. 1993, 13(5-7): 513.
    [58] Acar Y B, Alshawabkeh A N, Gale R J. Fundamentals of extracting species from soils by electrokinetics[J]. Waste Management. 1993, 13(2): 141-151.
    [59] Alimi-Ichola I, Gaidi L. Influence of the unsaturated zone of soil layer on the solute migration[J]. Engineering Geology Geoenvironmental Engineering. 2006, 85(1-2): 2-8.
    [60] Reynolds D A, Jones E H, Gillen M, et al. Electrokinetic Migration of Permanganate Through Low-Permeability Media[J]. Ground Water. 2008, 0(0): ???-???.
    [61]柴肇云,康天合,李义宝.物化型软岩微结构单元特征及其胀缩性研究[J].岩石力学与工程学报. 2006,25(06):1265-1269.
    [62]康天合,柴肇云.物化型软岩电化学改性可行性分析[C]. 2006.
    [63]柴肇云.物化型软岩包覆改性的基础理论及其应用[D].太原理工大学, 2008.
    [64] Chukhrov F V. some results of the study of clay minerals in the U.S.S.R.[J]. clays and clayminerals. 1968.
    [65] Youell R F. An electrolytic method for producing chlorite-like substances from montmorillonite[J]. clay minerals bull. 1960, 9.
    [66] Titkov N I. Electrochemical induration of weak rocks,[M]. New York: Consultants Bureau, 1961.
    [67] Pinzari U. Indagine sul trattamento elettrosmotico di un materiale argilloso.[J]. Geotecnica. 1962, 9(3): 101-114.
    [68] Titkov N I, Petrov V P, Neretina A I. Mineral formation and structure in the electrochemical induration of weak rocks,[M]. New York: Consultants Bureau, 1965.
    [69] Adamson L G, Chilingar G V, Beeson C M, et al. Electrokinetic dewatering, consolidation and stabilization of soils[J]. Engineering Geology. 1966, 1(4): 291-304.
    [70] Adamson L G, Rieke I I, Grey R R, et al. Electrochemical treatment of highly shrinking soils[J]. Engineering Geology. 1967, 2(3): 197-203.
    [71] Chilingar G V E A. Effect of direct electrical current on permeability of sandstone cores[J]. Journal of Petroleum Technology. 1970(Volume 22, Number 7): 8.
    [72] Aggour M A, Muhammadain A M. Investigation of waterflooding under the effect of electrical potential gradient[J]. Journal of Petroleum Science and Engineering. 1992, 7(3-4): 319-327.
    [73] Aggour M A, Tchelepi H A, Al-Yousef H Y. Effect of electroosmosis on relative permeabilities of sandstones[J]. Journal of Petroleum Science and Engineering. 1994, 11(2): 91-102.
    [74]宋宏伟.电化学法巷道软岩变性方法初探[J].中国矿业大学学报. 1998, 27(03): 239-242.
    [75] Bernabeu A, Exp E, Montiel V, et al. A new electrochemical method for consolidation of porous rocks[J]. Electrochemistry Communications. 2001, 3(3): 122-127.
    [76]吴新民,张宁生.直流电场对岩心润湿性的影响研究[J].西安石油学院学报(自然科学版). 2001,16(04):46-49.
    [77]张宁生,吴新民.电化学采油及其作用机理综述[J].石油勘探与开发. 1998,25(02):57-59.
    [78]张宁生,吴新民,孙虎.电化学导流驱油提高低渗透油藏采收率机理研究[J].西安石油学院学报(自然科学版). 2001,16(03):6-11.
    [79]张继红,陈涛平,李跃辉,等.流体在外加直流电场作用下的电动-水力渗流特性[J].大庆石油学院学报, 2002,26(03):33-36.
    [80]张继红,王江,赵丽娟,等.单相液体在多孔介质中的电动渗流特性[J].大庆石油学院学报. 2002,26(01):24-27.
    [81]张继红,岳湘安,陈喜玲,等.直流电场下油藏多孔介质中渗流特性的变化[J].高电压技术. 2005,31(05):44-46.
    [82]张继红,岳湘安,侯吉瑞,等.外加电场作用下水驱油藏的油水相对渗透率[J].高电压技术. 2005,31(04):74-76.
    [83]赵建国,朱文凯.电渗—强夯综合法加固软弱地基的实践[J].地质与勘探. 1994,30(02):76-80.
    [84]周顺华,唐秋生,巫锡畴,等.软土地区铁路基床病害的电化学处理法探讨[J].铁道学报. 1999,21(01):107-109.
    [85]冯晓腊,严应征,李玉花.电化学成桩法加固软土地基的应用研究[J].土工基础. 2003,17(01):1-4.
    [86]王协群,邹维列.电渗排水法加固湖相软粘土的试验研究[J].武汉理工大学学报. 2007,29(02):95-99.
    [87] Buijs P J, Van D A, Stein H N. Efficient dewatering of waterworks sludge by electroosmosis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1994, 85(1): 29-36.
    [88] Sondi I, Biscan J, Pravdic V. Electrokinetics of Pure Clay Minerals Revisited[J]. Journal of Colloid and Interface Science. 1996, 178(2): 514-522.
    [89] Zhinkin G N. Experiment of utilizing electrochemical induration of grounds for stabilization of railway beds[J]. Sb.tr.,leningr.Inst.Inzh.Zheleznodor.Transp. 1952.
    [90] Chew S H, Karunaratne G P, Kuma V M, et al. A field trial for soft clay consolidation using electric vertical drains[J]. 2004, 22(1-2): 17-35.
    [91] Kaczmarek M, Hueckel T. Chemo-Mechanical Consolidation of Clays: Analytical Solutions for a Linearized One-Dimensional Problem[J]. Transport in Porous Media. 1998, 32(1): 49-74.
    [92] Trushinskii M Y. Electrochemical soil stabilization method[J]. Soil Mechanics and Foundation Engineering. 1993, 30(2): 61-65.
    [93] Hill H J, Milburn J D. Effect of clay and water salinity on electrochemical behavior of reservoir rocks[J]. SPE Reprint Series. 2003(55): 31-38.
    [94]邱彬.地层岩石的电性质研究[D].山东大学, 2001.
    [95] Grundl T, Michalski P. Electroosmotically driven water flow in sediments[J]. Water Research. 1996, 30(4): 811-818.
    [96] Grundl T, Reese C. Laboratory study of electrokinetic effects in complex natural sediments[J]. Journal of Hazardous Materials. 1997, 55(1-3): 187-201.
    [97] Perry W. electroosmosis dewaters large fooundation excavation.[J]. Construct . Methods. 1963.
    [98]周辉,程昌炳,杨鑫,等.软岩的电化学加固方法[P]. 200810048489.4. 2008,12.
    [99] Mikhajlovich P S. Process of electrochemical strengthening of rock[P]. Russia, RU 2 175 040 C1. 2001,10.
    [100] Mikhajlovich P S. Method for electrochemical rock consolidation[P]. Russia, RU2 299 294 C2. 2007,05.
    [101] William F. Drinkard J C N C. electrochemcial mining of copper [P] U.S.A ,US3956087A.1976.
    [102] Palel,G, Masgut Z,V. Method of electrochemical consolidation of rock[P] U.S.S.R,726337. 1980.
    [103]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社, 1996.
    [104] Shankland T J. Electrical conduction in rocks and minerals: Parameters for interpretation[J]. Physics of The Earth and Planetary Interiors. 1975, 10(3): 209-219.
    [105] Curry J E. Studies of the electrical double layer and clay swelling[D]. United States -- California: University of California, Davis, 1992.
    [106] Youell R F. An electrolytic method for producing chlorite-like substances from ontmorillonite[J]. clay minerals bull. 1960, 9.
    [107] Lastovickov M. A review of laboratory measurements of the electrical conductivity of rocks and minerals[J]. Physics of The Earth and Planetary Interiors. 1991, 66(1-2): 1-11.
    [108] Acar S, Somasundaran P. Effect of dissolved mineral species on the electrokinetic behaviour of sulfides[J]. Minerals Engineering. 1992, 5(1): 27-40.
    [109] Mohamedelhassan E, Shang J Q. Analysis of electrokinetic sedimentation of dredgedWelland River sediment[J]. Journal of Hazardous Materials. 2001, 85(1-2): 91-109.
    [110] Yin J, Feldkamp J R, Chung K Y, et al. Electro-osmotic pore pressures in soil due to an alternating electrical field[J]. Transport in Porous Media. 1995, 18(1): 37-63.
    [111] Alkan M, Demirbas O, Dogan M. Electrokinetic properties of kaolinite in mono- and multivalent electrolyte solutions[J]. Microporous and Mesoporous Materials. 2005, 83(1-3): 51-59.
    [112] Johnson D. Electrocapillary Flows[J]. Interfacial Fluid Dynamics and Transport Processes. 2003: 291-304.
    [113] Acar Y B, Gale R J. Fundamental aspects of electrokinetic remediation of soils[J]. Waste Management. 1994, 14(3-4): 340-341.
    [114] Vijh A. Electro-Osmotic Dewatering of Clays, Soils, and Suspensions[J]. Modern Aspects of Electrochemistry. 2002: 301-332.
    [115] Acar Y B, Gale R J. Fundamental aspects of electrokinetic remediation of soils[J]. Waste Management. 1994, 14(3-4): 340-341.
    [116] Demir I. Studies of smectite membrane behavior Electrokinetic, osmotic, and isotopic fractionation processes at elevated pressures[J]. Geochimica et Cosmochimica Acta. 1988, 52(3): 727-737.
    [117] Bottero J Y, Bruant M, Cases J M, et al. Adsorption of nonionic polyacrylamide on sodium montmorillonite: Relation between adsorption, [xi] potential, turbidity, enthalpy of adsorption data and 13C-NMR in aqueous solution[J]. Journal of Colloid and Interface Science. 1988, 124(2): 515-527.
    [118] Muryama S. On the electrochemical consolidation of soil using aluminum electrodes[J]. Proc 3rd Intern.Conf.Soil Mech.Found. Eng. 1953.
    [119] Nikolaev B A. Laboratory investigations of driving model piles with electroosmosis[J]. Sb.LIIZhT. 1958: 158.
    [120] Nikolaev B A. Pile Driving by Electroosmosis[J]. Gosstroiizdat,Moscow. 1960.
    [121] Acar S, Somasundaran P. Flocculation of sulfides and the role of a complexing agent in it[J]. International Journal of Mineral Processing. 1989, 27(1-2): 111-123.
    [122] Tonkonogov M P, Veksler V A, Dzhangozin M M, et al. Electrical properties of the country rocks of the karaganda coalfield em dash electrical conductivity and dielectric relaxation[J].Soviet Mining Science (English translation of Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh). 1976, 12(4): 432-435.
    [123] Oliphant J L, Low P F. The relative partial specific enthalpy of water in montmorillonite-water systems and its relation to the swelling of these systems[J]. Journal of Colloid and Interface Science. 1982, 89(2): 366-373.
    [124] Sun Y, Lin H, Low P F. The nonspecific interaction of water with the surfaces of clay minerals[J]. Journal of Colloid and Interface Science. 1986, 112(2): 556-564.
    [125] Ivanov V V, Shcherbak A N. Destruction of hard and loose rocks by electrochemical explosion[J]. Elektronnaya Obrabotka Materialov. 1993(5): 77-78.
    [126]范秋雁.膨胀岩与工程[M].北京:科学出版社, 2008.
    [127]须藤俊男.粘土矿物学[M].北京:地质出版社, 1959.
    [128]郑铜镖.物化型软岩改性的基础研究[D].太原理工大学, 2004.
    [129] Turk J O. A study of diffusion in clay-water systems by chemical and electrical methods[D]. United States -- California: University of California, San Diego, 1976.
    [130]鲁柯夫采夫A. H,弗鲁姆金п,著.双电层和电化学动力学[M].北京:科学出版社, 1960.
    [131] Schramm L L, Mannhardt K, Novosad J J. Electrokinetic properties of reservoir rock particles[J]. Colloids and Surfaces. 1991, 55: 309-331.
    [132] Kaviratna P D S. Dielectric and electrochemical properties of smectite clays and layered double hydroxides[D]. United States -- Michigan: Michigan State University, 1991.
    [133] Gupta A K, Coelho D, Adler P M. Electroosmosis in porous solids for high zeta potentials[J]. Journal of Colloid and Interface Science. 2006, 303(2): 593-603.
    [134] Alekseyev O L, Bojko Y P, Pavlova L A. Electroosmosis in concentrated colloids and the structure of the double electric layer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects A collection of papers presented at the International Symposium on Electrokinetic Phenomena, Cracow, Poland. 2003, 222(1-3): 27-34.
    [135]李苗,张林洪,王苏达.电渗法处理填土地基的排水效果影响因素分析[J].岩土工程技术. 2003, 21(01): 4-6.
    [136] Baraud F, Tellier S, Astruc M. Ion velocity in soil solution during electrokinetic remediation[J]. Journal of Hazardous Materials. 1997, 56(3): 315-332.
    [137] Jayasekera S, Hall S. Modification of the properties of salt affected soils using electrochemical treatments[J]. Geotechnical and Geological Engineering. 2007, 25(1): 1-10.
    [138] Al-Abed S, Chen J L. Transport of Trichloroethylene (TCE) in Natural Soil by Electroosmosis[J]. Physicochemical Groundwater Remediation. 2001: 91-114.
    [139] Leroux F B J. polymer interleaved layered double hydroxide: a new emerging class of nanocomposites[J]. Applied Clay Science. 2001, 13(10): 3507-3515.
    [140] Hou W G. Synthesis and properties of polystyrene/laponite nanocomposites[J]. Chinese Journal of Polymer Science. 2004, 22(05): 459-462.
    [141]贾春晓,侯万国,郝明途,等. Al-Mg类水滑石-钠质蒙脱土悬浮体的流变性[J].应用化学. 2003, 20(01): 42-46.
    [142]李丽芳,侯万国,戴肖南,等. Zn-Al类水滑石零净电荷点及等电点研究[J].化学学报. 2004, 20(05): 459-462.
    [143]高嵩,何广平,吴宏海,等.高岭石表面酸碱反应的电位滴定试验研究[J].岩石矿物学杂志. 2005, 24(3): 239-244.
    [144]李东祥,侯万国,韩书华,等.高岭土的零电荷点和电荷密度[J].山东大学学报(理学版). 2003, 38(01): 86-89.
    [145]戴肖南,侯万国,李丽芳,等. Mg-Fe-HTlc/高岭土悬浮体流变性研究[J].化学学报. 2005, 63(08): 693-696.
    [146]姚允斌.胶体与表面化学导论[M].天津:南开大学出版社,1988.
    [147] Ganor J, Cama J, Metz V. Surface protonation data of kaolinite--reevaluation based on dissolution experiments[J]. Journal of Colloid and Interface Science. 2003, 264(01): 67-75.
    [148] Electrokinetic phenomena[J]. Electrolytes at Interfaces. 2002: 269-288.
    [149] Electrokinetic Flows[J]. Microflows and Nanoflows. 2005: 255-309.
    [150] Scott K. Electrokinetic separations [J]. 1998: 793-800.
    [151] Mehmet S. Electrokinetic behavior of clay surfaces[J]. Clay Surfaces. 2004, 354(01): 57-89.
    [152] Delgado A, Gonz C F, Bruque J M. On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions[J]. Journal of Colloid and Interface Science. 1986, 113(1): 203-211.
    [153] Horikawa Y, Murray R S, Quirk J P. The effect of electrolyte concentration on the zetapotentials of homoionic montmorillonite and illite[J]. Colloids and Surfaces. 1988, 32: 181-195.
    [154]王慧云,李明远,吴肇亮,等.石油磺酸盐、HPAM、pH值对蒙脱土zeta电位的影响[J].应用化学. 2005, 22(08): 915-918.
    [155]苏长明,付继彤,郭保雨.粘土矿物及钻井液电动电位变化规律研究[J].钻井液与完井液. 2002, 19(06): 1-5.
    [156] Harton J H, Hamid S, Abi-Chedid E, et al. Effects of electrochemical treatment on selected physical properties of a clayey silt[J]. Engineering Geology. 1967, 2(3): 191-196.
    [157]孙虎.外加电场作用下孔隙渗流机理与理论研究[D].西安石油学院, 2000.
    [158]王东,康天合,柴肇云,等.电化学作用对蒙脱石软岩颗粒物沉降与体积膨胀性影响的试验研究[J].岩石力学与工程学报. 2009, 28(09): 1876-1883.
    [159]张乃娴.粘土矿物研究方法[M].北京:科学出版社, 1990.
    [160]沉积岩中粘土矿物总量和常见非粘土矿物X射线衍射定量分析方法[S].中华人民共和国石油天然气总公司, 1997.
    [161]金章东,朱金初,季峻峰,等.成矿流体对德兴斑岩铜矿床中伊利石结晶度的制约[J].中国科学, D辑,2000,30(05): 465-470.
    [162] K. Norrish J P Q. crystalline swelling of montmorillonite[J]. nature. 1954, 173(4397): 255-257.
    [163]谭罗荣,孔令伟.蒙脱石晶体胀缩规律及其与基质吸力关系研究[J].中国科学, D辑, 2001, 31(02): 119-126.
    [164]谭罗荣.蒙脱石晶体反常膨胀的电解质浓度效应[J].矿物学报. 2002, 22(04): 371-374.
    [165] Nover G. Electrical Properties of Crustal and Mantle Rocks– A Review of Laboratory Measurements and their Explanation[J]. Surveys in Geophysics. 2005, 26(5): 593-651.
    [166]康天合,郜进海,潘永前.薄层状碎裂顶板综采切眼锚固参数与锚固效果[J].岩石力学与工程学报. 2004,23(增2):4 930–4 935.
    [167]康天合,郑铜镖,李焕群.循环荷载作用下层状节理岩体锚固效果的物理模拟研究[J].岩石力学与工程学报. 2004,23(10):1724–1729.
    [168]李国富.软岩隧道(巷道)实用控制技术研究[J].徐州工程学院学报. 2005, 20(1): 43-49.
    [169]肖美D. J.胶体与表面化学导论第三版[M].北京:化学工业出版社,1989.
    [170]段黎明,刘元宝,吴志芳,等.基于工业计算机断层成像技术的三维CAD模型重构方法[J].计算机集成制造系统. 2009,15(03):479–485.
    [171]郭丽萍,Carpinteri Andrea,孙伟,等.基于三维微焦点CT图像对高性能混凝土内部缺陷的测量和分析[J]. Journal of Southeast University. 2009,25(01):1003–7985.
    [172]刘学锋,孙建孟,王海涛,等.顺序指示模拟重建三维数字岩心的准确性评价[J].石油学报. 2009,30(03):391–395.
    [173]张杰,沈霄云,刘明贵.智能化桩基超声波CT检测系统研究[J].岩土力学. 2009,30(04):1197–1120.
    [174]赵阳升,孟巧荣,康天合,等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报. 2008,27(01):28–34.
    [175]杨更社,刘慧.基于CT图像处理技术的岩石损伤特性研究[J].煤炭学报. 2007,32(05):463–468.
    [176]宋卫卫,苏铁明,欧宗瑛,等.基于CT图像反求技术的人体股骨头修复建模[J].大连理工大学学报. 2009,49(02):221–227.
    [177]练秋生,郝鹏鹏.基于压缩传感和代数重建法的CT图像重建[J].光学技术. 2009,35(03):422–425.
    [178]张汝楠,孙丽萍.基于X-ray CT技术原木三维重建检测缺陷方法的初步探讨[J].森林工程. 2008,24(05):25–31.
    [179] Gonzalez Rafael C.数字图像处理[M].第二版.北京:电子工业出版社, 2003.
    [180]王鸣鹏. CT检查技术学[M].上海:复旦大学出版社, 2004.
    [181]赵俊,庄天戈. CT图像分块重建算法[J].上海交通大学学报. 2004,38(02):197–199.
    [182]李玉彬,李向良,李奎祥.利用计算机层析(CT)确定岩心的基本物理参数[J].石油勘探与开发. 1999,26(06):86–90.
    [183]赵秀才,姚军,房克荣.合理分割岩心微观结构图像的新方法[J].中国石油大学学报(自然科学版). 2009,33(01):64–67.
    [184]易敏,黄瑞瑶,孙良田,等.测量储层多孔介质孔隙度及其分布的新方法[J].西南石油学院学报. 2004,26(01):43–46.
    [185]吴爱祥,杨保华,刘金枝,等.基于X光CT技术的矿岩散体浸出过程中孔隙演化规律分析[J].过程工程学报. 2007,7(05):960–965.
    [186]吕兆兴.孔隙裂隙双重介质逾渗理论及应用研究[D].太原理工大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700