用户名: 密码: 验证码:
超短基线系统安装校准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于国内的高精度超短基线(USBL)定位系统,研究系统的海上安装校准及声线跟踪定位算法。经过安装校准,可以计算声线的初始掠射角,才能使用声线跟踪进行定位,而没有声线跟踪算法也无法验证校准的准确度、无法保证系统定位精度,因此这两个内容对于USBL是密不可分的。
     安装校准的技术核心是它所使用的安装校准观测方程,它的性质决定了校准的流程和工程实现,从而决定了校准结果是否具有一定的稳健性。稳健性包括:首先校准要有结果,即求解不能不收敛;其次因海上操作的成本,单次校准结果要可信任,即校准的一致性和不确定区间要得到保证;最后校准的结果要保持一定的无偏性,以保证定位的精度。因此,本文重点研究了已有观测方程的性质并对其进行改进,给出了最小二乘准则下估计解的形式,讨论了方程解区间唯一性、无偏性和方差的性质。首先校准航迹是影响方程是否收敛(区间唯一性)和校准不确定区间(方差的性质)的重要因素,它需要有一定的尺度并且尽量对称;其次方程需要粗测安装垂直位移偏差来保证收敛,这在理想条件下是不影响其它的估计的;再次影响方程解偏差(估计的准确度)大小的主要因素是水下声线的弯曲,声线弯曲补偿可以对方程进行去偏,而方程的去偏也可视作声线弯曲补偿,因此第一步的校准方程估计平均声速而第二步方程采用去偏形式;最后,由于方程的非线性和海况,具体的数值解法也是影响估计精度和方差的重要因素,而M估计有较好的抗差性及稳健性,因此本文对最小二乘估计和M估计进行了理论研究后,给出了一种基于异常点剔除算法的加权形式,可不必考虑具体的准则函数直接设置观测权。综上所述,改进的观测方程、合理的航迹和合适的数值解法可基本保证校准的稳健性。
     对于声线跟踪定位,假设校准合理、测量条件良好,影响定位精度的主要原因是定位算法。定位算法的工程实现通常是使用常梯度或常声速进行分层跟踪,因此分层好坏直接影响算法的精度,显然分层越密算法精度越高,但这个准则对于USBL实时或深海定位是不可接受的。另外,声速剖面的测量质量或变化对于定位精度的影响难以表达,这对于工程实现也是不利的。而本文初步建立了水平定位误差传递模型,它是由误差传递公式经过变化并且仿真生成参数而建立的。根据模型,本文设计了一种可由算法精度要求而对剖面进行分层的自适应方法,它基于自适应辛普森方法,是辛普森方法的逆过程。另外模型对其它工程问题有一定的指导意义,如剖面在定位之前的处理、常声速和常梯度跟踪的区别等。之后本文讨论了温、盐、压的声速剖面测量方法、剖面的平滑算法和拓延算法,最后总结了USBL声线跟踪定位的转换公式与流程的基本,通过实验数据验证了公式和流程的合理性。
     最后对实验数据进行统计处理,统计结果表明了航迹、M估计对估计方差有所改善,以及方程去偏补偿后对校准一致性有所改善。校准之后进行定位,可以看到定位的散点图不再有圆半径的“适应性”,使用某半径上数据进行校准,对其他数据定位依然可以较好的收敛,这验证了校准及跟踪定位的正确性。
This paper is based on the domestic high precise USBL (Ultra-Short Baseline) system toresearch the at-sea installation calibration and ray tracing position algorithm. Afterinstall-calibration, the incidence angle can be calculated to use the tracing positioningalgorithm; the ray-tracing positioning scatter picture can test if the calibration is correct,which is the ultimate goal of the system, therefore the two contents for USBL are inseparable.
     The core of install-calibration the measurement equation used, as well as the calibrationprocess decided by the equation property and engineering realization, which need the esurientthat the calibration has to have a certain robustness under normal conditions. The robustnessmeans: first the equation must be convergence to obtain a result; secondly single calibrationshould be trusted, which means the uniform and the uncertainty interval must be guaranteed;at last the calibration should be correct, which means the result should be unbiased as far aspossible. Therefore, this paper focuses on the existing observation equations and itsimprovement, which contains the interval uniqueness, the unbiasedness and the nature of thevariance, then the solution form at the least squares rules. At the first, tracks is an importantissue for whether the equation be convergence (interval uniqueness) and the uncertaintyinterval (the nature of the variance), which needs a certain scale and to be symmetry.Secondly the measurement of vertical displacement is needed to ensure the convergence ofequation, and the imprecisement do not affect other estimates under ideal conditions. Then themajor factor of the size of equation partial (estimated accuracy) is underwater acoustic linebending. Because the ray bending compensation can compensate the partial of the equation,the equation compensation do the same, then the practice is that at the first step to estimate theaverage sound velocity and at the second use the partial form. Finally, due to the nonlinearityof the equation and the sea circumstance, the specific numerical solution also influences theestimation precision and variance. While M estimation has better robustness and stability, thispaper presents a weight-form based on outlier eliminating algorithm, which does not need toconsider the specific criterion function but the weight of observation only. To sum up, theimproved observation equation, reasonable tracks and appropriate numerical solution canensure the stability of calibration basically.
     For ray tracing positioning, the positioning precision is mainly due to positioningalgorithm at the condition of reasonable calibration and measurement. Positioning projectalgorithm of tracking positioning is constant gradient or constant sound speed delimination, then the rationality of delimination will directly influence the accuracy of the algorithm.Apparently the denser gets the higher accuracy, but the criterion for USBL real-time or deeppositioning is not acceptable. In addition, influences of the measurement quality or changes ofthe sound speed profile are difficult to express, which is negative to engineeringimplementation. So the horizontal positioning error propagation model is established, whichis deduced by the error transfer formula and whose parameters are confirmed by simulation,and the concept of equivalent measurement error of sound velocity profile is given. Accordingthe model, an adaptive slicing algorithm is designed to control truncation error: it bases on theadaptive Simpson method with inversed process. And then the model has some guidingsignificance, such as profile processing before position, the equivalent difference. For the next,the velocity measurement method by temperature, salinity and pressure is studied as well asthe profile smoothing or stretching. At last formulas needed by USBL positioning and thebasic module are summarized, and the correctness is verified by the experimental data.
     At the end of the paper, statistical processing of experimental data shows the improvingof the track and the M estimation. Positioning after calibration using smaller circle data, allthe location have good convergence scatter include the bigger one, which means the scatterhas no radius adaptability and verifies the calibration and tracking accuracy.
引文
[1]海洋资源_海洋资源简介http://www.baikedq.com/ziran/3/11741.html
    [2]海底矿产_百度百科http://baike.baidu.com/view/393896.html?goodtaglemma
    [3]李启虎.水声信号处理领域若干专题研究进展[J].应用声学,2001(1):1-5页
    [4]李守军,包更生,吴水根.水声定位技术发展现状及展望[J].海洋技术,2005.01(24): P130-135.
    [5]田坦.水下定位与导航[M].北京:国防工业出版社,2007
    [6]张红梅,赵建虎.水下定位导航系统[M].武汉:武汉大学出版社,2010
    [7] Watson, M.; Berkowitz, J.; Wapner, M. Ultra-short baseline acoustic tracking system [J].OCEANS.1983,15(8):214-218P
    [8]张光普.导航定位通信一体化系统总体技术研究[D].哈尔滨工程大学,2007
    [9]付进.长基线定位信号处理若干关键技术[D].哈尔滨工程大学,2007
    [10] John J.Leonard, Andrew A. Bennett and Christopher M. Smitt. Autonomous underwatervehicle navigation[J]. MIT Marine Robotics Laboratory Technical Memorandum98-1.1998
    [11]燕奎臣,吴利红. AUV水下对接关键技术研究[J].机器人.2007,29(3):267-273页
    [12]张选民,倪光健.4C-OBC深海地震采集系统技术发展[J].物探装备.2006,16(1):19-24页
    [13]冯守珍,吴永亭,唐秋华.超短基线声学定位原理及其应用[J].海岸工程.2002,23(4):13-18页
    [14] Marvin Watson, Cheseter Loggins and Y.Thomas. A new high accuracy super short baseline system[J]. Proceedings of the1998International Symposium on UnderwaterTechnology.1998:210-215P
    [15] A.Alcocer, P.Oliveira and A.Pascoal. Underwater acoustic positioning systems based onbuoys with GPS[C]. Proceedings of the Eighth European Conference on UnderwaterAcoustics,8th ECUA.2006(2):521-529
    [16] B.A.Kasatkin, G.V.Kosarev. Feature of developmeant of the APS for very long rangeAUV[C]. OCEANS '95. MTS/IEEE.'Challenges of Our Changing Global Environment'.1995(1):175-177
    [17]郑翠娥.超短基线定位技术在水下潜器对接中的应用研究[D].哈尔滨工程大学,2007
    [18] Jean Peyronnet. POSIDONIA6000A new long range highly accurate ultra short baseline positioning system[J].OCEANS '98.1998(3):1721-1727P
    [19]曾横一.我国造船工业的重要领域-海洋石油工程[J].船舶工程.2005(27): P30-34
    [20]燕奎臣,吴利红. AUV水下对接关键技术研究[J].机器人.2007,29(3): P267-273
    [21] Sonardyne. Acoustic positioning and control systems for deep water drilling.www.sonardyne.com
    [22] Francois.Parthiot, Jean Denis. A better way to navigation on deep sea floors[C].OCEANS '93.'Engineering in Harmony with Ocean'.1993(2): II494-II498P
    [23] Jean Peyronnet. POSIDONIA6000A new long range highly accurate ultra short baseline positioning system[C]. OCEANS '98.1998(3):1721-1727P
    [24] Keith Vickery,Acoustic Positioning System-A Practical Overview Of CurrentSystemp[J].0-7803-5190-8/98,1998IEEE
    [25] Keith Vickery,Acoustic Positioning System-New Concepts-The Future[J],0-7803-5190-8/98c1998IEEE
    [26] PAUL R,OSCAR P,STEFAN B.Williams.Towards Geo-Referenced AUV navigationthrough fusion of USBL and DVL measurements[C].Oceans2006. Boston, US.2006:1-6.
    [27] Max Audric. GAPS, a new concept for USBL[C]. MTS/IEEE TECHNO-OCEAN’04.2002(2):786-788P
    [28] Donald Thomson, Scott Elson. New generation acoustic positioning systems[C]. Oceans'02MTS/IEEE.2002(3):1312-1318P
    [29] Anonymous. Ten TrackLink USBL systems sold in one month[J]. Sea Technology.2003,44(12):69P
    [30] Anonymous. TrackLink USBL systems sold to Fugro[J]. Sea Technology.2006,43(3):62P
    [31] Eric Willemenot, Pierre-Yves Morvan, Hubert Pelletier, Arne Hoof. Subsea Positioningby Merging Inertial and Acoustic Technologies[C]. OCEANS2009,2009.4:P1-8
    [32]隋海琛,杨鲲,张彦昌,赵阳“南海一号”打捞过程中的水下定位和姿态监测[J],水道港口.2009.2(30): P139-142
    [33]张光普.导航定位通信一体化系统总体技术研究[D].哈尔滨工程大学,2007
    [34]付进.长基线定位信号处理若干关键技术[D].哈尔滨工程大学,2007
    [35]郑翠娥.超短基线定位技术在水下潜器对接中的应用研究[D].哈尔滨工程大学,2007
    [36]吴永亭,周兴华,杨龙.水下声学定位系统及其应用[J].海洋测绘.2003,23(4):P18-21
    [37]哈工程长程超短基线定位系统项目填补国内空白http://www.capumit.org.cn/show.aspx?id=680
    [38] J.F. Denis, A Better Way to Navigate on Deep-sea Floors[C]. OCEANS '93.1993(2):P494-498
    [39] PHILIPS D R C.An evaluation of USBL and SBL acoustic systems and the optimizationof methods of calibration-Part1[J].The Hydrographic Journal,2003(4):18-25.
    [40] PHILIPS D R C.An evaluation of USBL and SBL acoustic systems and the optimizationof methods of calibration-Part2[J].The Hydrographic Journal,2003(7):10-19.
    [41] PHILIPS D R C.An evaluation of USBL and SBL acoustic systems and the optimizationof methods of calibration-Part3[J].The Hydrographic Journal,2003(10):11-19.
    [42] Vickery, K., Acoustic positioning systems, a practical overview of current systems[C].Proceedings of the1998Workshop on Autonomous Underwater Vehicles, Cambridge,MA, USA,1998, P:5–17.
    [43] Taugstadmo, J.E., Jacobsen, H.P., Gunhildstad, T.H. Transducer alignment and LBLcalibration[J]. Proceedings of the MTS Dynamic Positioning Conference, Houston,Texas,2002, P:1–36
    [44] Kinsey, J.C., Whitcomb, L.L. Towards in-situ calibration of gyro and Dopplernavigation sensors for precision underwater vehicle navigation[C]. Signal Proceedingsof the2002IEEE International Conference on Robotics and Automation, Arlington, VA,2002,P:4016–4023.
    [45] Milne, P.H. Underwater Acoustic Positioning Systems[J]. Gulf Pub. Co., Huston.1983
    [46] Opderbecke, J. At-sea calibration of a USBL underwater vehicle positioning system[C].OCEANS’97MTS/IEEE Conference Proceedings, Halifax, NS, Canada,1997(1), P:721–726.
    [47]田坦,刘国枝,孙大军.声纳技术[M].哈尔滨:哈尔滨工程大学出版社,2000
    [48] Morgado Marco. Oliveira Paulo, Silvestre Carlos. Experimental evaluation of a USBLunderwater positioning system[J]. International Symposium Electronics in Marine,2010.5: p485-488
    [49] Arkhipov, Mikhail. A design method and coordinate determination algorithm formulti-element USBL Systems[J]. Proceedings of the13th WSEAS InternationalConference on Systems.2003.3: p71-76
    [50] Willemenot Eric, Morvan, Pierre-Yves. Subsea positioning by merging inertial andacoustic technologies[J]. OCEANS '09IEEE Bremen: Balancing Technology withFuture Needs,2009.8:p88-91
    [51] Hsin-Hung Chen,In-situ alignment calibration of attitude and ultra short baselinesensors for precision underwater positioning[J], Ocean Engineering2008(35):P1448-1462
    [52]杜广文.超短基线定位之感测器对准偏差修正[D].国立中山大学硕士论文.2006
    [53] Hsin-Hung Chen, Hsu-Kuang Chang, Jia-Pu Jang, and Jen-Yu Wu. Iterative Scheme forEstimating Sensor Misalignments in a USBL Positioning System[C]. Proceedings of theNineteenth (2009) International Offshore and Polar Engineering Conference. Japan,June21-26,2009:P608-612
    [54]刘伯胜,雷家煜.水声学原理[M].哈尔滨工程大学出版社.1993
    [55]米尔恩,P.H著.肖士石,陈德源译.水下工程测量[M].北京:海洋出版社,1992
    [56]林旺生,水声信道仿真与声线修正技术研究[D],2009
    [57] Xueyi Geng, Adam Zielinsk,Precise Multibeam Acoustic Bathymetry[J], MarineGeodesy, Taylor&Francis,2010(10),P157-167
    [58]吴德明.一种用于声线修正的迭代法[J].声学学报.1992,17(2):104-110页
    [59]张宝成,徐雪仙.声速不均匀修正对水声定位系统测距精度的影响[J].声学与电子工程.1992(4):7-11页
    [60]李迎春,吴德明.短基线平面阵型双曲面定位系统的声线修正[J].声学学报.1992(9):340-344页
    [61]王燕,梁国龙.一种适用于长基线水声定位系统的声线修正方法[J].哈尔滨工程大学学报.2002,23(5):32-34页
    [62] Vaccaro R J, The Past, Present, and Future of Underwater Acoustic Signal Processing[J].IEEE Signal Processing Magazine.1998.7, P:21-51
    [63] Mary.M, William. M. An acoustic navigation system[M]. WHOI Technical Reports,Department of Ocean Engineering, Massachusetts, US.1974
    [64]孙革,多波束测深系统声速校正方法研究及其应用[D],中国海洋大学,2007
    [65]赵建虎,刘经南,多波束测深及图像数据处理[M],武汉:武汉大学出版社,2008
    [66]秦臻.海洋开发与水声技术[M].北京:海洋出版社,1984.
    [67] VICKERY K.Acoustic positioning systems-A practical overview of current systems[C].Autonomous Underwater Vehicles. Cambridge. U S,1998.P5-17
    [68] RICORDEL V. Trajectory estimation for ultrashort baseline acoustic positioningsystems[C]. Aerospace Conference2001. Montana. U S,2001(4). P:1791-1796
    [69] A.Tolstoy. Matched Field Processing for Underwater Acoustic[M]. Singapore, WorldScientific Publishing Co. Pte.Ltd.1993
    [70] M.J. Hinich, E.J. Sullivan. Maximum likelihood signal processing for a vertical array[J].J. Acoust. Soc. Am.1973,54(2):499-503P
    [71] C.H. Knapp, G.C. Carter.The generalized correlation method for estimation of timedelay[J]. IEEE. Trans. Acoust. Speech Signal Process.1976,24(4):320-327
    [72] PC.L.Nikias,R Pan.Time Delay Estimation in unknown Gaussian spatially correlatednoise[J]. IEEE. Trans.ASSP.1988,36(11):1706-1714
    [73] PA.G.Piersal. Time delay estimation using phase data[J]. IEEE. Trans. ASSP.1981,29(3):471-477
    [74] PA.H.Quazi.An overview on the time delay estimation in active and passive systems fortarget localization[J]. IEEE. Trans. ASSP.1981,29(3):527-533P
    [75] Lester R.LeBlance, Pierre, Philippe, J. Beaujean. Chirp FSK modem for high reliabilitycommunications in shallow water. OCEANS '99. MTS/IEEE.1999(1): P222-227
    [76]周维虎,兰一兵.空间坐标转换技术的分析与研究.航空计测技术.1999,19(4):P10-12
    [77]朱华统.常用大地坐标系及其变换[M].北京:解放军出版社,2001
    [78]朱华统.大地坐标系的建立[M].北京:测绘出版社,1986
    [79]刘经南,坐标系统的建立与变换[M]。武汉:武汉测绘科技大学出版社,1995
    [80]张道平.超短基线定位系统的误差分析.海洋学报.1989,11(4): P510-517
    [81] YAMADA T. Error evaluation in acoustic positioning ofa single transponder seafloorcrustal deformation measurements,[J]. Earth, Planets and Space,2002,54(9):871-881.
    [82] Vincent Ricordel, Sebastien Paris.Trajectory estimation for Ultra-short BaselineAcoustic Positioning Systems[J].IEEE Proceedings,2001,14(4):1791-1796.
    [83]唐秋华,吴永亭,丁继胜,杨龙,刘焱雄.超短基线声学定位系统的校准技术研究[J].声学技术.2006(4).P:281-287
    [84]王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社,2002
    [85]袁亚湘,非线性优化计算方法[M],北京:科学出版社,2008
    [86]王新洲,非线性模型线性近似的容许曲率[J].武汉测绘科技大学学报,1997(2):P119-121
    [87]王新洲,非线性模型能否线性化的实用判据[J].武汉测绘科技大学学报,1999(2):P145-148
    [88]李庆海,陶本藻.概率统计原理和在测量中的应用[M].北京:测绘出版社,1990
    [89]张金槐.线性模型参数估计及其改进[M]长沙:国防科技大学出版社,1999
    [90] Levenverg. K. A method ofr the solution of certain nonlinear problems in lest squares[J].Quart. Apple.1994(4): P164-168
    [91] Marquardt,D.W. An algorithm for least squares estimation of nonlinear parameters[J].SIAM J.1963(11):P431-441
    [92] P.J G. Teunissen. Nonlinear least squares[J]. Manuscript Geodaetica,1990(15):P137-150
    [93] Lohse.P. Prameter estimation in nonlinear models[D]. Stuttgart University.1993
    [94]韦博成,近代非线性回归分析[M].南京:东南大学,1989
    [95]陈宝林.最优化理论与算法[M].北京:清华大学出版社,1995
    [96]王新洲.非线性模型参数估计的直接解法[J].武汉测绘科技大学学报,1999(2):145-148
    [97]惠中华.海峡两岸计量学词汇[英汉对照][M].北京:中国标准出版社,1997
    [98]齐纳,孟子厚,声频声学测量技术原理[M],北京:国防工业出版社,2008
    [99]周渭,于建国,刘海霞,测试与计量技术基础[M],西安:西安电子科技大学出版社,2004
    [100]郑党儿,简明测量不确定度评定方法与实例[M].北京:中国计量出版社,2005
    [101]刘智敏. GB/T19022.1国家标准辅助学习资料(之二)测量不确定度的评定[M].北京:中国技术监督情报研究所,1995
    [102]肖明耀译, ISO不确定度表达指南[M].北京:中国计量出版社,1993
    [103]刘智敏的等,测量不确定度手册[M],北京:中国计量出版社,1997
    [104]周江文,黄幼才,杨元喜,欧吉坤.抗差最小二乘法[M].武昌:华中理工大学出版社,1997
    [105]杨元喜,抗差估计理论及其应用[M].北京:八一出版社,1993
    [106] J Saleh.Robust estimation based on energy minimization principles[J]. Journal ofGeodesy,2000(74):P:2021-2024
    [107] Blaha. G. Non-iterative approach to nonlinear least-squares adjustment[J]. ManuscriptGeodaetica.1994(19): p199-212
    [108]吴友平,乐慧至,夏元平,田海涛,李海文,抗差估计定权方法及与其他方法抗差效果比较研究[J],城市勘测,2007,62-63
    [109]周江文等.抗差估计论文集[M].北京:测绘出版社,1992
    [110]周江文,观测权的估值[M],北京:测绘出版社,1979
    [111]王新洲.稳健二次估计理论及其在GPS随机模型估计中的应用[D].武汉测绘科技大学,1994
    [112] Huber,P.J.Robust Statistics[M], New York, Wiley Online Library,1981
    [113] Andrews, D. F. A robust method for multiple linear regression[J], Technometrics, Vol.16, No.4,1974
    [114] Chinrungrueng, Chedsada. Directional savitzky-golay filters for real-time specklereduction and coherence enhancement of medical ultrasound images[C].2004IEEERegion10Conference Proceedings: Analog and Digital Techniques in ElectricalEngineering,2004: pA163-A166
    [115] Subbarao, Raghav. Nonlinear mean shift for robust pose estimation[J]. IEEE Workshopon Applications of Computer Vision,2007. p429-441
    [116]童丽,曾泳泓,王正明,异常点剔除及其并行实现[J],数值计算与计算机应用2009.9(3):P171-177
    [117]王红,邸国辉,熊燕,水下地形测量高程异常点剔除方法研究,四川测绘[J],2004(27): P36-38
    [118]童丽,周海银,异常数据剔除的一种改进计算方法[J],中国空间科学技术.2001.4(21):P11-16
    [119]丁继胜.基于等效声速剖面法的多波束测深系统声线折射改正技术[J].海洋测绘.2004,24(6):P27-29.
    [120]马振华等.现代应用数学手册计算与数值分析卷[M].北京:清华大学大学出版社.2005:P401-450
    [121]中华人民共和国国家计量检定规程JJG763-2002温盐深测量仪检定规程.国家质量监督检验检疫总局.2002.09.13
    [122]叶长久.声速计算公式比较[J].海洋测绘.1998.1: P17-20.
    [123]刘雪堂,林红军. CTD剖面仪现场定标和误差分析[J].海洋技术.1990.9(1): P18-23
    [124] Underwater Acoustics Technical Guides-Speed of Sound in Sea-Water. Nation PhysicalLaboratory, Teddington, Middlesex, UK, TW110LW
    [125]中国人民解放军海军司令部海道测量部.实用潮汐学[M].天津:中国人民解放军海军司令部海道测量部,1969
    [126]王广运,郭秉义,李洪涛.差分GPS定位技术与应用[M]。北京:电子工业出版社钱祖文.非线性声学.科学出版社.2009:1-2页
    [127]喻敏.长程超短基线定位系统研制[D].哈尔滨工程大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700