用户名: 密码: 验证码:
结构性软土蠕变特性及扰动状态模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土在我国分布广泛,具有较差的工程特性,如灵敏度高、强度低、承载力低以及固结时间长、蠕变特性显著的特点。随着沿海地区大型工程的兴起,对软土工程的研究提出了更新更高的要求,软土的结构性、蠕变特性及力学模型的研究是其中突出而紧迫的问题。软土的蠕变特性是决定软土地基及其上部结构工后沉降和稳定性的重要因素,而软土特殊的结构性又使蠕变特性“复杂化”。因此,结构性软土蠕变特性以及本构模型的研究对正确描述结构性软土的工程性状具有重要的理论意义,对正确分析、评价软土地基变形和稳定性具有重要的现实意义。
     论文以黄石、漳州、青岛地区软土为研究对象,通过土力学和土质学有机结合的研究途径,对软土的结构性和蠕变特性的力学行为和物化组成、微观结构特征的测试,及相关性分析,从宏观力学表现与微观结构两个方面对结构性软土蠕变机理进行了探讨。基于扰动状态概念,建立反映软土蠕变特性的结构性模型,通过室内蠕变试验数据验证模型的可靠性,达到可靠预测软土地基的变形的目的。
     主要获得以下结论:
     1)系统分析了结构性对软土的固结特性、固结系数、次固结系数、应力—应变关系、孔隙水压力特性、强度包线、蠕变曲线、粘滞系数、非线性蠕变特性的影响。相对于非结构性土和结构性较弱的土,结构性软土表现出特殊的工程特性。如随着压力的增大次固结系数Ca出现峰值的现象正是结构性所引起的,通过Ca/Cc来估算Ca时必须考虑结构性的影响;结构性软土的粘滞系数随剪应力的增加达到峰值,且固结压力越大,峰值对应的剪应力也越大。
     2)根据重塑土还原后的压缩曲线和原状土的压缩曲线之间存在的一个结构强度区域,提出结构破损系数S的概念,该值获取简单,表示土体在压缩过程中结构破损的情况,可用来定量判别不同地区结构性土的结构强弱,由此分析得到结构性最强的为青岛软土、黄石软土次之、漳州软土最弱。
     3)在试验数据处理和结果表达方面获得了一些有意义的结论。对于非线性特性显著的软土蠕变试验数据应采用陈氏法处理;复杂度应作为衡量软土在蠕变过程中孔隙或颗粒形状规则程度的重要参数,它能较好反映微结构的轮廓形状,还可以衡量平均粒径与实际情况差距的大小;用雷达图表示定向频率分布,能同时对比很多组数据,还可设定数据标准圈便于观察分布强度。
     4)通过定性与定量的对比软土原状样与蠕变破坏后土样的电子显微镜照片,得到了蠕变条件下结构的变化规律,结果表明:软土主要以絮凝结构、骨架结构、蜂窝结构、团聚结构为主。在蠕变条件下,颗粒间以边对边、边对面为主的接触形式向以面对面为主的接触形式过渡,状态逐渐向重塑土的性状逼近;孔隙变化遵循孔隙匀化原理,即体积收缩过程中大孔隙减少多,小孔隙变化小,孔隙分布逐步均匀化;长条形孔隙与颗粒数量减少,等轴形孔隙与颗粒几乎不存在,整体上向扁圆形发展;颗粒与孔隙的趋于“圆滑”,且孔隙比颗粒复杂度减少幅度要大;颗粒的定向性趋向有序性发展。由于蠕变过程中软土微结构参数变化受蠕变试验方法影响较大,对不同蠕变试验方法得到的微观数据要综合分析,这样才能较真实的接近实际情况。
     5)根据蠕变机理的分析表明:结构性软土的蠕变过程可概括为内部结构不断改变自我调整再造以适应外力变化的过程。在这个过程中,软土主要经历了结构基本完整、结构大量破损、与重塑土土性相似的三个阶段。结构性软土具有蠕变特性的根本原因是软土在复杂的沉积环境下使颗粒与颗粒间形成边-边、边-面的接触,形成了絮凝、蜂窝、团聚、骨架等结构,颗粒表面的粘土矿物带有电荷,吸附大量的游离氧化物和阳离子,将颗粒通过胶结联结粘结起来,使软土具有一定的结构强度。软土普遍具有高含水率、大孔隙比、高粘粒含量的特点,同时含有大量的伊利石、蒙脱石、高岭石等粘土矿物,一些海相软土还含有大量有机质,软土的易溶盐含量也较高,这些因素使软土具有较大的吸水性,使孔隙中充满大量的结合水,使软土在外力作用下变形表现显著的时效性。
     6)基于扰动状态概念,将结构破损系数加以处理代替扰动函数,建立了软土的结构性蠕变模型。根据扰动函数在压缩过程中的直观表现,验证了该模型可以描述蠕变过程中结构性逐渐衰减的过程。通过对比Burgers体模型对试验数据的拟合结果,表明模型能较好地表现软土减速蠕变与稳定蠕变阶段,验证了模型的可靠性。
Soft clay distributes widely in China, has poor engineering properties such as high sensitivity, low strength and bearing capacity, consolidation for a long time and creep characteristics is remarkable. The rapid development of coastal areas huge-scale constructions presents us newer and higher tasks on engineering researches of soft clay, and the structural characteristics, creep characteristics and mechanical models of soft clay are the prominent and urgent ones up till now. The creep characteristics is an important factor that decides the settlement and stability of soft clay foundation and superstructure after construction, and the special structural characteristics of soft clay causes the creep characteristics―the complication‖. Therefore research on the creep characteristics of the structural soft soil and constitutive model has important theoretical significance for the correct description of the engineering properties of the soft soil, and have important practical significance for analyzing and evaluating soft clay ground deformation and stability.
     This paper was based on the soft clay in Huangshi and Zhangzhou and Qingdao areas, according the approaches that combined the soil mechanics and soil material, researched on soft clay structural characteristics, creep mechanics behavior, physical chemical composition, microscopic structure characteristics and their relationships, investigated the creep mechanism of the structural soft clay from two aspects which were macroscopic mechanics and microscopic structure. Through introducing the disturbed state concept to establish soft clay creep model, and verified the reliability of model through the creep test data fitting, for the purpose of forecasting reliably the foundation deformation of the soft clay, for the purpose of forecasting reliably the foundation deformation of the soft soil.
     The primary results and conclusions ware gained as following:
     1) Analyzed systematically the influence of the structural characteristic on solidifying characteristics, consolidation coefficient, secondary consolidation coefficient, stress-strain relations, pore-water pressure characteristics, strength envelope,viscosity coefficient,nonlinear creep characteristics and creep curves. Results showed that structural soft clay displayed special engineering characteristics relatived to non- structural soil and structural weak soil. Such as the phenomenon that the secondary consolidation coefficient Ca achieved peak value with the pressure increasing was caused by the structural characteristics, so estimating Ca through Ca /Cc must consider the influence of the soft clay structure; structural soft soil’s viscosity coefficient achieved peak value along with shear stress increasing, and the bigger peak value of consolidation pressure the bigger the shear stress.
     2)According the structural strength region between the compression curve of reconstituted soil and the compression curve of primary soil, proposed the concept of structural damage coefficient S, this parameter was gained simply which showed soil structural damage condition in the process of compression, could be used to distinguish quantitatively the structural strength of the different structural soils, by using this method obtained that the structure characteristics of QingDao soft clay was the strongest and the HuangShi soft clay was second and the ZhangZhou soft clay was weakest.
     3)Some meaningful conclusions about test data processing and result expression were obtained. Such as soft clay creep test datas that exhibited nonlinear characteristics should use Chen’s method; the complexity should be taken as the important parameters measuring soft soil pore or particle shapes during the creep, which not only could reflect microstructure outline shape, but also measure the size between the average size of the gap and the actual size; radar chart was used for showing directionality frequency distribution, that simultaneously contrast many group of datas, and it was advantageous of the observation on distributed intensity by setting the data standard ring.
     4)Researched on soft clay microstructure change rule in the pro and post creeping through qualitative and quantitative comparison of electron microscope photographs of the primary soil and the soil sample after the creep test. Results showed that soft clay mainly by flocculated structure, skeleton structure, honeycomb structure, aggregate structure. In the Condition of creep the particles contact forms transited the primarily form by side-to-side, side-to-face to the form by face-to-face, and the state was gradually approaching to the characteristics of reconstituted soil; micro-poor size changed fellow theory of homogenize which maropore reduced many and the fine pore changed was small,the pore distribution turned to be homogenization gradually in the volume compression process; the number of elongated pores and particles reduced, the equiaxed shape pore and particle were almost non-existent, on the whole the pore turned to be oblateness; the pore and particle outline was trended to be smooth, and the pore complexity reduced more bigger than the particle complexity reduction scope; particle’s directionality trended orderliness. Because in the process of soft clay creep the soft clay microstructure parameters influenced by the test method more, should analyze comprehensively the microscopic test datas by different methods, for approaching to the actual situation more realistically.
     5)By the creep mechanism the analysis showed that: the structural soft clay’s creep process could be summarized to the process that internal structure changed to be self-adjustment restoration in order to adapt the external force change. In this process, the soft soil experienced three stages which were structure basic complete, structure massive breakages, and reconstituted soil similar.The root cause of the soft clay creep characteristics was the soft clay formed the flocculated structure, skeleton structure, honeycomb structure, aggregate structure, which particles contacted form primarily by side-to-side,side-to-face. The clay mineral in the particle surface had electric charges, adsorbing massive free oxide and cationic, then bonding particles through the cemented joint, so that the soft clay had certain structural strength. Generally soft clay was characteristics that high moisture content large void ratio, high clay content, simultaneously soft soil contained massive clay minerals such as illite, montmorillonite and kaolinite, some marine clay also contained organic matter, and the soluble salt content is higher. These factors enabled soft soil to have the big water absorption, and holes were filled with massive bound waters, causing the soft soil showed remarkable timeliness by the external force.
     6)On base of the conception of disturbed state, replacing the disturbance function by the structural damage coefficient processed, established the creep model of the structural soft clay.According to the visual performance of disturbance function during the compression, confirmed that this model was possible to describe creep process that the structural characteristics weakened gradually. According to creep test data fitting by contrasting Burgers models the results showed that model can describe deceleration creep stage and steady creep stage well, verifying the reliability of the model.
引文
[1]张向东,英颖,于崇,等.土结构性研究进展[M].第九届全国岩石力学与工程学术大会论文集,北京,科学出版社,2006:63–69.
    [2] Bjerrum L.Embankment on soft ground[J].Performance of Earth Earthsupported Structures, 1972,VOI.2,Part.2.
    [3]宁树军,张树光.土的结构性对路基稳定的影响[J].沈阳大学学报,2002,14(4): 46–48.
    [4]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18(1): 95–97.
    [5]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6): 651–656.
    [6]张浩,软土蠕变固结性状及模型研究[D].长春,吉林大学建设工程硕士论文,2007.
    [7]王国欣,肖树芳.土结构性本构模型研究现状综述[J].工程地质学报,2006,14(05):620–626.
    [8]李涛,钱寿易.土样扰动影响的评价及其先期固结压力的确定[J].岩土工程学报,1987,9(5): 29–21.
    [9]王国欣,肖树芳,周旺高.原状结构性土先期固结压力及结构强度的确定[J].岩土工程学报, 2003,25(2):249–251.
    [10]王冠英,肖树芳,习春飞.海积软土前期固结压力与结构强度的关系及成因分析[J].世界地质, 2004,23(1):69–74.
    [11] Locat.J, Lefebvre.G. The compressibility and sensitivity of an artificially sedimented clay soil:the Grande Baleine marine clay[J]. Quebec. Marine Geotechnical,1985,6(1):1–27.
    [12] Burland J B.On the compressibility and shear strength of natural clays[J]. Geotechnique, 1990, 40(3): 329–378.
    [13]张诚厚.两种结构性土的土工特性[J].水利水运科学研究,1983, (4): 65–71.
    [14]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100–111.
    [15]龚晓南,熊传祥,项可祥.黏土结构性对其力学性质的影响及其形成原因分析[J].水利学报,2000, 44(10):43–47.
    [16] Cotecchia F,Chandler R J.A general framework for the mechanical behaviour of clays[J]. Geotechnique,2000,50(4): 431–447.
    [17]陈铁林,周成,沈珠江.结构性粘土压缩和剪切特性试验研究[J].岩土工程学报, 2004,26(1):31–35.
    [18] CHANDLER R J.Clay sediments in depositional basin:the geotechnical cycle quarterly[J]. Journal of engineering geology and hydrogeology,2000,33(1):7-39.
    [19]王年香,魏汝龙.沿海软粘土取土质量的对比分析[J].工程地质学报,1994,2(2):66–75.
    [20]王国欣.软土结构性及其扰动状态模型研究[D].长春:吉林大学建设工程学院.2003.
    [21]王冠英.不同地区海积软土前期固结压力与结构强度的关系及其成因分析[D].长春:吉林大学建设工程学院硕士论文.2003.
    [22]李又云,李哲,谢永利.一维固结理论中固结系数的试验分析[J].建筑科学与工程学报,2008,25(3): 102–106.
    [23] Soga, Kenichi, Mitchell,James K.Rate–dependent deformation of structured natural clays[C]. Geotechnical Measuring and Modeling Time Dependent Soil Behavior.Special Publication, 1996, 61: 243–257.
    [24]李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34–35.
    [25]雷华阳.海积软土结构性模型的试验研究及其在基坑开挖工程中的应用[D].吉林大学博士学位论文,2000.
    [26]刘维正,石名磊.长江漫滩相软土结构性特征及其工程效应分析[J].岩土力学,2010,31(2): 427-432.
    [27]谢宁,姚海明.土流变研究综述[J].云南工业大学学报,1999,15(1):52–56.
    [28]孙钧.岩土材料流变及工程应用[M].北京:建筑工业出版社,1999.
    [29]于新豹,刘松玉,缪林昌.连云港软土蠕变特性及其工程应用[J].岩土力学,2003,24(6): 1001–1006.
    [30]张芳枝,陈晓平,黄国怡.珠江三角洲饱和软粘土的固结特性试验研究[J].岩土力学, 2003,24(增刊): 192–194.
    [31]章定文,刘松玉,于新豹.连云港海相软土工程特性及处治方法探讨[J].工程地质学报, 2003, 11(03):250–257.
    [32]高彦斌,朱合华,叶观宝,等.饱和软粘土一维次压缩C0值的试验研究[J].岩土工程学报, 2004, 26(4):459–463.
    [33]师旭超,汪稔,张在喜.广西海相淤泥的次固结特性研究[J].岩土力学,2003,24(5):863–865.
    [34]周秋娟,陈晓平.软土蠕变特性试验研究[J].岩土工程学报,2006, 28(5): 626–630.
    [35]李建中,彭芳乐.黏土的蠕变特性试验研究[J].岩土力学,2006,27(2):214–278.
    [36]张先伟,王常明,王钢城,等,黄石淤泥质土的剪切蠕变特性及模型研究[J].吉林大学学报(地球科学版),2009,39(1):119–125.
    [37]陈晓平,朱鸿鹊,张芳枝,等.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005, 24(12): 2142–2148.
    [38]朱鸿鹄,陈晓平,程小俊,等.考虑排水条件的软土蠕变特性及模型研究[J].岩土力学,2006, 27(5): 694–698.
    [39]钱家欢,殷宗泽.土工原理与计算第2版[M].北京:水利电力出版社,1993.
    [40]何俊,肖树芳.结合水对海积软土流变性质的影响[J].吉林大学学报(地球科学版),2003, 33(2):204–2.
    [41] Talor D W, Merchant W. A Theory of Clay Consolidation Accounting for Secondary Compression[J]. Math Phys.1940,19(3):167.
    [42] Christe I F. A Re-appraisal of Merchant's Contribution to the Theory of Consolidation[J]. Geotechnique,1964,14(4).
    [43]村山朔郎,柴田彻著,石朝辉译.关于粘土的流变特性[M].南京:南京水利科学研究所.1956.
    [44] Folque J.Rheology Properties of compacted Unsaturated Soil[J].Proc.5th CSMEF,1961,1.
    [45]陈宗基.固结及时间效应的单维问题[J].土木工程学报,1958,5(1):1–10.
    [46]刘世明,曾国熙.软粘土的次固结变形特性[J].浙江大学学报,1990,24(6):840–847.
    [47]王盛源.饱和粘性土主固结与次固结变形分析[J].岩土工程学报,1992,14(5):70–73.
    [48]陈晓平,白世伟.软土蠕变-固结特性及计算模型研究[J].岩石力学与工程学报,2003,22(5): 728–734.
    [49]詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3): 54–62.
    [50] YIN J H, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J].Canadian Geotechnical J,1989,26: 199–209.
    [51] YIN J H, GRAHAM J. Elastic visco-plastic modelling of one-dimensional consolidation[J]. Geotechnique,1996,46(3):515–527.
    [52]汤岳飞,冯紫良,林翰等.软土工程中固结非线性流变祸合分析[J].建筑结构,2000, 30(11):47–50.
    [53]张超杰,陈云敏,王立忠.考虑软粘土结构性的一维弹粘塑固结分析[J].工业建筑,2002, 32(10): 45–48.
    [54]高彦斌.饱和软粘土一维非线性流变—固结耦合分析[J].岩土力学.2006,23(8):116–121.
    [55]朱向荣,潘秋元.超载卸除后地基变形的研究[J].浙江大学学报,1991,25(2):246–255.
    [56]赵维炳,施建勇.软土流变理论及其在排水预压加固分析中的应用[J].水利水电科技进展,1996,1 6(3):12–17.
    [57]房营光,层状饱和粘性土砂井路基的固结变形分析[J].土木工程学报,1997,30(5):49–56.
    [58]王建华,陈锦剑,裴捷.考虑固结与流变的层状粘弹性地基与上部结构的共同作用[J].建筑结构学报, 2002, 23(4):59–64.
    [59]张延军,张延诘.海积软土弹粘塑性Biot固结的数值分析[J].吉林大学学报(地球科学版), 2003, 33(1): 71–75.
    [60]栾茂田,崔春义,杨庆.考虑流变与固结效应的桩筏基础-地基共同作用分析[J].岩土力学, 2008,29(2):289–295.
    [61]胡瑞林.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995:3–13.
    [62] Casagrande.A.The structure of clay and its importance in foundation engineering[J].J.Boston Soc.Civ.Engris,1932,19(4):168–209.
    [63] Lambe,T W.The engineering behavior of compacted clay[J].SMFD,ASCE,Vol.84,SM2,1958.
    [64] Lambe,T W.The structure of compacted clay[J].SMFD,ASCE,Vol.84,SM2,1958.
    [65] Seed,H.B.and C.K..Structure and Strength characteristics of compacted clays[J]. SMFD,ASCE, Vol.85, No.SM5,1959.
    [66] Seed,H.B.,Mitchell,J.K.,Chen,C.K.The strength of compacted cohesive soils[J].Proceedings of ASCE Research Conference on Shear Strength of Choesive,1960.
    [67] Van Olphen,An introduction to clay colloid chemistry[M].1963.
    [68] Gillot,J.E.Study of the fabric of fine-grained sediments with the scanning electron microscope[J]. Journal of Sedimentary Petrology,1969,39(1):90–105.
    [69]陈宗基.Strueture mechanics of clay.Scientia Siniea[J].1959,(8):93–97.
    [70]常宝琦,黄土湿陷性的初步研究[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962.
    [71] Morgrnstern,N.R.,Tchalenko,J.S. Microscopic structure in kaolin subjected to direct shear[J]. Geotechnique, 1967,17(4):309–328.
    [72] Hideki Ohta,Toru Shibaya,An idealized model of soil structure[J]. Proceedings of the International Symposium on Soil structure,1973.
    [73] N.K. Tovey, Quantitative analysis of electron micrographs of soil microstructure[J]. Proceedings of the International Symposium on soil structure, 1973,50–58.
    [74] Yong,R.N.,Sheeran,D.E.Fabric unit interaction and soil behavior[C].Proceedings of the International Symposium on Soil Structrue,1973.
    [75] Mitchell,J.K.,Fundamental of Soil Bechavio[M].1976.
    [76] Sergeev.E.M.Engineering Geology[M].Moscow State Univ.Publ.House,Mos–cow,1979.
    [77]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39–34.
    [78]高国瑞.兰州黄上显微结构与湿陷机理探讨[J].兰州大学学报,1979(1):123–134.
    [79]谭罗荣.粘性土微结构定向性的X射线衍射研究[J].科学通报,1981,(4):236–239.
    [80]谭罗荣,张梅英.一种特殊土微观结构特性的研究[J].岩土工程学报,1982,4(2):26–35.
    [81] Y.X Wu,Quantitative approach on microstructure of engineering clay[C].6th Congress of IAEG, 1990, Amsterdam.
    [82]刘松玉,方磊.试论粘性土粒度分布的分形结构[J].工程勘察,1992,(2):1–4.
    [83]蒋明镜.结构性粘土的本构模型和土体逐渐破损分析[C].南京,水利科学研究院博士学位论文, 1996,5.
    [84]齐吉琳.土的结构性及其定量化参数的研究[D].西安理工大学,博士学位论文,1999.1.
    [85]胡再强.黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D].西安西安理工大学博士学位论文,2000.11.
    [86] Osipov V I, Nikolaeva S K, Sokalov V N. Microstructural changes associated with thixotropic phenomena in clay soils[J]. Geotechnique, 1984, 34(2): 293–303.
    [87] Bai X, Smart P. Change in microstructure of kaolin in consolidation and undrained shear[J]. Geotechnique,1997, 47(5): 1009–1017.
    [88] Liu.M.D, Carter.J.P.Virgin compression of structured soils[J]. Geotechnique,1999,49(1): 43–57.
    [89] Katti D R, ShanamugasundaramV. Evolution of microstructure during swelling in expansive clays[J]. Computer Methods and Advances in Geomechanics, 2001.533–537.
    [90] Dudoignon P, Pantet A, Carra L,et al. Macro–micro measurement of particle arrangement in sheared kaokinic matrices[J]. Geotechnique, 2001,51(6): 493–499.
    [91]李顺群,郑刚,崔春义,等.粘土微结构各向异性评估的谱系聚类方法[J].岩土工程学报,2010, 32(1):109-114.
    [92]王常明.海积软土微观结构定量化及固结模型研究[D].长春科技大学博士学位论文,1999.
    [93]齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报, 2000,20(2):6–26.
    [94]姚海林,刘少军,程昌炳.一种天然胶结土粘聚力的微观本质[J].岩石力学与工程学报, 2001,20(6): 871–874.
    [95]孔令伟,吕海波,汪稳,等.海口某海域软土工程特性的微观机制浅析[J].岩土力学, 2002,23(l): 36–41.
    [96]孔令伟,吕海波,汪稔,等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报, 2002,(9):82–88.
    [97] KongL.W,Lu H.B, Wang R &Guo A G.The influence of marine soil structure on foundation treatment[C].Proc.4rd International Conference on Ground Improvement Techniques, Malaysia, March 26–28,2002:89–97.
    [98] Bai X,Smart P.Leng X.Polarizing microphpto metric anlysis[J].Geotechanique,1994,44(4): 175–180.
    [99] Kuo C Y, Fost J D, A Chameau J L. Image analysis determination of stereology based fabric tensors[J].Geotechnique, 1998, 48(4): 515–525.
    [100]施斌.粘性土击实过程中微结构的定量评价[J].岩土工程学报,1996,18(4):57–62.
    [101]施斌.粘性土微观结构简易定量分析法[J].水文地质与工程地质.1997,1:7–10.
    [102]施斌,李生林,M.Tolkachev.粘性土微观结构SEM图象的定量研究[J].中国科学(A辑). 1995.
    [103]施斌,江洪涛.粘性土微观结构分析技术研究[J].岩石力学与工程学报,2001,20(6):864–870
    [104]王清.几种粘性土的微观结构特征及变形与强度的时效研究[D].吉林:长春科技大学博士学位论文,1997.
    [105]王清,王凤艳,肖树芳.土微结构特征的定量研究及其在工程中的应用[J].成都理工学院学报, 2001, 28(4):148–153.
    [106]吴紫汪,马巍,蒲毅彬,等.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,19(3): 1–6.
    [107]施斌,姜洪涛.在外力作用下土体内部裂隙发育过程的CT研究[J].岩土工程学报, 2000,22(5): 537–541.
    [108]蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000, 22(1): 49–54.
    [109]李晓军,张登良.路基填土单轴受压细观结构CT监测分析[J].岩土工程学报,2000,22(2): 205–209.
    [110] LI Xiao-jun,WANG Zhi-ren,YIN jing-ze.CT discriminationof fabric change of unsaturated compacted loess during compression process[J].Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1):107–111.
    [111]陈正汉,卢再华.蒲毅彬.非饱和土三轴仪的CT机配套及其应用[J].岩土工程学报, 2001,23(4): 387–392.
    [112]汤连生,廖化荣,张庆华.土的结构熵及结构性定量化探讨[J].岩石力学与工程学报, 2006,25(10): 1997–2001.
    [113]王宝军,施斌,刘志彬,等.基于GIS的黏性土微观结构的分形研究[J].岩土工程学报, 2004,26(2): 244–247.
    [114]王宝军,施斌,蔡奕,等.基于GIS的黏性土SEM图像三维可视化与孔隙度计算[J].岩土力学, 2008, 29(1):251–255.
    [115] A Anandarajah, N Kuganenthira. Some aspects of fabric anisotropy of soil[J]. Geotechnique,1995, 45(1): 69–81.
    [116] Anandarajah A. On influence of fabric anisotropy on the stress–strain behaviour of clays[J]. Computer and Geotechnics, 2000,27(1):1–17.
    [117] Papadimitriou A G, Bouckovalas G D. Modeling sand fabric evolution during cyclic loading [C]. Proceedings of the Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering. Lisse:Balkema, 2001.235–238.
    [118] Latham J P, Y Liu, Munjiza A. A random method for simulating loose packs of angular particles using retrahedra[J]. Geotechnique, 2001,51(10):871–879.
    [119] Haynie C, Frantziskonis G.Multiscale material characterization and application to artificially created microstructure[J].Computer Methods and Advances in Geomechanies,2001.529–532.
    [120] H.Bock,P.Blumling&H.Konietzky,Study of the micro–mechanical behavior of the Opalinus Clay:an example of co-operation across the ground engineering disciplines[J].Bull Eng Geo Env,2006, 65:195–207.
    [121] ZHOU Jian, SU Yan, CHI Yong.Simulation of soil properties by particle flow code[J]. Chinese Journal of Geotechnical Engineering.2006,28(3):390–396.
    [122]周健,王家全,孔祥利,等.砂土颗粒与土工合成材料接触界面细观研究[J],岩土工程学报,2010, 32(1):61-67.
    [123] Moore C A,Donaldson C F.Quantifying soil microstructure using fractals[J].Geotechique, 1995,45: 105–116.
    [124]刘松玉,方磊.我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,5(1):23–30.
    [125]刘松玉,张继文.土中孔隙分布的分形特征研究[J].东南大学学报(自然科学版),1997,27(3): 127–130.
    [126]李向全,胡瑞林,张莉.软土固结过程中的微结构变化特征[J].地学前缘, 2000, 7(1): 147–152.
    [127]王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,22(4)496–498.
    [128]胡瑞林,官国琳,李向全,等.黄土湿陷性的微结构效应[J].工程地质学报.1999,7(2):161–167.
    [129]徐永福,孙婉莹,吴正根.我国膨胀土的分形结构的研究[J].河海大学学报.1997, 25(1):18–23.
    [130]柳艳华,张宏,杜东菊.多重分形在海积软土微观结构研究中的应用[J].水文地质工程地质,2006, (3):89–93.
    [131]刘娉慧.结构性软土增量扰动状态模型的建立及其在基坑变形分析中的应用[D].长春:吉林大学建设工程学院博士论文.2005.
    [132] Singh A,Mitchell J K.General Stress–strain–time Function for Soils[J].Journal of the Soil Mechanics and Foundations division,ASCE,1968,94(SM1):21–46.
    [133]李军世,林咏梅.上海淤泥质粉质粘土的Singh-Mitchell蠕变模型[J].岩土力学,2000,21(4): 363–366.
    [134]王彬,王常明,张先伟,等.漳州软土蠕变特性的试验研究[J].工程地质学报(增刊),2008,16: 645–649.
    [135] Mesri G.Rebres-Cordero E, Shields D R,et al.Shear Stress-strain-time Behaviour of Clays[J]. Geotechnique,1981,31(4):537–552.
    [136]李军世,孙钧.上海淤泥质黏土的Mesri蠕变模型[J].土木工程学报, 2001, 34(6): 74–79.
    [137] F Tavenas,S Leroueil,P.La Rochelle et al..Creep behavior of an undisturbed lightly overconsolidated clay[J]. Candian Geotechniacal Journal, 1978,15:402–423.
    [138] Silva A J,Moran K,Akers S A.Stress-strain-time behavior of deep sea clays[J].Candian Geotechniacal Journal, 1983,20:517–531.
    [139] W M Tian,A J Silva,G E Veyera et al.Drained creep of undisturbed cohesive marine sediments[J]. Candian Geotechniacal Journal,1994,31:841–855.
    [140] H D Lin,C C Wang.Stress-strain-time function of clay[J].Journal of Geotechnical and Geoenvironmengtal Engineering.1998,124(4):289–296.
    [141] Vaid Y P,Campanella R G.Time-dependent behavior of undisturbed clay[J].J.Geotech. Engrg.Div., ASCE,1998,103(7):693–709.
    [142] J G Zhu,J H Yin.Drained creep behavior of soft Hong Kong Marine deposits[J]. Geotechnique,2001, 51(5):471–474.
    [143]王琛,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报, 2004, 39 (1):15–19.
    [144]王琛,张永丽,刘浩吾.三峡泄滩滑坡滑动带土的改进Singh-Mitchell蠕变方程[J].岩土力学,2005, 26(3):415–418.
    [145]卢萍珍,曾静,盛谦.软黏土蠕变试验及其经验模型研究[J].岩土力学,2008,29(4): 1041–1044.
    [146]谢宁,孙钧.上海地区饱和软粘土流变特性[J].同济大学学报.1996,24(3):233–237.
    [147]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001, 20(6):772–229.
    [148]谢宁.软土非线性流变的理论,试验和应用研究[D].上海:同济大学博士学位论文,1993.
    [149]郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1–13.
    [150]郑榕明.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1–13.
    [151] Perzyna P.Fundamental problems in visco-plasticity[C].In: Recent Advances in Applied Mechanics[C].New York:Academic Press,1966.
    [152] Sekiguchi H.Theory of undrained creep rupture of normally consolidated clay based on elasto–viscoplasticity[J].Clays and Foundation .l985.24(l):129–147.
    [153] Borja R I,Kavazanjian Jr E.A constitutive model for the stress-strain-time behavior of wet clays[J]. Geotechnique,1985,35:283–298.
    [154] Vermeer P A,Stolle D F E,Bonnier P G. From the classical theory of secondary compression to modern creep analysis[J].proc. 9th Int. Conf. Comp. Meth. And Adv[A].Geomech.Wuhan,China,1998,4(SPP): 2469–2478.
    [155]廖红建,俞茂红.粘性土的弹粘塑性本构方程及其应用[J].岩土工程学报, 1998,20(2):41–44.
    [156]袁静,龚晓南,刘兴旺,等.软土各向异性三屈服面流变模型[J].岩土工程学报, 2004,26(l):85–94.
    [157] Mosleh A AL-S,Stern S. A time-dependent bounding surface model for anisotropic cohesive soils[J].Soils and foundations,1998,38(1):61–76.
    [158]何开胜,沈珠江.结构性粘土的弹粘塑损伤模型[J].水利水运工程学报,2002,4:7–13.
    [159]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报,2003,31(2):161–165.
    [160]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000:1–6.
    [161]郑智能,刘元雪,张永兴.考虑结构性的土体本构模型的建模方法[J].重庆交通学院学报.2006. 25(3):77–80.
    [162]王常明,肖树芳,夏玉斌.海积软土固结变形的结构性模型研究[J].长春科技大学学报, 1999, 31(4): 363–367.
    [163]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4): 383–387.
    [164]刘勇军,朱岳明,等.随机土体结构模型理论及应用[J].岩土工程学报,2001,23(3): 354–357.
    [165]徐永福,刘斯宏,董平.粒状土体的结构模型[J].岩土力学,2001, 22(4): 366–372.
    [166]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35–41.
    [167]雷华阳.结构性海积软土的弹塑性研究[J].岩土力学, 2002,23(6):721–724.
    [168]饶为国,赵成刚,王哲.一个可考虑结构性影响的土体本构模型[J].固体力学学报,2002,23(1): 34–39.
    [169]房后国,海积软土固结过程中结合水的行为[D].长春:吉林大学建设工程学院硕士论文, 2001.
    [170]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3): 21–28.
    [171]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993,(3): 247–255.
    [172]沈珠江.土体变形特性的损伤力学模型[C].第五界全国岩土力学分析与解析方法讨论会论文集, 1994:1–8.
    [173]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1–4.
    [174]施建勇,赵维炳.考虑损伤的软土地基变形分析[J].岩土工程学报,1998,20(2):2–5.
    [175]孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学,1999,20(3):7–12.
    [176]陈铁林.结构性粘土本构模型与参数测定研究[D].南京水利科学研究院博士论文,2001.
    [177]何开胜.结构性粘土的微观变形机理和弹粘塑损伤模型研究[D].南京水利科学研究院博士论文, 2001.
    [178] Desai.C.S.A consistent finite element technique for work softening behavior[C]. Proc.Int.Conf.On Computer Methods in Nonlinear Mechanics,University of Texas,Austin,TX,1974.
    [179] Desai C S,Ma Y. Modeling of joints and interfaces using the disturbed state concept[J]. International Journal for Numberical and Analytical Methods in Geomechanics,1992,16: 623–653.
    [180] Desai C S,Toth J. Disturbed state model for porous saturated materials[J].International Journal of Geomechnics, 2003,3(2):260–265.
    [181] Katti D R,Desai C S. Modeling and testing of cohesive soil using disturbed state concept[J]. Journal of Engineering Mechanics,1995,121(5):648–657.
    [182] Desai C S,Park I,Shao C M. Fundamental yet simplified model for liquefaction instability[C]. International Journal for Numberical and Analytical Methods in Geomechanics,1998,22(9): 721–748.
    [183] Desai C S.Wang Z.Disturbed state model for porous saturated meterials[J].International Journal of Geomechnics, 2003,3(2):260–265.
    [184] Samieh A M, Wong R C K.Modelling the responses of Athabasca oil sand in triaxial compression tests in low pressure[J]. Canadian Geotechnical Journal,1998,35(2):395–406.
    [185] Pal S, Wathugala G W.Disturbed state model for sand-geosynthetic interfaces and application to pull-out tests[C]. International Journal for Numberical and Analytical Methods in Geomechanics ,1999,23(15):1873–1892.
    [186] Shao C,Desai C S.Implementation of DSC model and application for analysis of field pile tests under cyclic loading[J]. International Journal for Numberical and Analytical Methods in Geomechanics, 2000,24:601–624.
    [187] Cai Y X,Gould P L,Desai C S.Nonlinear analysis of 3D seismic interaction of soil-pile-stucture systems and application[J]. Engineering Structures,2000,22:191–199.
    [188] Varadarajan A,Sharma K G,Desai CS,et al. Constitute odeling of a schistose rock in the Himalaya [J].International Jouranl of Geomechanics.2001,1(1):83–107.
    [189] Varadarajan A,Sharma K G.Testing and modeling of two rockfill materials[J].Journal of Geotechnical and Geoenvironmental Engineering.2003,129(3)206–218.
    [190]王国欣,肖树芳,黄宏伟,等.基于扰动状态概念的结构性黏土本构模型研究[J].固体力学学报,2004, 25(2):191–197.
    [191]张成杰.软土扰动状态模型及验证[D].吉林大学硕士论文,中国长春,2005.
    [192]陈锦剑,吴刚,王建华,等.基于扰动状态概念模型的饱和软粘土力学特性[J].上海交通大学学报, 2004,38(6):952–955.
    [193]吴刚,张磊.单轴压缩下岩石破坏后区的扰动状态概念分析[J].岩石力学与工程学报,2004,23(10): 1628–1634.
    [194]周成,沈珠江,陈生水,等.结构性土的次塑性扰动状态模型[J].岩土工程学报,2004,26(4):435–439.
    [195]刘娉慧.结构性软土增量扰动状态模型的建立及其在基坑变形[D].长春:吉林大学博士论文, 2005.
    [196]付艳斌.考虑卸载扰动状态的3D弹粘塑性本构模型及其应用[D].上海:同济大学博士论文,2007.
    [197]迟世春,相彪.基于损伤扰动的土体本构关系研究[J].世界地震工程,2007,23(2):139–144.
    [198]郑建业,葛修润,孙红.考虑试样特殊区的扰动状态理论合理性细观分析[J].岩土工程学报. 2008,30(2):263–267.
    [199]郑建业,吴安利.基于扰动状态理论的Biot固结有限元分析[J].岩石力学与工程学报(增刊),2008, 27(1) :2978–2983.
    [200]郑建业,葛修润,孙红.基于扰动状态理论的大理岩三轴受压响应描述[J].上海交通大学学报,2008, 42(6) :949–952.
    [201]肖树芳,雷华阳,房后国,等.近代海积软土结构性及弹–塑性模型研究[J].工程地质学报,2000,8(4): 394–399.
    [202]付裕峰,李芳.对武汉地区软弱地基处理方法的探讨[J].土工基础,2002,16(1):42–45.
    [203]何俊.杭州与汉口地区软土结构及蠕变特性研究[D].长春:吉林大学建设工程学院硕士论文.2001.
    [204]阎世骏,王秀艳,傅崇远.闽南软土的环境工程地质特征[J].中国地质科学院,水文地质工程地质研究所所刊.1991.7:49–63.
    [205]单红仙,贾永刚.青岛第四纪沉积物工程地质研究[J].土工勘察,1997,5:19–21.
    [206]洪文霞,于英乐.青岛开发区地基工程地质特性与处理对策[J].西部探矿工程,2003, 87(8):54–57.
    [207]刘用海.宁波软土工程特性及其本构模型应用研究[D].杭州:浙江大学建筑工程学院博士论文.2008.
    [208]古兴伟.昆明南市区软土物理力学参数相关性分析与模拟[D].昆明:昆明理工大学硕士论文,2005.
    [209]巩立亮.辽宁海岸带软土发育规律及土力学模型的研究[D].长春:吉林大学建设工程学院硕士论文. 2009.
    [210]林琛.福州市区软土基本性质的研究[J].福建地质,2000,19(3):175–180.
    [211]王旭东.海积软土结构性剑桥模型的试验研究及其验证分析[D].长春:吉林大学建设工程学院博士论文.2002.
    [212]雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报,2002,10(4):385–389.
    [213]地矿部土工试验规程(DT-92)[M].北京:地质出版社.1984.
    [214]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社,1984.
    [215]软土地区工程地质勘察规范(JGJ 83-91) [M]..北京:中国建筑科学研究院.1992.
    [216]林宗元.岩土工程试验监测手册[M].沈阳:辽宁科学技术出版社,1994.
    [217]谢宁.土流变试验设计及其有关问题研究[J].1994,10(4):76–82.
    [218]邓志彬.软粘土蠕变试验与本构模型辨识方法研究及应用[M].长沙,中南大学博士论文, 2007.
    [219]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [220]卢萍珍,曾静,盛谦.软黏土蠕变试验及其经验模型研究[J].岩土力学,2008,29(4): 1041–1044.
    [221]李鹏,刘建,朱杰兵,等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,2 9(7): 1865–1871.
    [222]汪亦显,曹平,赵延林,等.软粘土流变实验研究及工程应用[C].第十届全国岩石力学与工程学术大会论文集:39–44.
    [223]王祥秋,周治国.地基土蠕变试验与时间效应分析[J].路基工程,2007,1:30–32.
    [224]柯结伟,樊军,庞有师,等,堆载预压室内三轴蠕变试验研究[J].重庆交通大学学报(自然科学版),2008, 27(4):601–605.
    [225]谷任国,房营光.有机质和黏土矿物对软土流变性质影响的对比试验研究[J].华南理工大学学报(自然科学版),2008,36(10):31–36.
    [226]陈晶晶,王世梅.清江古树包滑坡滑带土的Mesri蠕变模型[J].灾害与防治工程,2004,2: 45–50.
    [227]张云,薛禹群,吴吉春,等.上海砂土蠕变变形特征的试验研究[J].岩土力学,2009,30(5): 1226–1236.
    [228]李丽华,王钊,唐建设.时温叠加法确定土工合成材料蠕变折减系数[J].岩土力学,2005, 26(1): 113–116.
    [229]朱宝龙,胡厚田,姚勇.类软土单轴剪切蠕变特性研究[J].西南科技大学学报,2006, 21(2):1–6.
    [230]陈铁林,陈生水,周成,等.粘土的流变特性分析[J].岩土工程学报,2001,23(3):279–283.
    [231]熊传祥.软土结构性与软土地基损伤数值模拟[D].杭州:浙江大学博士学位论文,2000.
    [232]唐大雄,工程岩土学[M].北京:地质出版社,1990.
    [233]土工试验方法标准(GB/T 50123–1999) [M].中华人民共和国水利部,1999.
    [234]黄文熙.土的工程性质[M].北京:中国水利电力出版社,1983:130–131.
    [235] M.S.Dias Junior,F.J.Pierce. A simple procedure for estimating preconsolidation pressure from soil compression curves[J]. Soil Technology,1995,(8):139–151.
    [236]三木五三郎.日本土工试验法[M].北京:中国铁道出版社,1985.
    [237] Janbu n,Senneset k.Interpretation procedures for obtaining soil deformation parameters[C]. Proceedings of 7th ECSMFE,vol.1,1997.
    [238]邹越强,王建斌,邵孟新.推求先期固结压力的逐步逼近法[J].岩土工程学报,1994,16(3): 54–61.
    [239]邓文贵.采用还原法确定软土的扰动指数先期固结压力和现场压缩曲线[J].福建建筑(增刊),2000, 70:102–104.
    [240]宰金珉,梅国雄.全过程的沉降量预测方法研究[J].岩土力学,2000,21(4):322–325.
    [241]梅国雄,宰金珉,赵维炳,殷建华.地基沉降—时间曲线型态的证明及其应用[J].土木工程学报, 2005,38(6):69–72.
    [242]黄文熙等.土的工程性质[M].北京:水利水电出版社,1983.
    [243]蔡羽,孔令伟,郭爱国,等.剪应变率对湛江强结构性黏土力学性状的影响[J].岩土力学,2006,27(8): 1235–1240.
    [244] Tavenas, Leroueil. Effects of stresses and time on yielding of clays [C]. Proc. of 9th ICSMFE. Tokyo, 1977:319–326.
    [245] Yong R N, Nagaraj T S. Investigation of Fabric and Compresibility of a Sensitive Clay [C]. Proc. International Symposium on soft clay. Asia Insitute of Technology, bangkok, 1977: 327–333.
    [246]夏银飞.软粘土的结构性及模型研究[D].武汉:武汉理工大学博士论文,2007.
    [247]李文平.饱和粘性土高压密实过程中孔压及体应变变化试验研究[J].岩土工程学报,1999,21(6): 666–669.
    [248]王铁儒,陈龙珠,李明逵.正常固结饱和软粘土孔隙水压力性状的研究[J].岩土工程学报,1987,9(4): 23–32.
    [249]蒋明镜,沈珠江,本乡隆夫,等.大深度天然土的孔隙水压力系数[C].中国土木工程学会第八届土力学及岩土工程学术会议论文集,1999:93–96.
    [250]邓国华,邵生俊,高虎艳.土的综合结构势及结构性参数研究进展[J].岩土力学,2009,30(2)Supp.2: 178-174.
    [251]张超杰,王立忠,陈云敏,等.结构性扰动土一维固结行为的定量分析[J].江南大学学报,2006,5(6): 715–720.
    [252]胡中雄.土力学与环境土工学[M].上海:同济大学出版社,1997.172–175.
    [253]周秋娟,陈晓平,赖震环,等.软土非线性流变特性的试验研究及成果分析[J].暨南大学学报(自然科学版),2006,27(1):75–80.
    [254]但汉波.天然软粘土流变特性[D].杭州:浙江大学建筑工程学院博士论文.2009.
    [255]严绍军,项伟,唐辉明,等.大岩淌滑坡滑带土蠕变性质研究[J].岩土力学,2008,29(1):58-68.
    [256]侍倩.软土长期剪切模量的分析与研究[J].土工基础,2003, 17(1):34-36.
    [257]舒芝琴,周宏文.上海浅层土的单剪流变特性[J].岩土力学, 1982, 3(1): 55–4.
    [258]汤斌,软土固结蠕变耦合特性的试验研究与理论分析[D].武汉:武汉大学土木建筑工程学院.2004.
    [259]齐吉琳,谢定义,石玉成.土结构性的研究方法及现状[J].西北地震报,2001,23(1):99–103.
    [260]胡瑞林,王思敬,李向全.21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999, (4):5–8.
    [261]张敏江,张丽萍.结构性软土微观结构参数及结构性蠕变模型[J].沈阳建筑大学学报(自然科学版), 2006,22(2),177–180.
    [262]滕军林,熊传详.基于土结构性的软土流变试验研究[J].长沙大学学报,2007,21(5),50–53.
    [263]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报(自然科学版),2003,31(2), 161–165.
    [264] Gillott J E.Importance of specimen preparation in microscopy[J].Soil preparation for laboratory testing ,ASTM,Special technical publication,1976,599,289–307.
    [265]袁中夏,王兰民,邓津.电镜图像在黄土结构性研究中应用的几个问题[J].2005,4(2),1–4.
    [266]王常明,肖树芳.海积软土微观结构定量化分析指标体系及应用[J].长春科技大学学报, 1999, 29(增刊):144–147.
    [267]张季如,祝杰,黄丽,等.土壤微观结构定量分析的IPP图像技术研究[J].武汉理工大学学报, 2008, 30(4):80–83.
    [268]毛灵涛,薛茹,安里千. MARLAB在微观结构SEM图像定量分析中的应用[J].电子显微学报,2004, 23(5):579–583.
    [269]王改莲,吴翠微,董建新,等.计算机图像处理软件在SEM图像定量测定中的应用[J].电子显微学报, 2000,20(4):279–282.
    [270]郝振纯,冯杰,罗健.2种土体大孔隙分布比较[J].水文地质工程地质,2001,29(2):1–5.
    [271]梁双华,孙如华,李文平.基于Mapinfo和PhotoShop的粘性土扫描图像处理[J].河南科技大学学报(自然科学版),2005,26(1):55–58.
    [272]吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,第23期, 143–151.
    [273]施斌,李立,姜洪涛,等.DIPIX图像处理系统在土体微结构定量研究中的应用[J].南京大学学报, 1996,32(2):275–280.
    [274] Image–Pro? Plus v 6.0 (For Windows)快速入门指南[M].美国: Media Cybernetics公司, 2003.
    [275]唐朝生,施斌,王宝军.基于SEM土体微观结构研究中的影响因素分析[J].岩土工程学报,2008, 30(4),560–565.
    [276]王常明.海积软土微观结构定量化及固结模型研究[D].长春科技大学博士学位论文, 1999.
    [277]高国瑞.近代土质学[M].南京,东南大学出版社,1990.
    [278]李德福,周翠英,谭祥韶.基于软土微观结构研究的固结及沉降分析[C].第六届全国岩石力学与工程学术大会论文集,2000:177–180.
    [279]肖树芳.泥化夹层蠕变全过程的模型及微结构的变化[J],岩石力学与工程学报, 1987,6(2); 113–124.
    [280]谷任国,房营光.有机质和黏土矿物对软土流变性质影响的对比试验研究[J],华南理工大学学报(自然科学版),2008,36(10):31–36.
    [281]吴芝兰,曲永新.微团聚体分析在工程地质研究中的应用[J].工程地质学报,1997, 5(3):282–288.
    [282]杨洋,姚海林,陈守义.广西膨胀土的孔隙结构特征[J].岩土力学,2006.27(1):155–158.
    [283]维亚洛夫С.С.土力学的流变原理[M].北京,科学出版社.1987.
    [284]雷华阳.饱和软黏土固结变形的微结构效应[J].水利学报,2004,04:91–95.
    [285]周宇泉,胡昕,洪宝宁,等.从微细结构方面解释某黏性土压缩特性的差异[J].水利水电科技进展. 2006,26(1):31–36.
    [286]张季如,祝杰,黄丽,等.固结条件下软黏土微观孔隙结构的演化及其分形描述[J].水利学报,2008, 39(4);394–400.
    [287]房后国,刘娉慧,袁志刚.海积软土固结过程中微观结构变化特征分析[J].水文地质工程地质.2007, 2:49–56.
    [288]孟庆山,杨超,许孝祖,等.动力排水固结前后软土微观结构分析[J]岩土力学,2008,29(7): 1759–1763.
    [289] Vaughan P R,Maccarini M,Mokhtar S M.Indexing the engineering properties of residual soil. Quarterly Journal of Engineering Geology,1988.21:p.69–84.
    [290]钱鸿缙,王继堂,罗宇生,等.湿陷性黄土地基[M].北京:建筑工业出版社,1985,42–43.
    [291]周翠英,牟春梅.软土破裂面的微观结构特征与强度的关系[J].岩土工程学报,2005,27(10): 1136–1141.
    [292]李向全,胡瑞林,张莉.软土固结过程中的微结构变化特征[J].地学前缘(中国地质大学,北京),2000, 7(1):147–152.
    [293]赵安平,王清,李杨,等.长春季冻区路基土微观孔隙特征的定量评价[J].工程地质学报, 2008, 16(2):233–238.
    [294]朱鸿鹄.软土固结-蠕变耦合效应的试验研究及有限元分析[J].广州,暨南大学硕士学位论文. 2005.
    [295]侍倩.饱和软粘土蠕变特性试验研究[J].土工基础,1998,12(3):40–44.
    [296]曾庆国,张春顺,肖宏彬.南宁膨胀土的次固结特性试验研究[J].公路工程,2008(2):10–13.
    [297]张敏江,姚敏,邱欣,等.辽南海积软土流变本构模型的研究[J].沈阳建筑工程学院学报(自然科学版),2003,19(4):260–263.
    [298]韩爱果,聂德新,任光明,等.大型滑坡滑带土剪切流变特性研究[J].工程地质学报, 2001,9(4): 345–348.
    [299]陈晓平,朱鸿鹄,周秋娟.修正广义Kelvin蠕变固结模型研究[J].岩石力学与工程学报(增刊). 2006,25:3428–3436.
    [300]殷宗泽,张海波,朱俊高,等.软土的次固结[J].岩土工程学报,2003,25(3):521–526.
    [301]廖红建,苏立君,白子博明,等.次固结沉降对压缩时间曲线的影响研究[J].岩土力学,2002, 23(5):536–540.
    [302]李国维,盛维高,蒋华忠,等.超载卸荷后再压缩软土的次压缩特征及变形计算[J].岩土工程学报, 2009, 31(1):118–123.
    [303]张军辉,缪林昌,黄晓明.连云港软黏土次固结变形研究[J].水利学报,2005,36(1):116–119.
    [304]缪林昌,张军辉,陈艺南.江苏海相软土压缩特性试验研究[J].岩土工程学报,2007,29(11): 1711–1714.
    [305] Bjerrum L.Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings[J].Geotechnique,1967,17(2):83–118.
    [306] Crawford C B. State of the art:evaluation and interpretation of soil consolidation tests[C]. Yong R N,Townsend F C,eds.Consolidation of Soils:Testing and Evaluation.Amercian Society for Testing and Materials,1986:71–103.
    [307]赵维炳,施健勇.软土固结与流变[M].南京:河海大学出版社,1996,338–339.
    [308]周秋娟,陈晓平.软土次固结特性试验研究[M].岩土力学,2006,27(3):404–408.
    [309]徐珊,陈有亮,赵重兴.单向压缩状态下上海地区软土的蠕变变形与次固结特性研究[J].工程地质学报,2008,16(4):495–501.
    [310]冯志刚,朱俊高.软土次固结变形特性试验研究[J].水利学报,2009,5:583–588.
    [311]余湘娟,殷宗泽,董卫军.荷载对软土次固结影响的试验研究[J].岩土工程报,2007,29(6): 913–916.
    [312]侯晓亮,赵晓豹,李晓昭.南京河西地区软土次固结特性试验研究[J].地下空间与工程学报,2009, 5:888–892.
    [313]邵光辉,刘松玉.海相结构软土的次固结研究[J].岩土力学,2008,29(8):2057–2062.
    [314]陈晓平,曾玲玲,吕晶,等.结构性软土力学特性试验研究[J].岩土力学,20088,29(12): 3223–3228.
    [315]殷宗泽,张海波,朱俊高,等.软土的次固结[J].岩土工程学报,2003,25(5):521–526.
    [316] Hanzawa H,Adachi K. Overconsolidation of alluvial clay[J].Soils and Foundations,1983, 23(4): 106–118.
    [317]刘元雪,王培勇,王良.粘土的结构性与超固结[J].后勤工程学院学报,2005,4:1–6.
    [318]常青.软土次固结变形特性及影响因素的试验研究[J].南京,河海大学硕士论文,2006.
    [319] BRENDAN C. O’KELLY. Compression and consolidation anisotropy of some soft soils[J]. Geotechnical and Geological Engineering,2006, 24:1715–1728.
    [320] Walker L.Undrained creep in a sensitive clay[J].Geotechnique,1969,19(4):515–529.
    [321] Mesri G, Godlewdki P M.Time and stress compressibility interrelationship[J].Geotechnical Engineering Division,ASCE,1977,103(5):417–429.
    [322]滕军林.基于土结构性的软土流变特性研究[D].福州:福州大学环境与资源学院硕士论文,2005.
    [323]刘晶辉,王山长,杨洪海.软弱夹层流变试验长期强度确定方法[J].勘察科学技术.1996,5: 3–7.
    [324]董卫军.软土流变特性室内试验研究及长期强度的确定[D].南京:河海大学土木工程学院硕士论文,2007.
    [325]王在泉,泥化夹层长期强度的灰色预测[J].金属矿山.1998,2:16–20.
    [326]《水利水电工程岩石试验规程》(SL264-2001)[S].北京,中国水利水电出版社,2001: 90–91.
    [327]王在泉,余锋,陆文兴.软弱夹层的流变模型及长期强度研究[C].中国岩石力学与工程学会第三次大会论文集.1994:160–165.
    [328]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社.1993.
    [329]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学,2004,19(2):178–182.
    [330]陈宗基.固结及时间效应的单维问题[J].土木工程学报,1958,5(1):1–10.
    [331]舒芝琴,周宏文.上海浅层土的单剪流变特性—流变参数的测定[J].岩土力学,1982,3(1): 55–64.
    [332]拓勇飞,孔令伟,郭爱国,等.湛江强结构性粘土的形成机理分析[J].工程地质学报,2004,12(Suppl.) : 79–83.
    [333]李建红,张其光,孙逊,等.胶结和孔隙比对结构性土力学特性的影响[J].清华大学学报(自然科学版),2008,48(9):1427–1431.
    [334]柳艳华,石名磊.海陆交互相下黏性土性状辨析及评价研究[J].岩土力学.2008,29(2): 523–529.
    [335]张璞,陈建强,田明中,等.福建省漳州市第四纪沉积物粒度特征及其沉积环境[J].沉积学报,2005, 23(2):275–283.
    [336]《中国海湾志》编纂委员会.中国海湾志(第八分册,福建省南部海湾) [M].北京:海洋出版社, 1993,147–148,200–202.
    [337]王海鹏,陈峰.厦门港湾软土的工程地质性质的研究[J].台湾海峡,1998,17(3):235–243.
    [338]刘莹,王清,夏玉斌,等.青岛前湾港软土物质成分与结构及加固方案设计[J].长春科技大学学报, 2000.30(4):388–392.
    [339]叶书麟,宰金璋,史佩栋等译[M].软粘土工程学,中国铁道出版社,1991.
    [340]李文平,于双忠,王柏荣,等.煤矿区深部粘性土吸附结合水含量测定及其意义[J].水文地质工程地质,1995(3): 31–34.
    [341] Vaughan P R,Maccarini M,Mokhtar S M.Indexing the engineering properties of residual soil[J].Quarterly Journal of Engineering Geology,1988.21:p.69–84.
    [342]蒋明镜.沈珠江,邢素英等.结构性粘土研究综述[J].水利水电科技进展,1999(2):26–30.
    [343] Cuccovillo T,Coop M R.The influence of bond strength on the mechanics of carbonate soft rocks[J].Geotechnical Engineering of Hard Soils–Soft Rocks,ed. Anagnostopoulous et al.1993, Balkema,Rotterdam.
    [344]陈慧娥,王清.水泥加固不同地区软土的试验研究[J].岩土力学,2007,28(2):423–426.
    [345]杨爱武,杜东菊.水泥及其外加剂固化天津海积软土的试验研究[J].岩土力学, 2007,28(9): 1823–1827.
    [346]王宝勋,李夕兵,杜东菊,等.应用碱性水泥外掺剂固化天津海积软土的试验研究[J].工程地质学报, 2009,17(3):426–432.
    [347]高小平,杨春和,吴文,等.盐岩蠕变特性温度效应的实验研究[J].岩石力学与工程学报, 2005, 24(12):2054–2059.
    [348]夏明耀,孙逸明,王大龄.饱和软粘土固结、蠕变变形和应力松弛规律[J].同济大学学报, 1989, 17(3):319–327.
    [349]李文平,张志勇,孙如深,等.深部粘土高压K0蠕变试验及其微观结构各向异性特点[J].岩土工程学报,2006,28(10):1185–1190.
    [350]刘辉.软土流变模型及其工程应用[D].长沙.湖南大学硕士论文.2008.
    [351] Zhou C,Yin J H,Chen T L,et al.Elastic visco-plastic and damaging analysis for structured soil[C].In:Lee et al,eds.Soft Soil Engineering,the3rd International Conference of Soft Soil Engineering.Hong Kong:Swets & Zeitlinger,2001.655–661.
    [352]陈铁林,李国英,沈珠江.结构性粘土的流变模型[J].水利水运工程学报,2003,No.2,7–11.
    [353]钟辉虹.软土结构性及蠕变特性理论研究[D].上海:同济大学土木工程学院.2003.
    [354]吴刚.工程材料的扰动状态本构模型(I)—扰动状态概念及其理论基础[J].岩石力学与工程学报. 2002.21(6):759–765.
    [355]吴刚,方从启,陈锦剑,葛修润.扰动状态概念的特点及其他模型的对比[J].中国岩石力学与工程学会第七次学术大会论文集.中国西安.2002:155–157.
    [356] Desai C S,Somasundaram S,Frantziskonis G.A hierarchical approach for constitutive modelling of geologic materials[J].Int.J.Num.Analyt.Methods in Geomechanics,1986,10(3): 225–257.
    [357] Kachanov.L.M. Introduction to Continuum Damage Mechanics[M]. Martinus Nijhoft Publishers, Dordrecht, The Netherlands,1986.
    [358] Frantziskonis.G, Desai.C.S. Constitutive model with strain softening[J]. Int. J. Solids Structures. 1987,23:751–767.
    [359] Desai.C.S. The disturbed state as transition through self-adjustment concept for modeling mechanical response of materials and interfaces[C]. Report, Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Ariz,1992.
    [360] Desai.C.S, Ma.Y. Modelling of joints and interfaces using the disturbed state concept[J]. Int. J. Numer. Analyt. Meth. Geomech.,1992,16:623–653.
    [361] Pal.S, Wathugala.G.W. Disturbed state model for sand-geosynthetic interfaces and appliction to pull-out tests[J]. Int. J. Numer. Anal. Mech. Geomech., 1999,23: 1873–1892.
    [362]陈锦剑,吴刚,王建华,等.利用扰动状态概念模型研究饱和软粘土的力学特性[J].上海交通大学学报.2004,38(6):952–955.
    [363]付艳斌.考虑卸载扰动状态的3D弹粘塑性本构模型及其应用. [D].上海:同济大学土木工程学院博士论文.2007.
    [364]苏立君,廖红建,殷建华.硅藻质软岩的三维弹粘塑性模型分析[J].岩土力学,2004,25(3): 337–341.
    [365]殷建华,Jack I Clark.土体与时间相关的一维应力—应变性状弹粘塑性模型和固结分析[J].岩土力学,1994.15(3):65–80.
    [366]殷建华,Jack I Clark.土体与时间相关的一维应力—应变性状弹粘塑性模型和固结分析续[J].岩土力学,1994.15( 4):65–75.
    [367] Mesri G,Rokhsar A. Theory of consolidation for clays[J]. ASCE Journal of Geotechnical Engineering Division,1974,100(GT8):889–904.
    [368] Christie, I.F. and Tonks, D.M. Developments in the time lines theory of consolidation[C]. Proc.11th ICSMFE,San Francisco,1985,2,423–426.
    [369] Roscoe.K.H, Burland.J.B. On the generalized stress-strain behaviour of―wet‖clay[J].In Engineering Plasticity, Cambridge Univ. Press,1968,535–609.
    [370]王常明,王清,张淑华.滨海软土蠕变特性及蠕变模型[J].岩石力学与工程学报,2004,23(2): 227–230.
    [371] Kondner R L.Hyperbolic stress-strain response: cohesive soils[J].Soil Mech.Fdns., ASCE,1963, 89(1):115–143
    [372] Mesri G,Rebres-Cordero E,Shields D R,Castro A.Shear stress-strain-time behaviour of clays[J].Geotechnique,1981,31(4):537–552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700