用户名: 密码: 验证码:
聚丙烯纤维改良粉煤灰土动、静力学参数特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托国家高科技研究发展计划项目(863计划)《季节冻土区路基抗冻融稳定控制技术研究》(2007AA11Z114)和国家自然科学基金项目《冻融循环后路基材料力学特性的静动参数转换理论及试验研究》(50978117),在季节性冰冻地区,针对聚丙烯纤维改良粉煤灰土这种路基填料,主要开展了以下几方面的研究工作:
     1.对聚丙烯纤维改良粉煤灰土的加固机理进行深入分析,通过无侧限抗压强度试验确定聚丙烯纤维的最佳掺入量,讨论不同纤维掺量对粉煤灰土强度的影响。研究聚丙烯纤维对粉煤灰土脆性破坏形式的影响,并对改良效果进行评价。
     2.在大量的室内动三轴试验基础上,研究纤维改良土在车辆动荷载作用下的动力特性。系统分析围压σ3、固结比K等对改良土动强度的影响,改良土动强度指标c_d、φ_d的变化规律,动应变水平与动模量之间的关系,并对纤维改良土、粉煤灰土,这两种土体的动强度与动模量进行对比分析。
     3.模拟季节性冰冻地区的气候条件,设计新试验。对改良土试样进行冻融循环试验,定量分析冻融循环作用对改良土动强度与动模量的影响。对一定压实系数、含水率、围压、加荷频率条件下的试样变形、冻融循环次数与动应力之间的关系进行研究。利用最小二乘法原理对冻融循环后的试验数据进行归一化处理,建立动强度随冻融循环次数变化的衰减模型、动模量随冻融循环次数变化的损失模型。
     4.通过冻融循环试验和室内UU(不固结不排水剪)静三轴试验,获得冻融循环作用下改良土的静强度指标c、φ值,对改良土的静强度特性进行定量分析。利用ABAQUS有限元分析软件对静三轴试验进行数值模拟,将试验值与模拟值对比分析,验证试验数据的准确性与可靠性,建立纤维改良土动、静力学参数之间的关系模型。参数模型的建立,在一定情况下,可以大大减少试验工作量,提高工作效率。
China's highway department said improved earth or stabilized soil for the solidified soil. Refers to soil admixture of lime, fly ash, cement and other inorganic materials or organic materials, thereby enhancing the performance of soil engineering. Improved soil and fly ash soil before compared to the performance of various aspects of the project there is a certain degree of enhancement and improvement. Mainly as follows: to improve the soil physical mechanical properties, increasing the internal friction angle ? and cohesion C, to improve soil shear strength, so that carrying capacity has been significantly improved; To improve the capacity of soil and water resistance to freeze-thaw stability, improve the durability of soil; to make the application of soil material to be expanded to sufficient raw materials. Because there are many advantages, improved soil technology in road works have been widely used to bring good social and economic benefits.
     Fly ash generated by coal-fired power plant, an industrial waste slag, with the proportion of small, high intensity, uniform gradation, permeability, good water stability and good engineering properties, can be used as embankment fill. Some countries in Europe and America in the 20th century, 70 years large-scale use of fly ash subgrade projects, our highway department in 80 years began to fly ash used for filling embankment. Reinforced fly ash can improve the soil while the engineering properties of subgrade soil, but can not effectively improve the roadbed soil cracking and compressive strength. Tends to brittle fracture, so that the road to form vertical and horizontal cracks, but also with anti-piping ability is poor, saturated by the vibration loads easily liquefied shortcomings. Therefore, the need for further improvement measures. In this paper, seasonal frozen regions of the subgrade soil was improved, in the amount of fly ash soil incorporation of polypropylene fibers. Through the unconfined compressive strength test, freeze-thaw cycle test and indoor static and dynamic triaxial tests, analysis of the polypropylene fiber modified fly-ash soil static and dynamic characteristics of mechanical parameters, using regression analysis on the parameters of the relation between fitted with a preliminary discussion, for a reasonable understanding of improved soil static and dynamic mechanical parameters of the relationship of some significance, and to improve soil in engineering and engineering design of rational use of theoretical basis, has important practical and theoretical significance. Through the analysis of test results obtained the following conclusions:
     (1)Join polypropylene fibers, the fibers in the fly ash within the soil to form a random network structure of space support system, constraints of displacement and deformation of soil particles, so that cracks have been delaying the development of an effective improvement in the form of its brittle failure. Polypropylene fiber can be greatly improved by adding fly ash soil unconfined compressive strength, when the fiber fraction of 1%, the strength values increased 74%, improving the best, the best ratio. In the engineering sense, polypropylene fiber modified fly-ash soil as subgrade filling, help to improve strength and stability of the roadbed.
     (2)The use of polypropylene fibers of fly ash improved soil, its dynamic strength was significantly greater than the dynamic strength of fly ash soil, and both the dynamic intensity with the increase in the number of load cycles decline, with the increase of confining pressure change Great. As the confining pressure increases the dynamic strength of improved soil magnitude greater than that of fly ash to improve soil. When the confining pressure, respectively 100KPa, 200KPa, 300KPa, the improvement of soil dynamic strength of fly ash soil were higher than 27.9%,31.1% and 26.1%. This indicates that at high confining pressure, fiber specimen greater impact on the dynamic strength.
     (3)Improved soil affected by the impact of dynamic strain smaller than that of fly ash soil, dynamic modulus E_d increases with the dynamic strainε_d diminishes. Action should be disguised at the same time, improved soil dynamic modulus is greater than about 20% fly-ash soil. Freeze-thaw cycles can lead to improved soil and fly ash to reduce the dynamic strength of soil, but the improved rate of decline in soil is less than the dynamic strength of fly ash soil. Improved soil after 6 freeze-thaw cycles, the dynamic strength remained stable, in the confining pressure for 200KPa and 300KPa, the dynamic strength of a reduction of about 20%, with a good frost durability, cold areas during the quarter is more satisfactory the roadbed material.
     (4)Least-squares method using freeze-thaw cycle test data after the fitting has been dynamic changes in strength with attenuation of freeze-thaw cycles modelsτ_d =Ae~(Bn) and dynamic modulus of freeze-thaw cycles change polynomial model. Polypropylene fiber modified fly-ash soil undergoing a freeze-thaw cycles, the dynamic modulus decreased, the second freeze-thaw, the dynamic modulus is higher than the first time. 6 times freeze-thaw cycles, the dynamic modulus stabilized, the average move modulus is greater than the initial move of the volatility of the modulus fluctuations, freeze-thaw cycles the loss of a small dynamic modulus.
     (5)Freeze-thaw cycles on the dynamic modulus than for static modulus of high-impact, when the static and dynamic model for money within a certain range, it has the function to determine the relationship between the test conditions do not have the circumstances, if known to move , static modulus one, then the functional relationship can roughly estimate the value of another modulus.
     (6)Freeze-thaw cycles on the dynamic and static triaxial tests the value of C has great similarities. When the C value and the C_d value of stable value when stabilized with non-freeze-thaw ago, are down about 8%. Show improved resistance to freezing and thawing soil with good performance. C value and the C_d value of fitting the curve after the effects of good, the correlation coefficient R~2 =0.89. The first three freeze-thaw cycles on theφ_d value and theφvalue of a great influence on the future of their three little effect. Stable value of stability when compared with non-freeze-thaw before both fell by around 11%. Theφ_d and theφafter the relationship with the fitting curve is quadratic curve, correlation coefficient R~2 = 0.98, with a strong correlation.
     (7)UU triaxial tests obtained by the intensity of the comparison with simulated values and found good agreement between the two, between the error rate less than 10%, indicating a static triaxial test data and reliable sex. It also shows the use of finite element analysis software to simulate a certain extent, can replace part of the test, so that large amount of test cases, can reduce some of the workload and improve work efficiency.
引文
[1]王连俊.季冻区公路路基砂类土冻胀分类研究[J].工程地质学,2007(5):639-645.
    [2]邓学钧.路基路面工程[M].北京:人民交通出版社,2008.
    [3]马芹永.冻土爆破性与可钻性试验及其应用[M].北京:科学出版社,2007.
    [4]洪毓康.土质学与土力学[M].北京:人民交通出版社,2000.
    [5]冯海宁,杨有海,龚晓南.粉煤灰工程特性的试验研究[M].岩土力学,2002,23(5):579—582.
    [6]A Boominathan,S.Hari.Liquefaction strength of fly ash reinforced with randomly distributed fibers[J].Soil Dynamics and Earthquake Engineering, 22 (2002):1027-1033.
    [7]J.Prabakar,Nitin Dendorkar,R.K.Morchhale.Influence of fly ash on strength behavior of typical soils [J].Construction and Building Material, 18 (2004):263-267.
    [8]A. Hilmi Lav,M. Aysen Lav,A. Burak Goktepe. Analysis and design of a stabilized fly ash as pavement base material[J].Science Direct ,85 (2006):2359-2370.
    [9] Alper Sezer,Gozde Inan,H. RecepYilmaz, Kambiz Ramyar. Utilization of a very high lime fly ash for improvement of Izmir clay[J]. Science Direct ,41 (2006):150-155.
    [10]Mahipal Singh Chauhan,Satyendra Mittal.Bijayananda Mohanty. Performance evaluation of silty sand subgrade reinforced with fly ash and fibre[J]. Geotextiles and Geomembranes ,26 (2008): 429-435.
    [11]S.P. Singh,D.P. Tripathy,P.G. Ranjith.Performance evaluation of cement stabilized fly ash–GBFS mixes as a highway construction material[J]. Waste Management ,28 (2008) :1331-1337.
    [12]Ashis Kumar Bera, Sowmendra Nath Chandra, Amalendu Ghosh. Unconfined compressive strength of fly ash reinforced with jute geotextiles[J]. Geotextiles and Geomembranes ,27 (2009) :391-398.
    [13]A.Sahin Zaimoglu.Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers[J].Cold Regions Science and Technology ,60 (2010):63-65.
    [14]凌建明,谢华昌,庄少勤等.水泥-石灰土水稳性的试验研究[J].同济大学学报,2001,29(6):733-737.
    [15]贺建清.石灰改良土路基填料动力特性及应用研究[D].长沙:中南大学,2005.
    [16]闫宁霞,娄宗科.掺纤维固化土强度变化的研究[J].西北农林科技大学学报(自然科学版),2006,34(8):146-148.
    [17]唐朝生,施斌等.聚丙烯纤维加固软土的试验研究[J].岩土力学,2007,28(9):1796-1800.
    [18]魏海斌.冻融循环对粉煤灰土动力特性影响的理论与试验研究[D].长春:吉林大学,2007.
    [19]李振霞,王选仓,薛晖.石灰粉煤灰加固低液限粉土性能研究[J].公路交通科技,2008,25(2):40-43.
    [20]邵俐,刘松玉,杜广印等.水泥粉煤灰加固有机质土的试验研究[J].工程地质学报,2008,16(03):408-413.
    [21]H.A.崔托维奇.冻土力学[M].北京,科学出版社,1985.
    [22]Othman,M,A.Effect of freeze-thaw on the hydraulic conductivity of three compacted clays from wisconsin[J].Transportion Research Record ,1369 (1993):118-125.
    [23]Xiyou Chen, William E. Wolfe and Malcolm D. Hargraves. The influence of freeze-thaw cycles on the compressive strength of stabilized FGD sludge[J].Elsevier Science ,76 (1997):755-759.
    [24]William E.Wolfea,Tarunjit S.Butalia,Bethanie L.Meek.Influence of freeze–thaw cycling on the resilient modulus of PFBC materials[J].Fuel, 78 (1999):143-148.
    [25]Vesa Penttala,Fahim Al-Neshawy. Stress and strain state of concrete during freezing and thawing cycles[J]. Cement and Concrete Research ,32 (2002): 1407-1420.
    [26]Taskin Oztas,Ferhan Fayetorbay. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena ,52 (2003) :1– 8.
    [27]H.S. Shang,Y.P. Song. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J]. Science Direct ,36 (2006):1857-1864.
    [28]Rami H. Haddad,Karim S. Numayr. Effect of alkali-silica reaction and freezing and thawing action on concrete–steel bond[J]. Construction and Building Materials ,21 (2007) :428–435.
    [29]Ustun Sahin,Ilker Angin,Fatih M. Kiziloglu. Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or flyash[J]. Soil & Tillage Research,99 (2008) :254-260.
    [30] A. Sahin Zaimoglu. Freezing–thawing behavior of fine-grained soils reinforced with polypr-opylene fibers[J]. Cold Regions Science and Technology,60 (2010) :63-65.
    [31]刘昌忠.半刚性基层材料冻融循环强度变化分析[J].中南公路工程,2004,29(1):61-63.
    [32]王大雁,马巍,常小晓,孙志忠,冯文杰,张军伟.冻融循环作用对青藏粘土物理力学性质的影响[J].岩石力学与工程学报,2005,24(23):4313-4319.
    [33]包卫星,杨晓华,谢永利.典型天然盐渍土多次冻融循环盐胀试验研究[J].岩土工程学报,2006,28(11):1991-1995.
    [34]郭菊彬,宋吉荣,王鹰.冻融循环对含盐土层强度参数影响的试验分析[J].路基工程,2007,(1):46-47.
    [35]陈炜韬,王鹰,王明年,李姝,王玉锁.冻融循环对盐渍土黏聚力影响的试验研究[J].岩土力学,2007,28(11):2343-2347.
    [36]魏海斌,刘寒冰,高一平,李长雨,方瑛.冻融循环对粉煤灰土动强度的影响[J].吉林大学学报(工学版),2007,37(2):329-333.
    [37]魏海斌,刘寒冰.粉煤灰土冻融循环后的动力特性试验研究[J].岩土力学,2007,28(5):1005-1008.
    [38]张贵生,梁波,刘德仁.冻融循环对土体压缩参数及冻胀、融沉性影响研究[J].岩土工程界,2008,10(10):34-37.
    [39]田军,洪锦祥.冻融循环作用对混凝土路面使用寿命的影响[J].山西建筑,2008,34(12):287-288.
    [40]冯勇,何建新,刘亮,杨力行.冻融循环作用下细粒土抗剪强度特性试验研究[J].冰川冻土,2008,30(6):1013-1017.
    [41]邓安,于永堂.冻融循环对轻质填料抗压强度的影响[J].建筑材料学报,2009,12(4):448-452.
    [42]Seed HB,Chen CB,Monismith CL.Effect Repeated Loading on the Strength and Deformation of Compactde clay[R].HRIS, 34 (1955):541-558.
    [43]S.Shibuya,F.Tatatsuoka,X.J Kong.Elastic Deformation Properties of Geomaterials[J]. Soil and Foundations ,1993, 33(4):194-197.
    [44] S.Shibuya,F.Tatatsuoka.Discussion on“The use of hall effect semiconductors ongeotechnical instrumentation”by CRI clay[J]. Geotochnical Testing Journal,ASTM ,1990,13(1):63-67.
    [45]Patricia M.Influence of colloidal sillica grout on liquefaction potential and cyclic undrained behavior of loose sand[J]. Soil Dynamics and Earthquake Engineering ,22 (2002):1017-1026.
    [46]Lars J.Munkholm,Per Schjonning,BevD.Kay.Tensile strength of soil cores in relation to aggregate strength,soil fragmentation and pore characteristics[J]. Soil & Tillage Research ,64(2002):125-135.
    [47]S.Y. Ibarra, E. McKye,R.S.Broughton. Tensile strength of soil cores in relation to aggregate strength,soil fragmentation and pore characteristics[J]. Soil & Tillage Research ,81 (2005):15-23.
    [48]M.T.Y?lmaz, O. Pekcan, B.S. Bak?r.Undrained cyclic shear and deformation behavior of silt–clay mixtures of Adapazar?, Turkey[J]. Soil Dynamics and Earthquake Engineering, 24 (2004):497-507.
    [49]J. Le′onard,G.Richard.Estimation of runoff critical shear stress for soil erosion from soil shear strength[J]. Catena ,57 (2004):233–249.
    [50]O.Seguel, R.Horn. Mechanical behavior of a volcanic ash soil (Typic Hapludand) under static and dynamic loading[J]. Science Direct ,82 (2005):109-116.
    [51]V.C.Xenaki,G.A.Athanasopoulos. Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam—Laboratory test results[J]. Soil Dynamics and Earthquake Engineering, 28 (2008):605-620.
    [52] Xian-zhang Ling,Zhan-yuan Zhu,Feng Zhang,Shi-jun Chen. Dynamic elastic modulus for frozen soil from the embankment on Beiluhe Basin along the Qinghai–Tibet Railway[J].Cold Regions Science and Technology, 57 (2009):7-12.
    [53]Chao-Sheng Tang,Bin Shi,Li-Zheng Zhao. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles and Geomembranes ,28(2009):54-62.
    [54]朱志铎,刘松玉,邵光辉,郝建新.粉土及其稳定土的三轴试验研究[J].岩土力学,2005,26(12):1967-1971.
    [55]施建勇,雷国辉,艾英钵,宋雄伟.土压力变化规律的应力路径三轴试验研究[J].岩土力学,2005,26(11):1700-1704.
    [56]陈立宏,陈祖煜,李广信.三轴试验抗剪强度指标线性回归方法的讨论[J].岩土力学,2005,26(11):1785-1789.
    [57]孙丽梅,刘垂远,何昌荣,陈群,刘黎.加筋土不同布筋方式的三轴试验研究[J].水电站设计,2005,21(2):60-63.
    [58]詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J].岩土工程学报,2006,28(2):196-201.
    [59]靳建军,张鸿儒.砂土液化特性MTS动三轴试验研究[J].北京交通大学学报,2006,30(4):60-63.
    [60]王汝恒,贾彬,邓安福,王皆伟.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报,2006,25(2):4059-4064.
    [61]刘保健,张晓荣,程海涛.应变控制下压实黄土的动三轴试验研究[J].岩土力学,2007,28(6):1073-1076.
    [62]郑晓,郭玺.超固结软粘土动力特性试验研究[J].路基工程,2008(3):45-47.
    [63]熊琼,阳军生,王亚辉.掺土煤矸石的动力特性试验研究[J].中外公路,2008,28(2):186-189.
    [64]贾敏才,王磊,周健.干砂强夯动力特性的细观颗粒流分析[J].岩土力学,2009,30(4):871-878.
    [65]赵莹莹,赵燕茹,李驰,韩金宝.纤维土的三轴试验研究[J].水力与建筑工程学报,2009,7(1):127-128.
    [66]曾国红,张卫平,白晓红,王梅,孙晋.灰土增强体复合土动力特性试验研究[J].太原理工大学学报,2009,40(2):156-158.
    [67]郑晓,刘胜群,海钧.振动频率对饱和软粘土动力特性影响试验研究[J].路基工程,2009(6):84-85.
    [68]曾国红,白晓红,张卫平,王梅.不同增强体粉土复合土动力特性试验研究[J].西安建筑科技大学学报,2009,41(5):637-642.
    [69]李志勇.公路路基动强度设计方法及其在全风化花岗岩路基中的应用研究[D].成都:西南交通大学,2005.
    [70]周健,白冰,徐健平.土动力学理论与计算[M].北京:中国建筑工业出版社,2001.
    [71]李成辉.轨道结构振动理论及应用研究[D].成都:西南交通大学,1996.
    [72]雷晓燕,陈水生.高速铁路轨道结构空间动力分析[J].铁道学报,2000,22(5):76-80.
    [73]邓学钧,黄晓明,沈伟新.弹性层状体系的动力响应分析[J].土木工程学报,1995,28(3):9-16.
    [74]张兴强,阎澎旺,邓卫东.交通荷载作用下加筋道路机理分析[J].岩土工程学报,2001,23(1):94-98.
    [75]候芸,郭忠印.动荷载作用下沥青路面结构的变形响应分析[J].中国公路学报,2002,15(3):6-10.
    [76]郝大力,王秉纲.路面结构动力响应分析[J].长安大学学报(自然科学版),2002,22(3):9-12.
    [77]Toshlkzau Hanazato.Three-dimensional analysis of traffic-induced ground vibration[J].J Geotech Eng ASCE,1991,117(8):1413-1434.
    [78]李军世,李克训.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [79]孙璐,邓学钧.车辆-路面相互作用产生的动荷载[J].东南大学学报,1996,26(5):143-145.
    [80]邓学钧.车辆-地面结构系统动力学研究[J].东南大学学报(自然科学版),2002,32(3):474-479.
    [81]Hyodo M,Yasuharak,Murata H.Deformation analysis of the soft clay foundation of low embankment road under traffic loading[C].Proceeding of the 31st Symposium of Japanese society of soil Mechanics and Foundation Engineering,1996:27-32.
    [82]卢正.交通荷载作用下公路结构动力响应及路基动强度设计方法研究[D].武汉:中国科学院研究生院,2009.
    [83]Hardy MSA,Cebon D.Importance of speed and frequency in flexible pavement response[J].Journal of Engineering Mechanics,1994,120(3):463-482.
    [84]黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998.
    [85]张艳美,梁波.几何不平顺条件下高速公路路基的动态响应[J].兰州铁道学院院报,2001,20(4):66-69.
    [86]于清,曹源文.不平整路面上的汽车动荷载[J].重庆交通学院学报,2003,22(4):32-34.
    [87]谢定义,张健民.极限平衡理论在饱和砂土失稳过程中的应用[J].土木工程学报,1981,14(4):17-28.
    [88]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    [89]徐芝纶.弹性力学(第三版)[M].北京:高等教育出版社,1998.
    [90]张旭东,战永亮,张艳美.纤维土强度特性的试验研究[J].路基工程,2001, 1:36-38.
    [91]介新玉,李广信.纤维加筋土计算方法的研究[J].土木工程学报,1999, 32(5): 51-55.
    [92]李广信,陈轮,郑继琴,等.纤维加筋粘性土的试验研究[J].水利学报, 1995,(6):31-36.
    [93]GB/T50123-1999,土工试验方法标准[S].
    [94]Horiuchi sumio, Kawaguchi Masato. Effective use of fly ash slurry as fill material[J]. Journal of Hazardous Materials, 2000(76):301-337.
    [95]Park Taesoon, Tan Siew Ann. Enhanced performance of reinforced soil walls by the inclusion of short fiber[J]. Geotextiles and Geomembranes,2005,23(4):348-361.
    [96]Prabakar J, Sridhar R S. Effect of random inclusion of sisal fiber on strength behaviour of soil[J]. Construction and Building Materials,2002,16(2):123-131.
    [97]李时亮,周全能.粉煤灰作为路堤填料的动力特性试验研究[J].岩土力学,2005,26(2):311-315.
    [98]孔令伟.固结比对石灰土动力特性的影响试验研究[J].岩土力学,2009,30(6),1590~1594.
    [99]栾茂田,聂影,郭莹等.大连饱和黏土动力特性研究[J].大连理工大学学报,2009,49(6)907-912.
    [100]陈昌富,刘怀星,李亚平.草根加筋土的室内三轴试验研究[J].岩土力学,2007,28(10),2041-2045.
    [101]胡伟,韩建刚.结构性饱和黄土动力特性试验研究[J].工程地质学报,2009,17(5),648-655.
    [102]李燕,史三元.动三轴试验分析饱和粉土的液化性[J].煤炭工程,2004,3,40-42.
    [103]杨燕,柏署,张军.加筋土的动三轴试验研究[J].路基工程,2009,5,178-179.
    [104]王猛,杨庆,聂影.非饱和黏土动力特性及等价黏弹性模型的试验研究[J].岩土力学,2009,30(4),926-931.
    [105]汪闻韶.土的动强度与液化特性[M].北京:中国电力出版社,1997.
    [106]张克绪,谢军雯.土动力学[M].北京:地震出版社,1997.
    [107]王杰贤.动力地基与液化特性[M].北京:科学出版社,2001.
    [108]唐朝生,施斌,高玮.聚丙烯纤维和水泥对粘性土强度的影响及机理研究[J].工程地质学报,2007,15(01):108-113.
    [109]尚守平,熊伟,杜运兴等.饱和场地土动力特性试验研究[J].岩土力学,2008,29(1):23-27.
    [110]施建勇,赖勇,雷国辉等.标准砂小应变特性的应力路径三轴试验研究[J].岩土力学,2007,28(4):717-722.
    [111]魏松,朱俊高,王俊杰,余湘娟.砂土的稳态强度固结不排水三轴试验研究[J].岩石力学与工程学报,2005,24(22):4151-4157.
    [112]张孟喜,闵兴.单层立体加筋砂土性状的三轴试验研究[J].岩土工程学报,2006,28(8):931-936.
    [113]杨雪辉,党进谦,蒋仓兰.非饱和重塑黄土的三轴试验研究[J].路基工程,2008,4:115-116.
    [114]张磊,苗强强,陈正汉,黄雪峰.重塑非饱和含粘砂土变形强度特性的三轴试验[J].后勤工程学院学报,2009,25(6):6-10.
    [115]谈云志.非饱和红粘土三轴试验研究[J].合肥工业大学学报(自然科学版)[J].2009,32(5):725-729.
    [116]陈可君,缪林昌,崔颖.不同干密度非饱和膨胀土的三轴试验研究[J].岩土力学,2005,26增:87-90.
    [117]谢婉丽,王家鼎,王亚玲.加筋黄土变形和强度特性的三轴试验研究[J].地球科学进展,2004,19增:333-338.
    [118]李晓云,赵宝平.基于GDS的非饱和土强度三轴试验研究[J].灾害与防治工程,2008,1:25-28.
    [119]方祥位,陈正汉,申春妮,孙树国,王权民.残积土特殊应力路径的三轴试验研究[J].岩土力学,2005,26(6):932-936.
    [120]赵秀绍,刁心宏,孙瑞民.郑东新区饱和粉土动三轴试验研究[J].路基工程,2009,6:44-45.
    [121]刘剑旗,王宁,赵易.不同含水量土工格栅加筋粘土三轴试验研究[J].建筑科学,2009,25(2):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700