用户名: 密码: 验证码:
小果油茶种内类型划分、评价及亲缘关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小果油茶(Camellia meiocarpa Hu.)是我国栽培面积和年产量仅次于普通油茶的油料树种,但对其遗传改良研究仍处于初级阶段。小果油茶为异花授粉植物,种内变异类型极为丰富。为充分挖掘和利用现有的遗传变异,本文在前期充分调查的基础上,对小果油茶种内自然变异类型进行了划分,同时针对小果油茶分类地位仍存在异议的问题,从孢粉学、表型、基因组DNA和基因转录水平上对典型小果油茶类型的亲缘关系进行了研究。主要结论如下:
     1.根据小果油茶生物学特性及种群遗传特点,结合前期的调查资料,初步对小果油茶种内变异类型进行了划分。结果表明:小果油茶树体、果实、叶片、花等表型性状变异十分丰富,其中树体性状的变异系数最大(平均CV=43.79%),其次是果实性状(平均CV为26.09%),叶和花性状的变异系数相对较小,平均为16.84%和16.53%。综合R型聚类和主成分分析结果及成熟期等生态表现,提出以果实横径、果皮厚度和成熟期作为类型划分的指标,将小果油茶初步划分为10个类型。
     2.比较了部分典型小果油茶类型和普通油茶的花粉形态,并分析其与山茶属物种间的亲缘关系,结果表明:不同类型小果油茶的花粉均具有山茶属植物花粉的种属特征,即:花粉粒为长形球、近球形,赤道面观长椭圆形,极面观三裂圆形,具三孔沟,但花粉粒的外观表面纹饰特征因不同类型而异。相关分析表明,不同小果油茶类型的单果质量、鲜出籽率与花粉粒极轴长(P值)呈显著负相关,与沟间距离呈显著正相关,因此可以通过花粉形态特征来鉴别小果油茶类型。通过比较小果油茶和36个山茶物种间的花粉形态特征,发现小果油茶花粉大小与油茶组、红山茶组的大部分种相似,而与连蕊茶组、短柱茶组、糙果茶组等大部分种相差甚远,初步说明,小果油茶与油茶组和红山茶组的大部分种有较近的亲缘关系。
     3.对部分典型小果油茶类型和42个山茶属油用类物种间的亲缘关系进行分析。结果表明:46个物种(类型)的表型性状变异极为丰富,叶片、花、果实及其经济性状等39个性状的变异系数达4.95%~159.41%,尤其是单果质量和单果籽质量的变异系数更是高达159.41%和134.72%;通过聚类分析将46个物种(类型)分为2大类群,其中小果油茶大果薄皮立冬籽(龙眼茶)、中果薄皮霜降籽(羊屎茶)、小果薄皮寒露籽(珍珠茶)和中果薄皮寒露籽(宜春白皮中籽)先与钝叶短柱茶聚在一起,再与短柱茶、粉红短柱茶、小果短柱茶、普通油茶等12个物种聚为一个亚类,说明小果油茶的表型性状和这些物种的表型性状相似性较高。
     4、采用AFLP标记对部分典型小果油茶类型和42个山茶属油用类物种间的亲缘关系进行了分析。结果表明:18对AFLP引物组合共检测到642条多态性条带,多态性条带占95.69%;小果油茶羊屎茶与珍珠茶遗传相似系数最大,为0.9539,越南油茶与滇北红山茶遗传相似系数最小(0.5272)。通过聚类分析将46个物种(类型)划分为5个类群:越南油茶和小果短柱茶分别单独为一类;糙果茶组聚为一类;14个红山茶属物种和短柱茶组中果实性状较为类似的陕西短柱茶、攸县油茶和闽鄂山茶聚为一大类;小果油茶与除小果短柱茶外的油茶组、短柱茶组部分种聚为一类。与形态学标记相比较,发现两种标记的聚类结果并不完全一致,但在一定程度上可以互补。
     5.以小果油茶和普通油茶的嫩叶及种仁为材料,建立了适合油茶的cDNA-AFLP反应体系。结果表明:总RNA中分离的mRNA经合成双链cDNA后,用限制性内切酶EcoRⅠ和MseⅠ在37℃下5h内完全酶切,经5U T4连接酶16℃连接的产物稀释10倍后直接用于预扩增;在20μL选择性扩增体系中,以预扩增产物稀释30倍为模版、dNTP (10mM)1.5μL、引物(10μM)1.0μL、Taq酶用量1.25U时的扩增效果较好。利用优化体系成功筛选出61对可以获得带型丰富且重复性好的引物组合。
     6.为进一步分析典型小果油茶类型间差异的遗传学基础,本文尝试用cDNA-AFLP技术对小果油茶基因表达差异进行分析。138对引物组合共扩增出3649条转录衍生片段(TDFs),其中差异显示的TDFs有3557个,多态率高达97.48%。研究发现在大果薄皮立冬籽龙眼茶和普通油茶中特异表达的TDFs占总差异带的4.27%,在龙眼茶和宜春白皮中籽中特异表达的TDFs占4.53%,在龙眼茶和羊屎茶中特异表达的TDFs有1.57%,在龙眼茶、羊屎茶和宜春白皮中籽中均特异表达的TDFs占1.88%,而在龙眼茶、宜春白皮中籽和普通油茶中均特异表达的TDFs占3.54%,说明龙眼茶与普通油茶和宜春白皮中籽的亲缘关系可能较近,而与羊屎茶的亲缘关系可能相对较远。基于TDFs表达模式差异的多态性将5个参试材料分为3类,其中龙眼茶和宜春白皮中籽聚为一类,羊屎茶和珍珠茶归为一类,普通油茶独立为一类,这与基因组DNA的AFLP分析结果一致。差异TDFs经回收及测序,获得了789个差异基因片段。经BlastX/N同源性比对,有716个在GeneBank中找到了同源序列,其功能主要涉及信号转导、转录因子、蛋白质合成、代谢、运输、细胞防御等方面。
     以上研究结果为小果油茶的分类、遗传改良、种质资源保护及进一步开发利用提供了理论依据。
Camellia meiocarpa is a kind of native oil plant species, whose cultivation area andannual output were only less than that of Camellia oleifera. While the genetic improvement,breeding and application of C. meiocarpa was just on its germinal stage. C. meiocarpa is across-pollination plant, which is rich in genetic variation. In order to genetic improve, theintraspecific type of C. meiocarpa was primarily divided based on previous work, and thegenetic relationships of four typical types that were studied on phenotypic, morphological,DNA and transcription level. The main conclusions were drawn as follows:
     1. The variation types of C. meiocarpa were classified according to the biologicalcharacteristics and population genetic characteristics of C. meiocarpa. The results showed thatthe phenotypic variation of C. meiocarpa plant type, fruit, leaves and flowers were very high.The variations of plant type (43.79%) were the highest among four phenotypic traits, thesecond was fruit traits (26.09%), and variations of leaf (16.84%) and flower (16.53%) were theleast. Based on the results the main principle for classifying the variation types of C.meiocarpa were fruit diameter, pericarp thickness and maturation stage. The intraspecific typeof C. meiocarpa was primarily divided into ten different types.
     2. Pollen morphology of Camellia meiocarpa and C. oleifera were analysted and thegenetic relationships of C. meiocarpa with other Camellia species were also studied. Underelectron microscope, the pollen morphology, polar view and equatorial view of different typesof C. meiocarpa were similar with Camellia pollen. The pollen gains were prolate orsubsphaeroidal, and its equatorial view was long ellipe, while the polar view was3-labedrounded with3narrow operculums. But there were some distinctive differences in pollen exineornament. The correlation analysis showed that the fruit weight and fresh seed ratio of C.meiocarpa was significant negatively related to pollen polar axis length (P) and positivelyrelated to the distance between colporates, respectively. Compared with the36species pollen morphology of Camellia, the pollen grain size of different types in C. meiocarpa were similarto that of Oleifera and Camellia, which indicated that C. meiocarpa had a close geneticrelationship with Oleifera and Camellia species.
     3. Morphological makers were used to evaluate the genetic relationships of someCamellia meiocarpa variation types and42Camellia species that seeds were used to beproduced oil. The results showed that the variation of phenotypic traits between46sampleswere very high, the coefficient of variation (CV) of39traits from leaf, flower and fruit wasfrom4.95%to159.41%, and the cv of fruit and seed weight reached up to159.41%and134.72%, respectively. The results showed that46samples were divided into2categories. C.meiocarpa cv.‘Longyan’,‘Yangshi’,‘Zhenzhu’and ‘Yichunbaipi’ were classificated togetherwith C. obtusifolia, then C. brevistyla, C. puniceiflora, C. confusa, C. oleifera, C. weiningensis,C. sasanqua, C. lanceoleosa, C. fluviatilis, C. yuhsienensis, C.grijsii, C. parafurfuracea, C.shensiensis were classificated together.
     4. AFLP makers were also used to evaluate the genetic relationships of four variationtypes of Camellia meiocarpa and42Camellia species. The results showed that642bands wereobtained using18primer combinations and95.69%of them were polymorphic loci. Thegenetic distance between ‘Yangshi’ and ‘Zhenzhu’ was maximum (0.9539), when that of C.Vietnamensis and C. boreali-yunnanica was minimum (0.5272). The results of clusteringanalysis indicated that46samples were divided into5groups. C. Vietnamensis and C. confusawere respectively clustered group Ⅰand Ⅱ, group Ⅲ were Section Furfuracea, group Ⅳwere Section Camellia and a subset of C.grijsii, C. shensiensis, C. yuhsienensis, which hadsimilar fruit traits. Group Ⅴ were C. meiocarpa, Section Oleifera and most of SectionParacamellia.
     5. A suitable cDNA-AFLP system for C. meiocarpa and C. oleifera was established afteroptimizing several key factors, including enzyme digestion system, pre-amplification andselective amplification. The results showed that total RNA of the tender leaf and kernel wasextracted by quick extraction kit of EASYspin Plus plant RNA and Trizol method. mRNA was synthesized into double stranded cDNA after it was isolated from total RNA, then it wasdigested completely by EcoRⅠand MseⅠat37℃for5hours. The digested product wasconnected with5U T4ligase at16℃for an overnight. Then reducible pre-amplification wasobtained when ligation product were diluted by10times for pre-amplification. And the optimalconditions for a20μl volume of selective amplification were obtained when the template ofpre-expanded product diluted by30times and with dNTP (10mM)1.5μL, primer (10μM)1.0μL, Taq enzyme1.25U. Moreover,61out of210primer pairs were successfully selected bythe improved method.
     6. In order to understand genetics bases of differentation of C. meiocarpa variation types,transcripts profile was analysted by cDNA-AFLP.3649transcript-derived fragments (TDFs)were obtained with138primer pairs, a3557TDFs appeared to be polymorphic loci (97.48%).Among them, the specific expression TDFs in C. meiocarpa cv.‘Longyan’ and C. oleifera upto4.27%of the total, the specific expression TDFs in C. meiocarpa cv.‘Longyan’ and‘Yichunbaipi’ was about4.53%, the specific expression TDFs in C. meiocarpa cv.‘Longyan’and ‘Yangshi’ were1.57%, and that of C. meiocarpa cv.‘Longyan’,‘Yangshi’ and‘Yichunbaipi’ were only1.88%, while the specific expression TDFs in C. meiocarpa cv.‘Longyan’,‘Yichunbaipi’ and C. oleifera occupied3.54%, which explained that C. meiocarpacv.‘Longyan’ may have closer relationship with C. meiocarpa cv.‘Yichunbaipi’ and C. oleifera,five materials were divided into3classese, cluster Ⅰ includes C. meiocarpa cv.‘Yangshi’ and‘Zhenzhu’, cluster Ⅱ includes ‘Longyan’ and ‘Yichunbaipi’, while C. oleifera separatecategorization. The result based on cDNA-AFLP was consistent with the AFLP taxa. A subsetof1176differential TDFs were sequenced, which789sequences could be obtained.716ofthem were annotated for their function with GeneBank database by BlastX/N, and functionalontology showed genes related to signal transduction, transcription factor, metabolism,transportation, cell defence mechanisms and protein sythesis.
     Theses results provided a theory basis for the further study of classificaton, geneticimprovement, resource protection and utilization of C. meiocarpa.
引文
Althoff D M, Gitzendanner M A and Segraves K A. The utility of amplified fragment length polymorphismsin phylogenetics: a comparison of homology within and between genomes[J]. Systematic Biology,2007,56(3):477-484
    Anita L B, Frederik C B. Cloning of a specific ripening-related gene from the multiple of ripening-relatedgenes identified from a single band excised from a cDNA-AFLP gel[J]. Plant Molecular BiologyReporter,2004,22:225-236
    Avrova A O, Venter E, Birch P R J, et al. Profiling and quantifying differential gene transcription inphytophthora infestans prior to and during the early stages of potato infection[J]. Fungal Genetics andBiology,2003,40:4-14
    Ayako A, Akemi K, Michiko M, et a1. Molecular cloning and characterization of a novel soybean geneencoding a leucine-zipper-like protein induced to salt stress[J]. Gene,2005,356:135-145
    Bachem C W B, Hoeven R S, Bruijin S M, et a1. Visualization of differential gene expression using a novelmethod of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuberdevelopment[J]. Plant Journal,1996,9:745-753
    Bachem C W B, Oomen R J F J and Visser R G F. Transcript imaging with cDNA AFLP: a step-by-stepprotocol[J]. Plant Molecular Biology Reporter,1998,16:157-173
    Baldwin D, Crane V, Rice D. A comparison of gel-based, nylon filter and microarray techniques to detectdifferential RNA expression in plants[J]. Current Opinion in Plant Biology,1999,2:96-103
    Becker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers for mapping F2in maize(Zea mays L.)[J]. Theoretical and Applied Genetics,1995,93:606-612
    Brugmans B, del Carmen A F, Bachem C W B, et al. A novel methed for the construction of genome widetranscriptome maps[J]. Plant Journal,2002,31(2):211-222
    Chen G P, Ma W S, Huang Z J, et a1. Isolation and characterization of TaGSK1involved in wheat salttolerance[J]. Plant Science,2003,165:1369-1375
    Chen K, Peng Y H. AFLP analysis of genetic diversity in Populus cathayana Rehd originating fromSoutheastern Qinghai-Tibetan Plateau of China[J]. Pakistan Journal of Botany,2010,42(1):117-127
    Cheng Y F, Pu T L, Xue Y B, et a1. PcTGD, a highly expressed gene in stem, is related to water stress inreed (Phragmites communis Trins.)[J]. Chinese Science Bulletin,2001,46(10):850-854
    Dellagi A, Birch P R J, Heilbronn J, et a1. cDNA-AFLP analysis of differential gene expression in theprokaryotic plant pathogen Erwinia carotovora[J]. Microbiology,2000,146:165-171
    Donson J, Fang Y, Espirtu-Santo G, et a1. Comprehensive gene expression analysis by transcript profiling[J].Plant Molecular Biology,2002,48:75-97
    Fang W P, Jiang C J, Yu M, et al. Differentially expression of Tua1, a Tubulin-encoding gene, duringflowering of tea plant Camellia sinensis(L.) O.Kuntze using cDNA amplified fragment lengthpolymorphism technique[J]. Acta Biochimica et Biophysica Sinica,2006,38(9):653-662
    Fregene M, Angel F, Gómez R, et al. A molecular genetic map of cassava (Manihot esculenta Crantz)[J].Theor Appl Genet,1997,95:431-441
    Fukuda T, Kidso A, Kajino K, et al. Cloning of differentially expressed genes in highly and low metastaticrat osteosarcomas by a modified cDNA-AFLP method[J]. Biochem Biophys Res Commun,1999,261:35-40
    Gabriels S H, Takken F L, Vossen J H, et al. cDNA-AFLP combined with functional analysis reveals novelgenes involved in the hypersensitive response[J]. Molecular Plant-Microbe Interactions,2006,19:567–576
    Gupta S, Bharalee R, Bhorali P, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP basedtranscript profiling[J]. Molecular Biotechnology,2013,53(3):237-248
    Habu Y, Fukada-Tanaka S, Hisatomi Y, et al. Amplified restriction fragment length polymorphism-basedmRNA fingerprinting using a single restriction enzyme that recognizes a4-bp sequence[J]. Biochemicaland Biophysical Research Communications,1997,234:516-521
    He P, Friebe B R, Gill B S, et al. Allopolyploidy alters gene expression in the highly stable hexaploidwheat[J]. Plant Molecular Biology,2003,52:401-414
    Hongtrakul V, Huestis G M, Knapp S J. Amplified fragment length polymorphisms as a tool for DNAfingerprinting sunflower germplasm: genetic diversity among oliseed inbred lines[J]. Theoretical andApplied Genetics,1997,95(3):400-407
    Huang J, Bachem C, Jacobsen E, et al. Molecular analysis of differentially expressed genes duringpostharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots[J]. Euphytica,2001,120:85-93
    Janssen P, Coopman R, Hu Y S G, et al. Evaluation of the DNA fingerprinting method AFLP as a tool inbacterial taxonomy[J]. Microboilogy,1996,142:1881-1893
    Jones J T, Harrower B E. A comparison the efficiency of differential display and cDNA-AFLPs as a tool forthe isolation of differentially expressed parasite genes[J]. Fundam. Appl. Nematol.,1998,21(1):81-88
    Kafkas S, Ozkan H, Sutyemez M. DNA polymorphism and assessment of genetic relationships in walnutgenotypes based on AFLP and SAMPL markers[J]. J. Amer. Soc. Hort. Sci.,2005,130(4):585-590
    Kimura M, Crow J F. The number of alleles that can be maintained in a finite population[J]. Genetics,1964.49:725-738
    Lewontin R C. The apportionment of human diversity[J]. Evolutionary Biology,1972,6:381-398
    Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chainreaction[J]. Science,1992,257:967-971
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR andthe2-Ctmethod[J]. Methods,2001,25:402-408
    Mamati G E. Tea polyphenols biosynthesis and genes expression control in tea (Camellia sinensis)[D].浙江大学博士学位论文,2005
    Mayra R, Eduardo C, Carlos J B, et a1. Identification of genes induced upon water-deficit stress in adraught-tolerant rice cultivar[J]. Journal of Plant Physicology,2006,163:577-584
    McClelland M, Mathieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarilyprimed PCR[J]. Trends in Genetics,1995,6:242-246
    Meksem K, Leister D, Peleman J, et al. A high-resolution map of the vicinity of the R1locus onchromosome V of potato based on RFLP and AFLP markers[J]. Molecular and General Genetics,1995,249:74-81
    Mian M A R, Hopkins A A, Zwonitzer J C. Determination of genetic diversity in tall fescue with AFLPmarkers[J]. Crop Science,2002,42(3):944-950
    Money T, Reader S, Qu L J, et al. AFLP-based mRNA fingerprinting[J]. Nucleic Acids Research,1996,24(13):2616-2617
    Nei M (ed). Molecular evolutionary genetics[M]. New York: Columbia University Press,1987,176-187
    Paul S, Wachira F N, Powell W, et al. Diversity and genetic differentiation among populations of Indian andKenyan tea (Camellia sinensis(L.) O.Kuntze) revealed by AFLP markers[J]. Theoretical and AppliedGenetics,1997,94:255-263
    Suarez M C, Bemal A, Gutierrez J, et al. Developing expressed sequence tags (ESTs) from polymorphictranscript-derived fragments (TDFs) in cassava (Manihnt esculenta Crantz)[J]. Genome,2000,43:62-67
    Tian Z Y, Dai J R. Relationship between differential gene expression patterns in functional leaves of maize(Zea mays L.) at milk filling stage and heterosis using cDNA-AFLP[J]. Chinese Science Bulletin,2003,48(1):76-81
    Tian Z Y, Dai J R. Relationship between differential gene expression patterns in functional leaves of maizeinbreds&hybrids at spikelet differentiation stage and heterosis[J]. Acta genetica Sinica,2003,30(2):154-162
    Umezawa T, Mizuno K, Fujimura T. Discrimination of genes expressed in response to the ionic or osmoticeffect of salt stress in soybean with cDNA-AFLP[J]. Plant Cell&Environment,2002,25:1617-1625
    Vos P, Hogers R, Bleeker M, et a1. AFLP: a new technique for DNA fingerprinting[J]. Nucleic AcidsResearch,1995,23(21):4407-44l4
    Wachira F N, Tanaka J, Takeda Y. Genetic variation and differentiation in tea(Camellia sinensis) germplasmrevealed by RAPD and AFLP variation[J]. Journal of Horticultural science and Biotechnology,2001,76(5):557-563
    Yang L, Zheng B S, Mao C Z, et al. cDNA-AFLP analysis of inducible gene expression in rice seminal roottips under a water deficit[J]. Gene,2003,314:141-148
    Yany L, Zheng B S, Mao C Z, et al. Analysis of gene expression during enhanced seminal root elongation ofrice under upland condition by cDNA-AFLP[J]. Journal of Plant Physiology and Molecular Biology,2003,29(1):65-70
    Ye A H, Jiang C J, Zhu L, et al. Cloning and sequencing of a full-length cDNA encoding the RuBPCasesmall subunit (RbcS) in tea (Camellia Sinensis)[J]. Agricultural Sciences in China,2009,8:161-166
    Yeh F C, Yang R C, Boyle T. POPGENE, version1.32ed., Microsoft-Based Freeware for PopulationGenetic Analysis. Edmonton, Alta: University of Alberta,1997
    Yin X, Stam P, Dourleijn C J, et al. AFLP mapping of quantitative trait loci for yield-determiningphysiological characters in spring barley[J]. Theor. Appl. Genet.,1999,99:244-253
    Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting[P].European Patent Application, Publication No.0534858A1,1993
    Zhang D L, Dirr M A, Price R A. Discrimination and genetic diversity of cephalotaxus accessions usingAFLP markers[J]. Journal of the American Society for Horticultural Science,2000,125(4):404-412
    Zhebentyayeva T N, Reighard G L, Gorina V M, et al. Simple sequence repeat (SSR) analysis for assessmentof genetic variability in apricot germplasm[J]. Theoretical and Applied Genetics,2003,106:435-444
    敖成齐,陈功锡,席嘉宾,等.山茶属短柱茶组花粉形态的研究[J].华南农业大学学报,2001,22(2):66-68
    敖成齐,陈功锡,张国萍,等.山茶属花粉外壁表面微形态特征的研究[J].云南植物研究,2002,24(5):1-3,23
    鲍露,徐昌杰,江文彬,等.葡萄AFLP技术体系建立及其在超藤与藤稔葡萄品种鉴别中的应用[J].果树学报,2005,22(4):422-425
    宾晓芸.金花茶遗传多样性和居群遗传结构的ISSR, RAPD和AFLP分析[D].广西师大学硕士学位论文,2005
    蔡金标,丁建祖,陈必勇.中国油桐品种、类型的分类[J].经济林研究,1997,15(4):47-50
    蔡青,范源洪, K. Aitken,等.利用AFLP进行“甘蔗属复合体”系统演化和亲缘关系研究[J].作物学报,2005,38(5):551-559
    曹耀莲,罗风翔,贾翠娥,等.旱柳类型划分及优良类型选择研究简报[J].陕西林业科技,1989,30-33
    曹伟,李岩,王树良,等.东北阔叶红松林群落类型划分及物种多样性[J].应用生态学报,2007,18(11):2406-2411
    陈桂平,黄占景,马闻师,等.盐胁迫下小麦耐盐突变体后代差异cDNA的分离和鉴定[J].中国农业科学,2003,36(9):996-999
    陈华,易干军,徐小彪.应用AFLP标记对江西省猕猴桃种质资源的鉴别及其分类意义[J].中国生物化学与分子生物学报,2007,23(2):122-129
    陈亮,童启庆,高其康,等.山茶属8种1变种花粉形态比较[J].茶叶科学,1997,17(2):183-188
    陈良华,胡庭兴,张帆,等.用AFLP技术分析四川核桃资源的遗传多样性[J].植物生态学报,2008,32(6):1362-1372
    陈林波.茶树抗寒相关基因的克隆与表达特性分析[D].安徽农业大学硕士学位论文,2010
    陈鹏,何凤仁,钱伯林,等.中国银杏的种核类型及其特征[J].林业科学,2004,40(3):66-69
    陈暄,汤茶琴,邹中伟,等.茶树花发育相关的一个钙依赖蛋白激酶基因的克隆与表达分析[J].茶叶科学,2009,1:47-52
    陈中海,肖仁显,沈建福,等.7种低温冷榨油茶籽油的理化性质及氧化稳定性分析[J].中国油脂,2012,37(8):34-38
    程振家,王怀松,张志斌,等.甜瓜遗传多样性的AFLP分析[J].西北植物学报,2007,31(2):244-248
    丛玲美.油茶品质控制过程中主要质量指标变化规律的研究[D].中国林业科学研究院硕士学位论文,2007
    邓白罗,谭晓风,漆龙霖,等.山茶属红山茶组植物的RAPD分析及分类研究[J].林业科学,2006,42(5):36-41
    邓务国.物种遗传多态性研究方法的发展[J].生物学通报,1994,29(1):7-9
    丁植磊,张日清,刘友全,等.油茶12个物种花药愈伤组织诱导及继代培养[J].经济林研究,2007,25(1):20-24
    杜领晓.基于cDNA-AFLP分析茶树喷施化学杀虫剂前后的基因表达谱差异[D].安徽农业大学硕士学位论文,2011
    段盛粮,宗学普,段玉春.西藏核桃种质资源考察初报[J].果树学报,1984,2:34-40
    方嘉兴,何方.中国油桐[M].北京:中国林业出版社,1998,14-48
    范小宁.油茶控制授粉家系子代遗传多样性分析研究[D].安徽师范大学硕士学位论文,2011
    冯金玲,杨志坚,陈辉.油茶芽苗砧嫁接体愈合过程AFLP分析[J].中南林业科技大学学报,2012,32(3):141-146
    傅德志,杨亲二.银杏雌性生殖器官的形态学本质及其系统学意义[J].植物分类学报,1993,31(3):294-296
    G. Erdtma.中国科学院植物研究所古植物室孢粉组译.孢粉学手册[M].北京:科学出版社,1978:238-242
    高继银, Clifford R Parks,杜跃强.山茶属植物主要原种彩色图集[M].杭州:浙江科学技术出版社,2005
    高兆蔚.柏木自然类型的划分[J].浙江林业科技,1977,5:30-32
    顾海清,丁丽惠,王品水,等.凹叶厚朴的类型划分及其药用成份含量测定初报[J].中国林副特产,1992,21(2):22-23
    广西农林植被调查队.广西阳朔县油茶林的生长情况与环境关系及其发展问题[J].植物生态学与地植物学丛刊,1966,4(1):120-131
    郭军,屈冬玉,王晓武,等. cDNA-AFLP结合BSA研究马铃薯晚疫病菌小种特异无毒基因差异表达片段[J].中国马铃薯,2004,18(1):1-3
    郭丽琼,林俊芳,杨丽卿,等.应用cDNA-AFLP技术分离草菇冷诱导表达基因[J].园艺学报,2005,32(1):54-59
    何方.油茶[M].北京:经济管理出版社,1997
    何方,李纪元.油茶产量与其相关因素的研究[J].经济林研究,1990,8(1):1-13
    胡先骕.中国山茶科小志Ⅰ[J].科学通报,1957,170
    黄福平,梁月荣,陆建良,等.乌龙茶种质资源种群遗传多样性AFLP评价[J].茶叶科学,2004,24(3):183-189
    黄建安.茶树分子遗传图谱构建及多酚氧化酶基因的SNP研究[D].湖南农业大学博士论文,2004
    黄建安,李家贤,黄意欢,等.茶树品种资源遗传多样性的AFLP研究[J].园艺学报,2006,33(2):317-322
    黄建华.不同生长调节剂对小果油茶扦插生根的影响[J].安徽农学通报,2011,17(17):128-129,139
    黄勇.小果油茶遗传多样性分析及杂交渐渗研究[D].中国林业科学研究院博士学位论文,2011
    黄勇,姚小华,王开良,等.小果油茶种实形态变异频率及其多样性指数分析[J].江西农业大学学报,2011,33(2):292-299
    黄勇,姚小华,王开良,等.小果油茶种实表型性状遗传多样性研究[J].安徽农业大学学报,2011,38(5):698-707
    黄永芳,陈锡沐,庄雪影,等.油茶种质资源遗传多样性分析[J].林业科学,2006,42(4):38-43
    黄永芳,廖国春,吴雪辉,等.一种适合AFLP分析的油茶DNA提取方法[J].广东林业科技,2009,25(1):23-25
    黄文坤,郭建英,万方浩,等. AFLP标记在植物遗传多样性研究中的应用[J].中国农学通报,2006,22(8):50-54
    贾继文,麻文俊,王军辉,等.几种梓属植物花粉形态及分类学意义[J].林业科学,2005,13(1):40-44
    江苏新医学院.中药大辞典(上册)[M].上海:上海科学技术出版社,1986,1455,1603-1605
    蒋晋豫,郭军战,蔡英,等.油松类型划分与优良类型选育[J].西北林学院学报,2010,25(3):66-70
    蒋莺.油茶杂交后代及其亲本的遗传关系分析与鉴别选育[D].福建农林大学硕士学位论文,2011
    姜正旺,王圣梅,张忠慧,等.猕猴桃属花粉形态及其系统学意义[J].植物分类学报,2004,42(3):245-260
    金龙,刘冰,周明善,等.油茶AFLP反应体系建立及其在遗传多样性研究上的应用[J].安徽农业大学学报,2012,39(4):497-501
    康永祥,岳军伟,张巧明.黄龙山林区辽东栎群落类型划分及其生物多样性研究[J].西北林学院学报,2007,22(3):7-10
    兰彦平,周连第,姚研武,等.中国板栗种质资源的AFLP分析[J].园艺学报,2010,37(9):1499-1506
    李阿池.福建省油茶主栽品种的DNA指纹鉴定[D].福建省农林大学硕士学位论文,2010
    李振纪.油茶[M].北京:中国林业出版社,1981
    李斌,陈晓阳.AFLP标记在生物种质资源研究中的应用[J].世界林业研究,2001,14(4):11-17
    李广清,孙立,刘燕.山茶属连蕊茶组6种植物花粉形态特征研究[J].热带亚热带植物学报,2005,13(1):40-44
    李凌,宋文芹,毛英伟,等.用cDNA-AFLP银染技术研究与花椰菜花色相关的基因[J].南开大学学报(自然科学),2000,33(4):33-36
    李娟.安吉白茶高氨基酸性状相关基因的全长cDNA克隆及功能的初步研究[D].湖南农业大学博士学位论文,2011
    李韬.AFLP标记技术的发展和完善[J].生物工程学报,2006,22(5):861-865
    李辛雷.杜鹃红山茶遗传多样性及其濒危机制[D].中国林业科学研究院博士学位论文,2012
    李文荣,赵卫中,郭晋平,等.山西油松自然类型的划分及其性状的判别分析[J].植物学报,1994,36(4):312-319
    李周歧,邱明光,翁俊华.河北杨自然变异及类型划分[J].西北林学院学报,1990,5(4):25-28
    廖书娟,吉当玲,童华荣.茶油脂肪酸组成及其营养保健功能[J].粮食与油脂,2005,(6):7-9
    雷娜,李景富,康力功,等.番茄黄萎病抗病基因Ve的AFLP和SSR分子标记[J].植物病理学报,2011,41(1):80-84
    梁一池.树木育种原理与方法[M].厦门:厦门大学出版社,1998,348-363
    林萍,姚小华,王开良,等.油茶长林系列优良无性系的SRAP分子鉴别及遗传分析[J].农业生物技术学报,2010,18(2):272-279
    林汝法,陶雍如.粟品种类型划分初探Ⅰ晋北南部及晋西北地区粟品种类型[J].作物品种资源,1982,1:37-43
    凌杏元,周培疆,朱英国.水稻红莲型细胞质雄性不育与保持系mRNA差异显示和差异片段的分析[J].植物学报,2000,42(3):284-288
    林秀艳,彭秋发,吕洪飞,等.山茶属油茶组和短柱茶组叶解剖特征及其分类学意义[J].植物分类学报,2008,46(2):183–193
    刘萍,王子成,尚富德.河南部分牡丹品种遗传多样性的AFLP分析[J].园艺学报,2006,33(6):1369-1372
    刘春迎,王莲英.芍药品种的数量分类研究[J].武汉植物研究,1995,13(2):116-125
    刘佳洁.油茶优良种质资源的收集保存与遗传关系的分子鉴别[D].福建农林大学硕士学位论文,2010
    刘立科,小麦K型细胞质雄性不育育性相关基因片段及TaLonl基因的分离与克隆[D].中国农业大学博士学位论文,2003
    刘培华,王小纪,周浩.山茱萸类型划分及优良类型选择[J].特产研究,1994,4:58-59
    刘启慎,魏玉君.中国黄连木性状变异及类型划分[J].河南林业科技,1999,19(1):1-3
    刘树棣.西藏吉隆野生核桃种资资源初探[J].落叶果树,1988,1:26-28
    刘雪梅,刘瀛,宋福南,等.白桦雄花突变体早期发育差异表达基因的cDNA-AFLP分析[J].林业科学,2012,48(5):20-28
    刘志彦,李路胜,刘志芳,等.板栗花粉形态与果实产量的相关性[J].经济林研究,2008,26(4):57-62
    Lorkowski S.,卡伦P.,编著,陈凡,方晓华,张方,主译.基因表达分析手册——方法的实用性及其缺陷[M].北京:化学工业出版社,2008,197-204
    卢华琼,苏智先.部分柚类品种主要果实性状变异及相关性研究[J].中国农学通报,2006,22(12):220-222
    鹿金颖,毛永民,申莲英,等.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究[J].园艺学报,2005,32(4):680-683
    吕振岳,黄东东,周达民.AFLP标记及在植物中的应用[J].生物技术,2001,11(6):40-43
    马洪双,夏新莉,尹伟伦.建立胡杨抗逆研究的cDNA-AFLP反应体系[J].北京林业大学学报,2010,32(5):34-40
    马庆国.中国核桃品种的遗传多样性研究[D].中国林业科学研究院博士学位论文,2012
    梅立新,杨卫昌.陕西省核桃分类的研究[J].西北农业大学学报,1995,23(4):63-65
    闵天禄.山茶属山茶组植物的分类、分化和分布[J].云南植物研究,1998,20(2):127-148
    闵天禄.世界山茶属的研究[M].昆明:云南科技出版社,2000
    明军,张启翔.亲缘关系相近的梅花品种AFLP DNA指纹分析[J].北京林业大学学报,2004,26(5):31-35
    倪穗,李纪元,田敏,等.红山茶组植物花粉外壁纹饰特征及其演化关系[J].南京林业大学学报:自然科学版,2007,31(4):16-20
    潘美辉,金虎林,袁建刚,等.分子生物学新技术方法评价[J].基础医学与临床,1997,17(5):38-39
    庞晓明,邓秀新,胡春根.枳属36份特异种质的AFLP指纹图谱构建与分析[J].园艺学报,2003,30(4):394-397
    彭方仁.经济林栽培与利用[M].北京:中国林业出版社,2007,306-312
    彭怀远.银杏应用类型的区分[J].安徽林业,1995,5:22
    彭阳生,奚如春.油茶栽培及茶籽油制取[M].北京:金盾出版社,2006
    漆龙霖,孙嘉燕,吕德芳,等.山茶属6物种蒸腾速率的研究[J].中南林学院学报,1989,9(1):9-16
    任珺,陶玲.甘肃省白刺属植物的数量分类研究[J].西北植物学报,2003,23(4):572-576
    任钦良.香榧雄树宜划分三个类型[J].浙江林业科技,1984,4:16-17
    邵化范,唐云龙,张俊朴.国槐形态变异及类型划分[J].河南林业科技,1990,4:24-26
    沈程文.广东茶树种质遗传多样性的形态和分子评价及其亲缘关系研究[D].湖南农业大学博士学位论文,2007
    沈建福,陈中海,肖仁显,等.不同加工方式对浙江红花油茶茶油品质的影响[J].中国粮油学报,2012,27(6):56-60
    舒璞,袁昌齐,佘孟兰,等.中国柴胡属药用植物的数量分类研究(I)[J].西北植物学报,1998,18(2):277-283
    石胜友,梁国鲁,成明昊,等.变叶海棠起源的AFLP分析[J].园艺学报,2005,32(5):802-806
    宋顺华,郑晓鹰.甘蓝品种的AFLP指纹鉴别图谱分析[J].分子植物育种,2006,4(3):51-54
    宋晓飞,申书兴,张晓伟,等.大白菜叶片刺毛性状AFLP标记的筛选[J].中国蔬菜,2006,(12):6-8
    束际林,陈亮,王海思,等.茶树及其他山茶属植物花粉形态、超微结构及演化[J].茶叶科学,1998,18(1):6-15
    束际林,陈亮.茶树花粉形态的演化趋势[J].茶叶科学,1996,16(2):115-118
    汤茶琴,陈暄,黎星辉,等.茶树花发育相关蛋白激酶基因的分离与序列分析(英文)[C].茶学青年科学家论坛论文集,2008,199-207
    谭晓风,漆龙霖,贺晶,等.山茶属植物油茶组与金花茶组的分子分类[J].中南林学院学报,2005,25(4):30-34
    唐光旭.油茶优良品种(类型)表型选择的研究[J].经济林研究,1992, S1:91-94
    唐绍清,杜林方,王燕.山茶属金花茶组金花茶系的AFLP分析[J].武汉植物学研究,2004,22(1):44-48
    唐守正.多元统计分析方法[M].北京:中国林业出版社,1986
    田义轲.苹果柱型基因一个SCAR标记的可靠性分析[J].莱阳农学院学报,2001,18(1):28-31
    汪小兰.金花茶系植物(Series Chrysanthae Chang)的花粉形态[J].北京林业大学学报,1986,3:48-60
    王保明,陈永忠,谭晓风,等.应用ISSR分析油茶无性系的遗传多样性[J].东北林业大学学报,2008,36(6):19-23
    王传友.油茶有性杂交方法的研究[J].林业科学,1966,11(2):143-145
    王关林,方宏筠.植物基因过程[M].北京:科学出版社,2009,40-62
    王会,梁月荣,陆建良,等. cDNA-AFLP分子标记技术及其在茶树育种上的应用前景[J].茶叶,2006,32(2):75-78
    王钧毅,张毅平,刘万生.西藏核桃资源[J].落叶果树,1988,1:35-36
    王奎玲,牟少华,刘庆超,等.部分耐冬山茶栽培品种的AFLP分析[J].中国农业科学,2011,44(3):651-656
    王宁,张有生,童成金,等.东峡林区中国沙棘表型性状分析与类型划分[J].青海农林科技,1994,1:27-31
    王磊,李霞,杨辽,等.新疆野核桃种质资源数量分类研究[J].北方园艺,1998,1:3-5
    王任翔,胡长华,梁倩华,等.金花茶组植物花粉扫描电镜研究(一)[J].广西植物,1997,17(3):242-245
    王湘南,陈永忠,蒋丽娟,等.油茶优良无性系花粉形态结构的扫描电镜观测[J].中南林业科技大学学报,2010,30(5):67-71,90
    王渊.湖南油茶主要栽培品种遗传多样性及其配置技术的研究[D].中南林业科技大学硕士学位论文,2011
    王永康,田建保,王永勤,等.枣树品种品系的AFLP分析[J].果树学报,2007,24(2):146-150
    韦仲新, Zavada,闵天禄.山茶属的花粉形态及其分类学意义[J].云南植物研究, l992,14(3):275-282
    魏兆兆,谢云,孟辉,等.3种类型浙江红山茶的花粉形态学研究[J].浙江农林大学学报,2012,29(4):634-638
    闻丽,张日清,刘有全,等.不同培养条件对油茶花药愈伤组织形成的影响[J].经济林研究,2007,25(2):9-14
    吴才君.芸薹作物杂种优势形成在基因表达水平上的分子生物学基础研究[D].浙江大学博士学位论文,2005
    吴才君,曹家树,董德坤.芸薹种蔬菜杂交种及其亲本莲座期基因差异表达与杂种优势的关系[J].中国农业科学,2004,37(11):1654-1659
    吴丽丽,高福玲,王雷,等.杨树幼茎特异表达基因及PsnLAC基因的克隆,东北林业大学学报,2011,31(4):5-7
    吴光金,林雪坚,尹海清.油茶不同物种、品种及类型抗炭疽病的研究[J],经济林研究,1993, S1:318-322
    吴国盛,陈发棣,陈素梅,等.部分菊属与亚菊属植物的形态学聚类及亲缘关系分析[J].南京农业大学学报,2009,32(1):155-159
    吴敏生,戴景瑞,谢友菊.一个与玉米基因表达沉默有关的cDNA片段的克隆及序列分析[J].植物生理学报,2000,26(6):557-560
    吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达[J].作物学报,2001,27(3):339-342
    吴杨,邓婷婷,李娟,等.茶树cDNA-AFLP银染技术体系的建立[J].中国农学通报,2011,27(19):94-99
    吴莺莺.油茶种质资源遗传多样性分析及品种鉴定[D].南京林业大学硕士学位论文,2011
    吴志庄.木本能源植物黄连木单株选择、类型划分与群落调查研究[D].中国林业科学研究院博士学位论文,2008
    肖月华,罗明,韦宇拓,等.棉花纤维起始期基因表达的cDNA-AFLP分析[J].农业生物技术学报,2003,11(1):20-24
    熊年康,郭江,陈祥平,等.油茶优良农家品种龙眼茶的丰产性状研究[J].福建林业科技,1987,2:29-36
    熊年康,方宝昌,陈祥平,等.油茶闽优1等11个优良家系选育的研究[J].福建林业科技,1989,2:14-19
    熊年康,吴火和,陈祥平,等.油茶优良农家品种比较试验研究[J].福建林业科技,1992,19(2):58-61
    熊永华,许杨.基因表达的系列分析方法研究进展[J].生物工程学报,2002,18(3):377-380
    谢让金,周志钦,邓烈.真正柑橘果树类植物基于AFLP分子标记的分类与进化研究[J].植物分类学报,2008,46(5):682-691
    谢一青,李志真,姚小华,等.油茶扦插生根主要影响因子及生根相关酶动态[J].福建林学院学院,2012,32(3):232-237
    徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994,36-54
    姚小华,王开良,罗细芳,等.我国油茶资源与技术现状及产业化发展对策[C].中国粮油学会第三届学术年会论文选编,2004,289-294
    姚小华.图说油茶高效生态栽培[M].杭州:浙江科学技术出版社,2009
    姚小华,王亚萍,王开良,等.地理经纬度对油茶籽中脂肪及脂肪酸组成的影响[J].中国油脂,2011,36(4):31-34
    姚小华.油茶高效实用栽培技术[M].北京:科学出版社,2010
    姚小华,黄勇,王开良,等.小果油茶优良种质资源筛选与综合评价[J].经济林研究,2012,30(4):1-8
    严兆福,尚新业.疆核桃分类的探讨[J].新疆农业科学,1987,3:25-26
    杨冬青.不同儿茶素含量茶树愈伤组织差异表达基因的cDNA-AFLP分析[J].安徽农业大学硕士学位论文,2010
    杨明,赵兰勇,于守超.山东平阴玫瑰种质资源调查研究及类型划分.中国园林,2003,7:61-63
    杨萍,吴芳明.黎平大宝油茶物候、产量性状及油分组成初步研究[J].贵州林业科技,2011,39(1):27-31
    杨杨,洪亚辉,黄勇,等.西南地区小果油茶群体遗传多样性的SRAP分析[J].湖南农业科学,2011,13:1-4
    叶爱华,余梅,朱林,等.用cDNA-AFLP及其改进的方法分析茶树花发育过程中的基因表达[J].激光生物学报,2008,17(6):733-738
    叶正达.云南主要核桃品种[J].经济林研究,1986,4(2):60-62
    宜春油茶林场.介绍宜春地区几种优良的小果油茶[J].江西林业科技,1978,4:48-50
    尹佟明,孙晔,易能君,等.美洲黑杨无性系AFLP指纹分析[J].植物学报,1998,40(8):778-780
    余梅,江昌俊,叶爱华,等.利用cDNA-AFLP技术研究茶树花蕾发育基因差异表达片段[J].茶叶科学,2007,27(3):259-264
    于小玉.油茶和泡桐品种的鉴定及遗传多样性分析[D].南京林业大学硕士论文,2010
    余继忠.福鼎大白茶半同胞系和云南大叶茶半同胞系遗传多样性和亲缘关系研究[D].中国农业科学院博士学位论文,2010,32-39
    袁玲.安吉白茶阶段性返白过程中差异表达基因的分离及部分基因全长cDNA克隆[D].湖南农业大学硕士学位论文,2012
    张国武.油茶优良无性系性状表现的比较分析与评价[D].江西农业大学博士学位论文,2007
    张国武,钟文斌,乌云塔娜,等.油茶优良无性系ISSR分子鉴别[J].林业科学研究,2007,20(2):278-282
    张宏达,任善湘.中国山茶科新植物[J].中山大学学报(自然科学版),1992,31(1):74-76
    张红轩,杨长群,余世聪,等.伏牛山区山茱萸优良自然类型划分[J].特种经济动植物,2007,10:38
    张克中.百合种质扩繁,亲缘关系及雄性不育诱导研究[D].北京林业大学,博士学位论文,2003
    张莉.茶树种子低温贮藏过程中热激蛋白的差异表达与分析[D].安徽农业大学硕士学位论文,2008
    张立.浙江省山茶天然居群的遗传多样性研究[D].北京林业大学硕士学位论文,2008
    张娜,杨文香,闫红飞,等.小麦抗叶锈病基因Lr45的AFLP分子标记[J]中国农业科学,2005,38(7):1364-1368
    张日清,闻丽,刘友全,等.低温预处理对油茶花药愈伤组织诱导的影响[J],中南林学院学报,2005,25(6):24-28
    张瑞萍,吴俊,李秀根,等.梨AFLP标记遗传图谱构建及果实相关性状的QTL定位[J].园艺学报,2011,38(10):1991-1998
    张新波.油松自然类型的初步划分[J].河北林业科技,1978,16(2):22-28
    张婷,刘双青,梅辉,等.湖北省不同地区油茶遗传多样性的AFLP分析[J].安徽农业科学,2011,39(23):14070-14071,14075
    张婷,刘双青,郭淑倩,等.油茶AFLP分子标记体系的建立[J].江苏农业科学,2011,39(2):69-71
    张婷,刘双青,董妍玲.湖北省油茶种质资源的遗传基础研究[J].河南农业科学,2011,40(11):53-56
    张云.油茶遗传多样性及遗传性状的RAPD分析[D].福建师范大学硕士论文,2003
    张智俊.油茶优良无性系组织培养、RAPD分子鉴别和cDNA文库构建的研究[D].中南林学院博士学位论文,2003
    张智俊,谭晓风,陈永忠.油茶总RNA及mRNA的分离与纯化[J].中南林学院学报,2003,3(2):76-81
    张卓文,徐福余.六种油茶花粉形态观察[J].浙江林学院学报,1989,6(1):9-12
    赵爱春,鲁成,李斌,等.家蚕AFLP分子连锁图谱的构建及绿茧基因定位[J].遗传学报,2004,31(8):787-794
    赵超艺,周李华,罗军武,等.广东茶树种质资源AFLP分析[J].茶叶科学,2006,26(4):249-252,258
    赵广,乐文全,路娟,等.梨果皮色泽变异品种(系)的AFLP与SRAP标记鉴定[J].果树学报,2011,28(4):568-574
    赵罕,张华新,李凤鸣,等.山西翅果油天然群体果实类型的划分[J].南京林业大学学报:自然科学版,2011,35(3):60-64
    赵继荣,李宁,刘红霞,等.小麦cDNA-AFLP差异表达基因片段的验证方法[J].植物遗传资源学报,2009,10(1):16-20
    曾勉.浙江诸暨之银杏[J].园艺,1935,1(5):157-165
    郑婷婷.油茶种质资源遗传多样性分析与无性系鉴别[D].西南大学硕士学位论文,2010
    中国科学院中国植物志编辑委员会.中国植物志(第49卷3分册)[M].北京:科学出版社,1998
    中华人民共和国卫生部药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社,1995,215
    周建云,曹旭平,张宏勃,等.陕西栓皮栎天然类型划分研究[J].西北林学院学报,2009,24(1):16-19
    周兰英,王永清,张丽,等.46种杜鹃花属植物表型性状的数量分类研究[J].林业科学,2009,45(8):67-75
    周李华.广东茶树种质资源遗传多样性AFLP分析[D].湖南农业大学硕士学位论文,2006
    周盛,朱金惠,肖景治,等.油茶远缘杂交育种试验[J].经济林研究,2001,19(1):20-25
    周治刚,郝翻,严志慧,等.适制绿茶茶树品种遗传多样性的AFLP分析[J].茶叶通讯,2009,36(3):12-16
    朱锦懋,黄茂提,陈由强,等.笋材两用毛竹林林分结构数量关系研究[J],植物生态学报,2000,24(4):483-488
    朱益川,赵世远.四川银杏类型划分及优良单株选择[J].四川林业科技,1999,20(2):75-80
    祝军,李光晨,王涛,等.威赛克柱型苹果与旭的AFLP多态性研究[J].园艺学报,2000,27(6):447-
    448
    庄瑞林,黄少甫,李康元.油茶有性杂交试验[J].林业实用技术,1982,12:12-14,25
    庄瑞林,董汝湘,黄爱珠.山茶属植物种质资源的搜集及基因库的建立利用研究[J].林业科学研究,
    1991,4(2):178-184
    庄瑞林,蔡肖群.油茶优良农家品种全国区域性评比试验研究[J].广西林业科技,1993,22(2):46-53
    庄瑞林,周启仁,姚小华,等.中国油茶[M].北京:中国林业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700