用户名: 密码: 验证码:
机动车运行安全监测新模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动性的机动车运行安全状态监测新模式是机动车运行安全检测技术未来发展的必然趋势。论文“机动车运行安全监测新模式研究”系统地研究机动车运动姿态、动载荷、制动监测模型的机动车运行状态监测体系的理论基础、关键技术和实现方法,这对提高机动车安全运行的技术保障能力、减少交通事故,促进机械制造以及仪器科学与技术发展,具有重要的学术价值和实际意义。研究工作得到教育部新世纪优秀人才支持计划项目(No.NCET-08-0211)、广东省科技攻关项目(20090119)和国家自然科学基金项目(No.60472006)的资助。
     论文首先对国内外机动车运行安全状态监测的研究现状进行分析,指出目前机动车监测参数少,未能真实、动态地反映机动车安全运行状态监测的需要,信息得不到综合有效利用,从而确定论文研究任务。论文主要工作包括:
     ㈠提出新监测模式下的指标体系及监测模式的整体构架。新监测模式指标体系包括监测机动车运动姿态(MAP,Motion Attitude Parameter)、动载荷(DLP,Dynamic LoadParameter)、制动性能(BPP,Braking Performance Parameter)三类关键参数,通过建立机动车MAP、DLP和BPP信息之间的关联性可获得一些传统其它系统无法测量的参数;借助新监测模式27项参数信息可以真实、动态地反映机动车安全运行状态,比以往更加全面、科学;提出机动车安全运行状态监测平台的构架、车载信息感知及控制终端总体结构,从信息感知、信息传送、应用开发三个功能层次对监测系统功能需求进行分析,讨论分析车轮MAP、车轮DLP和车轮BPP等关键测量模型的实现思路。
     ㈡系统研究机动车运动姿态MAP监测技术。提出基于三维加速度传感正方体四顶点配置组成12加速度组件配置GFSIMU方案,推导出机动车车身MAP测量车身姿态角B, B, B、速度v Bx, v By,v Bz、加速度a B x, a By,a B z等数学模型;提出车轮MAP加速度计配置方案,推导车轮MAP测量车轮i (i=1~4)姿态角i, i, i、轮毂加速度aS Ti, aS Si,aS Ci、轮毂速度vS Ti, vS Si,vS Ci、和转动参量wi, wi数学模型;由车轮毂形状特点,设计圆形三角活动轮毂抓盘实验装置来安装车轮传感模快,既方便完成试验,又不影响试验原理及方法;选用具有良好信噪比的切向加速度传感器输出信号、非常适合作为车轮信号特征量,纠正以往倾向选用向心加速度传感器输出信号的做法。机动车运动姿态MAP监测方案具有实际加速度传感器少、算法简单,求解容易,测量精度高特点。
     ㈢系统研究车轮动载荷Li、制动器制动力Fb i的监测新方案与监测机理。动载荷Li的监测方案基于机动车行驶过程中,车轮动载荷Li受轴荷转移、路面不平整、地面反力影响而发生变化,推导出车轮动载荷Li数学计算公式。制动器制动力Fb i的监测方案基于机动车行驶过程中,车轮BPP的车轮滑移率S i、制动器制动力Fb i及平衡参数都会发生变化,推导出车轮制动器制动力Fb i及其平衡的数学表达式。车轮动载荷与制动器制动力的监测新方案较以往其它方法,具有安装容易、算法简单、真实、动态地反映整体车轮动载荷、制动信息的特点。
     ㈣研究基于神经网络的车身角速度姿态角算法。在模型不明确、方法比较复杂的情况下,用神经网络模型去代替这些原来基于机理所建的模型,从而达到提高建模准确性以及减少算法误差。提出基于典型的路况车身角速度神经网络分割方法,考虑隐藏层神经元数目、训练样本数目和训练函数方面因素,研究基于正交设计的网络结构优化方法;设计状态分类器辨识相应运动状态,使数据顺利进入相应子神经网络进行解算。
     ㈤开展机动车运行安全试验系统、监测实验平台研发与实验。车轮智能传感节点由双轴加速度传感器、单轴加速度传感器组合测量,通过两个传感器布置于电路板两面使三个加速度敏感轴交于一点;研发机动车GPS地理位置参数监测装置,开发包括远程数据服务器、SQL数据库、监测平台远程管理软件在内的基于Web的监测平台远程管理系统;利用实验条件,制订出测试方法。实验结果表明,监测系统及平台能够较准确地测出所有的机动车安全运行状态监测参数,并可实现远程在线监控功能。
     ㈥提出将基于轮载式智能传感的机动车运行安全状态监测平台技术的其它拓展应用方案。基于轮载式智能传感机动车安全状态快速检测系统,既可节约场地,又可现场检测,检测能力比传统固定检测线提高1倍以上;基于轮载式智能传感四轮定位参数测量系统,实现在现场对车轮四轮定位参数的快速、动态、准确、真实检测;基于轮载式智能传感动平衡参数测量系统,实现对车轮动平衡参数的快速、动态、准确检测。
     论文实验表明,实验条件下车身俯仰角θB平均误差0.0690o,车身侧倾ФB平均误差0.0351o,车身前向νBx速度平均误差1.3607m/s,车轮外倾γi平均误差0.0734°,轮毂切向νSti速度平均误差0.1480m/s,车轮角速度ωi平均误差0.5420rad/s,相对误差2.25%。本文提出新的监测模式是可行的,传感器配置方案是正确的,监测参数是全面的,能够测出所有的机动车安全运行27项状态监测参数,达到预想效果,具有重要推广价值。
The active novel mode of vehicle operating safe state monitoring will be the inevitabletrend of vehicle driving safety measurement technology development in the future. The thesis“Study on the novel mode of vehicle operating safe state monitoring” systematically studiesfundamental theory&key technology&realize method of vehicle operating safe statemonitoring system, including vehicle operating attitude monitoring model, vehicle dynamicload monitoring model, vehicle braking performance monitoring model, which has importantacademic value and practical significance in improving the technical protection of vehiclesafe operation, reducing traffic accidents and promoting the development of automobileindustry and Instrument Science and Technology. This paper was supported by the Programfor New Century Excellent Talents in University of Ministry of Education(No.NCET-08-0211),Guangdong province Science and Technology Researching Project (No.20090119) and Natural science Foundation of china (No.60472006).
     This paper analysed the research status in vehicle operating safe state monitoring athome and abroad and suggested that the vehicle monitoring parameters are few, which cannotreflect the requirement of vehicle operating safe state monitoring truly and dynamically andget information be used comprehensively and effectively, then made the research scheme.Main works:
     ⑴An index system in novel monitoring mode and the whole structure of the monitoringmode were put forward. The novel monitoring mode index system include monitoringvehicle’s three key parameters: motion attitude parameter(MAP), dynamic load parameter(DLP) and braking performance parameter(BPP).By establishing the connection among MAP,DLP and BPP information, some parameters that other traditional systems cannot measure canbe obtained; With the27-parameter information in novel monitoring mode, vehicle operatingsafe state can be reflected truly and dynamically, which is more comprehensive and scientificthan ever. Proposed the structure of motor vehicle operating safe state monitoring platformand the over-all structure of vehicular information perception and control terminal; analysedthe functional requirement of monitoring system from three function levels of the informationperception, information transmission and application development; and discussed the ideason how to realize key monitoring models such as wheel MAP, wheel DLP, wheel BPP andso on; to lay foundation for deep research into the model project(program).
     ⑵The monitoring technology of motor vehicle MAP was studied systematically anddeeply. GFSIMU scheme were proposed based on the3d acceleration sensor cube to configurate12-acceleration components, the mathematical modes of body attitude angle
     B, B, B, velocity v Bx, v By,v Bz and acceleration a Bx, a By,a Bz were deduced and then tohave the motor vehicle body MAP inertia be measured. Wheel MAP accelerometer schemewere proposed, and mathematical models of the wheel i(i=1~4) attitude angle i, i, i, thewheel hub acceleration aS Ti, aS Si,aS Ci, the wheel hub velocity vS Ti, vS Si,vS Ci, and therotating parameter were deduced and then to have the wheel MAP inertia be measured.Basing on the characteristic of the wheel hub’s shape, a circular triangle mobile hub controlplate was designed to install wheel sensor module, which is convenient to perform the test andalso of no impact on the principle and method of experiment. The output signal of tangentialacceleration sensor with better SNR is proposed to be chosen as the suitable feature variableof wheel signal, which could correct past practice that choosing centripetal acceleration sensoroutput signal. MAP monitoring program has the characteristics of less actual accelerationsensor, simple algorithm, easy to solve and high accuracy.
     ⑶The novel monitoring scheme and principle for dynamic loadLi and the brakingforceFb iwas studied systematically. The monitoring scheme of dynamic loadLi is based onthe fact that wheel dynamic loadLi varies with the axle load’s transfer, road’s smoothnessand the ground counter-force’s influence, then deduced the mathematical computationalformula of wheel dynamic loadLi. The monitoring scheme of braking forceFb iis based onthe variation of wheel BPP’s wheel slip rateS i, braking forceFb iand balance parametersduring driving process of the motor vehicle, then deduced the wheel braking forceFb iand itsbalanced mathematical expression. Compared to other methods, this one’s installation is easyand its arithmetic is simple, as well, it could reflect the wheel braking information real-time,truly and dynamically.
     ⑷The algorithm of vehicle body angular velocity attitude Angle was studied basing onneural network. While the model is not clear, the method is more complex, the neural networkmodel was used to replace the original model based on mechanism, so as to improve theaccuracy and reduce the algorithm error. The neural network splitting method was proposedbasing on the typical road-condition wheel body angular velocity to consider the number ofneurons, training sample numbers and training function factors in hidden layer. The researchbased on orthogonal design network structure optimization methods and designed the statesorter which could recognize the corresponding motion state, so as to make corresponding data smoothly enter the sub-neural network to calculate.
     ⑸Research, development and experiment of the vehicles driving safe testing systemand monitoring experimental platform were carried out. The wheel intelligence sensor nodescombined biaxial acceleration sensors and monaxial acceleration sensors to form multiplemeasurement instruments. By placing two measuring sensors in two sides of the circuit board,three acceleration sensitive axis were intersected to one point. Based on WEB to research anddevelop the vehicles’ GPS location parameters monitoring device, develop the monitoringplatform remote management system, including remote data server, SQL database, monitoringplatform remote management software. Take advantage of the experimental conditions tomake out test method. Through experiment verification, the monitoring system and platformcould accurately detect all the monitoring parameters of vehicles operating safe state, andrealize the remote online monitoring function.
     ⑹Based on WEIS other development application solutions of the vehicle operating safestate monitoring platform technology was proposed. The safe state rapid detection system thatbased on the wheel load type intelligent sensor WEIS can save space and have the fielddetection, its testing ability was1times above than traditional fixed detection line. Thefour-wheel location parameter measurement system that based on the wheel load typeintelligent sensor WEIS could provide rapid, dynamic, accurate and true detection forfour-wheel location parameters on the site. Based on the wheel load type intelligent sensorWEIS, the dynamic balance parameter measuring system could provide rapid, dynamic andaccurate detection for wheel dynamic balance parameter.
     The experiments show that, the body longitudinal attitude θBaverage error is0.0690o,thebody side-inclination angle ФBaverage error is0.0351o,the body forward direction velocityνBxaverage error is1.3607m/s, the wheel extraversion γiaverage error is0.0734°,the wheeltangential velocity νStiaverage error is0.1480m/s,the wheel angular velocity ωiaverage erroris0.5420rad/s, relative error is2.25%under the experimental conditions.the novel monitoringmodel on this paper was feasible, the sensor configuration scheme was correct, and themonitoring parameters were comprehensive which could detect all27of state monitoringparameters to reach the expected effect, with important promotional value.
引文
[1]潘梦鹞,周岳斌等.机动车运行安全检测模式及发展分析[J].现代制造工程.2009,(5):12-16.
    [2] Mueller F, Wenzel A. Intelligent monitoring and adaptive competence assignment for driver andvehicle[J].2007IEEE Intelligent Vehicles Symposium, VOLS1-3.2007:1254-1259.
    [3]刘美生.我国机动车性能检测的现状与发展[J].中国测试技术.2005,31(6):1-5.
    [4] Zheng H, Wang W, Yang T Q, et al. Design of inspection&diagnosis system for caterpillar vehiclein no disassemble condition[J]. ISTM/2001:4th International Symposium On Test And Measurement,Vols1-2, Conference Proceedings.2001:1139-1142.
    [5] Transportation Department, Federal Motor Carrier Safety Administration. Parts and AccessoriesNecessary for Safe Operation: Protection Against Shifting and Falling Cargo[S].2006.
    [6] THE COUNCIL OF THE EUROPEAN COMMUNITIES. Commission Directive96/96/EC[S].2008.
    [7]中华人民共和国国务院.中华人民共和国道路交通安全法实施条例[S].2004.
    [8]国家质量监督检验检疫总局.中华人民共和国国家标准《机动车安全检验项目和方法》(GB21861-2008)[S].2008.
    [9]肖云魁.汽车检测诊断技术的现状与发展[J].军事交通学院学报.2008,10(3):1-6.
    [10] Schlingmann N. Development strategy for on-board off-board and, remote diagnostics[M].Dusseldorf: VDI-VDE-VERLAG GMBH,2007:259-264.
    [11] Barone S. Statistics-driven development of OBD systems: An overview[J]. Quality and ReliabilityEngineering International.2006,22(6):615-628.
    [12] Al-taee M A, Khader O B, Al-saber N A. Remote monitoring of vehicle diagnostics and locationusing a smart box with global positioning system and general packet radio service[C].2007IEEE/ACS International Conference on Computer Systems and Applications, Vols1and2.2007:385-388.
    [13] U.S. Environmental Protection Agency. General Provisions for the Voluntary National LowEmission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks[S].1997.
    [14] The Council0f the European Communities Commission Directive2006/51/EC[S].2006.
    [15]中国国家环境保护总局.中华人民共和国国家标准《轻型汽车污染物排放限值及测量方法》(GB18352.3-2005)[S].2005.
    [16]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车行驶记录仪》(GB/T19056-2003)[S].2003.
    [17]国家质量监督检验检疫总局.中华人民共和国国家标准《机动车运行安全技术条件》(GB7258-2004)[S].2004.
    [18] Dixon B, Kalinin V, Beckley J, et al. A second generation in-car tire pressure monitoring systembased on wireless passive SAW sensors[C]. Proceedings of The2006IEEE International FrequencyControl Symposium and Exposition, Vols1-2.2006:374-380.
    [19] National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT).Federal Motor Vehicle Safety Standards; Tire Pressure Monitoring Systems; Controls andDisplays[S].2002.
    [20]国家标准化管理委员会.《汽车轮胎气压监测系统》(征求意见稿)[S].2006.
    [21]潘梦鹞.汽车行驶安全性能监控技术的发展与研究[J].专用汽车.2004,(4):23-24.
    [22]张小龙.车辆主动安全性能道路试验系统及评价方法研究[D].江苏南京:东南大学,2006.
    [23] Zhao H Z, Luo K L, Jiang W. Research and design of monitoring technology of auto-electronic inITS[J]. Journal of the University of Electronic Science and Technology of China.2007,36(3):514-516.
    [24] Matsuzaki R.,Todoroki A..Intelligent tires for improved tire safety using wireless strain measurement
    [C]. Proceedings of SPIE-The International Society for Optical Engineering, v6932,2008, Sensorsand Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems2008.
    [25] Mgebrishvili N. Multifunctional sensor-based monitoring system for identifying vehiclecharacteristics [C]. JRC2008: Proceedings of The ASME/IEEE/ASCE Joint Rail Conference.2008:365-369.
    [26] Yoder, N., Johnson, T., Adams, Douglas E.. Near real-time monitoring of bead area damage inrolling tires using a rotating wheel model and multi-directional vibration data[J]. Key EngineeringMaterials, v347, p233-238,2007, Damage Assessment of Structures VII.
    [27] He Y, Tian G L, Bao Y D. Application of network-based virtual instrument technology on remotevehicle inspection[C]. Proceedings of2005International Conference on Machine Learning andCybernetica, Vols1-9.2005:1428-1431.
    [28] Fornasa M, Zingirian N, Maresca M, et al.Visions: a service oriented architecture for remote vehicleinspection[C].2006IEEE Intelligent Transportation Systems Conference2006:6-6.
    [29] Mueller F, Wenzel A. Intelligent monitoring and adaptive competence assignment for driver andvehicle[J].2007IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS1-3.2007:1254-1259.
    [30] Rehm A. Sensor networks for vehicle dynamics control systems: A monitoring perspective[J].20083rd International Symposium on Communications, Control and Signal Procesing, VOLS1-3.2008:263-268.
    [31] Mgebrishvili N.Multifunctional sensor-based monitoring system for identifying vehiclecharacteristics[C]. JRC2008: Proceedings of the ASME/IEEE/ASCE Joint Rail Conference.2008:365-369.
    [32]李荣冰,刘建业,曾庆化,华冰等.基于MEMS技术的微型惯性导航系统的发展现状[J].中国惯性技术学报.2004,12(6):88-94.
    [33]郑巍,尚捷,顾启泰等.运动参数惯性测量模拟弹设计与实验[J].中国惯性技术学报.2006,14(2):18-23.
    [34]丁明理,王祁.无陀螺惯性测量组合研究现状概述[J].中国惯性技术学报.2005,13(4):83-88.
    [35]曹咏弘,祖静,林祖森.无陀螺捷联惯导系统综述[J].测试技术学报.2004,18(3):269-273.
    [36]崔中兴著.惯性导航系统[M].北京:国防工业出版社,1982:60-96.
    [37]陈哲著.捷联惯性系统原理[M].北京:宇航出版社,1986:124-235.
    [38]张树侠著.捷联式惯性导航系统原理[M].哈尔滨:哈尔滨工程大学出版社,1992:78-128.
    [39] Jia H, Qin S, Wang S, et al. Design of a portable control monitor for vehicle attitude measurementsystem of ring laser gyro[J]. Microcomputer Information.2007,(29):12-14.
    [40] DiNapoli L D. The measurement of angular velocities without the use of gyros[D]. The MooreSchool of Electrical Engineering, University of Pennsylvania, Philadelphia,1965,34-41.
    [41] Schuler A R. Measuring Rotational Motion with Linear Accelerometers [J]. IEEE Transaction onAES,1967,3(3):465-472.
    [42] Shmuel J. Merhav. A non-gyroscopic inertial measurement unit [J]. Journal of Guidance,1982,5(3):227-235.
    [43] Algrain M C. Accelerometer-based platform stabilization [A]. SPIE Acquisition, Tracking, andPointing[C],1991,1482:367-382.
    [44] Chen Jeng-heng, Lee S C, Daniel B. Gyroscope free strapdown inertial measurement unit by sixlinear ccelerometers[J]. Journal of Guidance, Control and Dynamics,1994,17(2):286-290.
    [45] Automotive applications[A]. IEEE Conference on Intelligent Transportation System[C],1997:1047-1052.
    [46] Zhou Hong-jin, Xu Jiang-ning, Liu Rui, Design and simulation of accelerometer based gyro-freeinertial navigation system[J]. Systems Engineering and Electronics.2007,29(7):1209-1212.
    [47] Park S.,Tan C.W.,Park, Joohyuk.A scheme for improving the performance of a gyroscope-freeinertial measurement unit[J].Sensors and Actuators,A: Physical,v121,n2, p410-420,June30,2005.
    [48]马艳海,秦丽,王红亮,杨运良.十二加速度计实用配置方案与解耦算法研究[J].传感器与微系统.2008,27(06):34-36.
    [49] Tan C.W, Park S. Design of gyroscope-free navigation systems.2001IEEE Intelligent TransportationSystems Conference Proceedings[C], Oakland,2001:286-291.
    [50] Jin Xudan, Mao Zheng, Wei Fuling, et al. Research on Gyroscope Free Strapdown InertialNavigation System Based on3-axis accelerometer[J]. Electronic Measurement and Instruments,2007. ICEMI '07.8th International Conference on Aug.162007-July182007Page(s):1-967-1-970.
    [51] An Li, FangJun Qin, JiangNing Xu, Sai Jiang. Gyroscope Free Strapdown Inertial NavigationSystem Using rotation modulation[J]. Intelligent Computation Technology and Automation,2009.ICICTA '09. Second International Conference on Volume3,10-11Oct.2009Page(s):611-614.
    [52] BRUSAROSCO,Massimo,et al. METHOD AND SYSTEM FOR MONITORING A TYREDURING THE RUNNING OF A VEHICLE [P]:IT:WO/2003/082644,2003-09-10.
    [53] BRUSAROSCO,Massimo,et al.. METHOD AND SYSTEM FOR MONITORING THEBEHAVIOUR OF A TYRE DURING THE RUNNING OF A MOTOR VEHICLE[P]: IT:WO/2003/082643,2003-09-10.
    [54]刘训忠.汽车防抱死制动系统(ABS)轮速算法研究[J].汽车电器.2000,(1):7-10.
    [55]林颖,王慧,张建.结合汽车车载式称重的轮胎气压在线监测装置的研究[J].制造业自动化.2006,(2):65-68.
    [56] Sanxu Yang,et al.. Measurement of vehicle-load using capacitance and acceleration transducers [J].Sensors and their Applications XIV.2007,76:1-6.
    [57]吴诰珪,叶峰磊,邓建芳.基于制动轮缸压力的汽车ABS滑移率的计算[J].公路交通科.2002,12(3):134-136.
    [58] LIN Tu-sheng,DU Ming-hui,LIU Wen-zhe. Auto-detection of Signa l Beg inn ing of AutomobileTire-mounted Accelerometer in Braking [J]. Science Technology and Engineering.2007,7(7):1345-1350.
    [59]林土胜,潘梦鹞,郑亦斌.汽车轮胎内置非接触式制动传感系统[P].国家发明专利(专利号:ZL200510037552.0).2005-09-28.
    [60]林土胜,林上港,杜明辉,潘梦鹞.一种汽车轮胎内置式制动特性传感方法[P].国家发明专利(专利号:ZL200510102255.X).2005-12-12.
    [61] Eichhorn U, Roth J. Prediction and Monitoring of Tyre/Road Friction [C]. XXIV F ISITA Congress,London, GB,1992.
    [62] Hideo Sado, et al. Road Condition Estimation for Traction Control in Electric Vehicle [C]. ISIE’99.Bled, Slovenia,1999:973-978.
    [63] Gonzalez, A, et al. The use of vehicle acceleration measurements to estimate road roughness [J].Vehicle System Dynamics,46(6):483-499.
    [64] Anis Ben Slimane, et al. Characterization of road microtexture by means of image analysis [J].10thInternational Conference on Metrology and Properties of Engineering Surfaces.2008,264(4):464-468.
    [65] Li, Jing; Chen, Ping. Study of instrument for vehicle braking performance test based on multidimensional accelerometer[J]. Instrument Techniques and Sensor.2006,(10):11-44.
    [66]王保云.物联网技术研究综述[J].电子测量与仪器学报,2009,23(12):1-7.
    [67]诸瑾文,王艺.从电信运营商角度看物联网的总体架构和发展[J].电信科学,2010,(4):1-4.
    [68]万钢.基于车内网络和远程无线通讯的车载装置[P]:中国: CN2916744,2007-06-27.
    [69]王世堂.基于RFID的汽车生产信息追踪系统的研究[D].北京:北京工业大学,2007.
    [70]刘韵洁.物联网产业发展现状与未来展望[M]. http://products.rfidchina.org,2010.
    [71]欧盟注资3亿欧元研发智能汽车[M]. http://www.caam.org.cn/haiwaixinwen/20091104/1805032353.html.
    [72]谷歌成功测试无人驾驶智能汽车[M]. http://news.ifeng.com/gundong/detail_2010_10/11/2741018_0.shtml.
    [73]许建龙,洪晓斌,刘桂雄.基于物联网的机动车运行状态监测平台[J].仪器仪表学报(增刊III),2010(8):187-190.
    [74]刘桂雄,潘梦鹞,林创鲁,冯源.一种基于轮载式智能传感车轮运动姿态监测方法[P].国家发明专利(专利号:ZL200910078476.6).2009-02-24.
    [75]刘桂雄,张健伟,潘梦鹞,洪晓斌.一种基于轮载式智能传感四轮定位测量方法[P].国家发明专利(公开号:CN101915673A).2010-09-06.
    [76]刘桂雄,林创鲁,潘梦鹞,冯源.一种基于轮栽式智能传感车轮转速测量方法及装置[P].国家发明专利(申请号:CN200910077577.1).2009-01-23.
    [77]刘桂雄,周岳斌,黄国健,潘梦鹞.一种基于轮载式智能传感车轮动载荷监测方法[P].国家发明专利(公开号:CN101480904).2009-02-19.
    [78]刘桂雄,潘梦鹞,黄国健,林创鲁.一种基于轮载式智能传感车轮制动性能监测方法[P].国家发明专利(专利号:ZL200910077744.2).2009-02-16.
    [79]卢鸿谦,贺杰,黄显林,王国峰.单天线GPS/加速度计组合测姿方法研究[J].哈尔滨工程大学学报.2006,27(6):854-857.
    [80]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车操纵稳定性术语及其定义Automotive controllabilitv and stability-Terms and definitions》(GB/T12549-90)[S].1990.
    [81](美)Thomas D.Gillespietd著,赵六奇,金达锋译.车辆动力学基础[M].北京:清华大学出版社,2006:6-8.
    [82]余志生著.汽车理论[M].北京:清华大学出版社,2000:136-137.
    [83]卢荡,郭孔辉.轮胎翻倾力矩特性的理论及试验研究[J].中国机械工程.2004,15(15):1317-1319.
    [84]杨大烨,谢天怀,胡宝余.捷联惯导系统初始姿态和仪表误差标定迭代算法研究[J].中国惯性技术学报.2002,10(3):15-20.
    [85]周丽弦,崔中兴.无陀螺钻井测量技术研究[J].中国惯性技术学报.2000,8(2):54-57.
    [86]张静,金志华.空中平台航姿参考系统的设计[J].中国惯性技术学报.2004,12(2):47-52.
    [87]单东升,梁继保,周启煌.战车简易捷联式惯导系统的实现[J].火炮发射与控制学报.2003,(S):42-46.
    [88]赵龙,史震,马澍田.一种新的捷联矩阵更新算法在无陀螺捷联惯导系统中的应用[J].中国惯性技术学报.2000,8(4):51-54.
    [89]吴校生,陈文元.角加速度计发展综述[J].中国惯性技术学报.2007,15(4):458-463.
    [90] Tan Chin-Woo, Park Sungsu. Design of gyroscope free navigation systems[C]//2001IEEE IntelligentTransportation Systems Proceedings,2001:286-291.
    [91]史震.无陀螺捷联惯导系统中加速度计配置方式[J].中国惯性技术学报.2002,10(1):15-19.
    [92]丁明理,王祁,王常虹.无陀螺惯性测量组合静动态解耦方法[J].哈尔滨工业大学学报.2007,39(1):342-344.
    [93]杨华波,张士峰,蔡洪.无陀螺仪惯性系统构型中安装误差分析与标定[J].中国惯性技术学报.2007,15(1):39-43.
    [94] Merhav S. J. A Nongyroscopic Inertial Measurement Unit. Journal of Guidance and Control,1982:227-235P.
    [95]牟淑志,卜雄洙,李永新,王劲松.高转速载体惯性测量组合研究[J].弹道学报.2006,18(4):85-88.
    [96]尹德进,王宏力,刘光斌.捷联惯导系统六加速度计配置方案研究[J].中国惯性技术学报.2003,11(2):48-51.
    [97]丁明理,王祁,宋凯.无陀螺惯性测量组合姿态解算新方法[J].哈尔滨工业大学学报.2006,38(7):1025-1027.
    [98]肖伟光,杜祖良,王祁,丁明理.九加速度计NGMIMU实用设计方案[J].宇航学报.2006,27(3):478-482.
    [99]陈穆清,赵国荣,曲君吾. GFSINS姿态角速度双路组合方案设计[J].中国惯性技术学报.2006,14(6):15-19.
    [100]丁明理,王祁.无陀螺惯性测量组合设计及角速度误差补偿方法研究[J].航空学报.2006,27(5):922-927.
    [101]丁明理,王祁.提高NGIMU性能的加速度计动态补偿器的研究[J].传感技术学报.2005,18(2):292-295.
    [102]王劲松,王祁,孙圣和.无陀螺微惯性测量组合的优化算法研究[J].哈尔滨工业大学学报.2002,34(5):632-635.
    [103] Parka Sungsu, Tan Chin Woo, Parka Joohyuk. A Scheme for Improving the Performance of aGyroscope-free Inertial Measurement Unit [J]. Sensors and Actuators.2005, A121:410-420.
    [104] MERHAV S J. A nongyroscop ic inertialmeasurement unit [J]. Journal of Guidance,1982,5(3):227-235.
    [105]赵龙,史震,马澍田.无陀螺捷联惯导系统角速度解算精度的研究[J].中国惯性技术学报.2001,9(1):12-19.
    [106] Buhmann A., Peters C.,Cornils M.,et al.A GPS aided full linear accelerometer based gyroscope-freenavigation system[C].Record-IEEE PLANS, Position Location and Navigation Symposium, v2006,p622-629,2006.
    [107]殷栩,王祁,丁明理,罗运顺.基于DSP的炮弹无陀螺惯性测量单元应用系统设计[J].传感技术学报.2007,20(1):68-71.
    [108]刘向,王连明,葛文奇.用线性加速度计实现无陀螺平台稳定的理论研究[J].光学精密工程.2004,12(1):21-25.
    [109] Ding M, Zhou Q, Wang Q, et al. Feasibility analysis of accelerometer configuration of non-gyromicro inertial measurement unit[C]. Shanghai, China: Institute of Electrical and ElectronicsEngineers Inc., Piscataway, NJ08855-1331, United States,2007.
    [110]王小旭,薛红香,夏全喜,孙明.无陀螺惯性测量单元设计及仿真分析[J].中国惯性技术学报,2008,16(2):154-158.
    [111]丁明理,王祁,洪亮等.无陀螺微惯性测量单元的卡尔曼滤波方法研究[J].仪器仪表学报.2003,24(4):310-313.
    [112] Wang Qi, Ding Mingli, Zhao Peng. A New Scheme of Non-gyro Inertial Measurement Unit forEstimating Angular Velocity [C]. Roanoke, VA, United States: The29th Annual Conference of theIEEE Industrial Electronics Society, Nov2-62003:1564-1567.
    [113] Jin X D, Mao Z, Wei F L, et al. Research on gyroscope free strapdown inertial navigation systembased on3-axis accelerometer[J].ICEMI2007: PROCEEDINGS OF20078TH INTERNATIONALCONFERENCE ON ELECTRONIC MEASUREMENT&INSTRUMENTS, VOL I.2007:967-970.
    [114] Sun F, Fan S. Angular acceleration calculation method on non-gyro inertial measurement unit[C].Beijing, China: International Society for Optical Engineering, Bellingham WA, WA98227-0010,United States,2006.
    [115]王劲松,王祁,孙圣和.加速度计的交叉耦合对无陀螺惯性测量组合影响的研究[J].中国惯性技术学报.2003,11(1):29-33.
    [116] Lee Sou-Chen,Huang Yu-Chao. Innovative estimation method with measurement likelihood forall-accelerometer type inertial navigation system [J]. IEEE Transactions on Aerospace and ElectronicSystems, VOL38.2002:339-346.
    [117]赵国荣,陈穆清.一种用于九加速度计GFSINS的姿态角速度辅助算法[J].系统仿真学报.2007,19(14):3350-3353.
    [118]刘志平,郝燕玲.无陀螺捷联惯导系统静基座粗对准实用方法[J].中国惯性技术学报.2009,17(2):140-144.
    [119]王晨,董景新,杨栓虎,孔星炜.一种用于无陀螺捷联惯导系统的角速度融合算法[J].中国惯性技术学报.2010,18(4):401-404.
    [120]赵国荣,刘涛,吴雨强,潘爽.卡尔曼滤波在无陀螺捷联惯导系统中的应用[J].航天控制.2009,27(4):62-65.
    [121]吴文启,杨壮志,梁石林.动态约束下的惯性姿态测量系统分析[J].中国惯性技术学报.2002,10(3):31-38.
    [122]谢波,裴听国,万彦辉.双位置初始对准技术在车载捷联惯导系统中的应用研究[J].战术导弹技术.2004(5):33-37.
    [123] Wei Gao, Guofu Zhai, Yueyang Ben, Qi Nie. Practical velocity-updating algorithm of strapdowninertial navigation system with ring laser gyro [C]. Guangzhou,China:2007IEEE InternationalConference on Control and Automation, ICCA, May30-Jun12007:1531-1535.
    [124] Ding M, Weiwei, Wang Q. Design of a nine-accelerometer non-gyro inertial measurement unit[C].Beijing, China: International Society for Optical Engineering, Bellingham, WA98227-0010, UnitedStates,2005:739-747.
    [125]郝燕玲,刘志平.无陀螺捷联惯导系统角速度解算新方法[J].弹箭与制导学报.2009,29(4):35-38.
    [126]汪小娜,王树宗,朱华兵.无陀螺捷联惯性导航技术[J].中国惯性技术学报.2010,18(5):538-542.
    [127]李荣冰,刘建业,赖际舟,温佰仟.微小型飞行器惯性组合姿态确定与航路导航研究[J].航空学报.2008,29(S1):S178-S183.
    [128]田小芳,陆起涌,熊超.基于加速度传感器的倾角仪设计[J].传感技术学报.2006,19(2):361-363.
    [129]马洪连,郑保重,王伟.基于MEMS技术倾角测量系统的设计与实现[J].仪器仪表学报.2005,26(8):185-187.
    [130]徐涛,罗武胜,吕海宝,董文娟.地下定向钻进姿态测量系统的设计[J].中国惯性技术学报.2004,12(2):5-8.
    [131] XU Tao, LU Hai-bao, DONG Wen-juan. Method for determining pitch and roll of the boring toolwith micro-machined accelerometers[A]. ISTM/20035th International Symposium on Test andMeasurement[C], June1-5,2003:125-128.
    [132]陈允芳,叶泽田,钟若飞.车载捷联惯导系统定位测姿算法研究[J].中国惯性技术学报.2007,15(1):24-27.
    [133] Howard Musoff, James H.Murphy. Study of Strapdown Navigation Attitude Algorithms. Journal ofGuidance and Dynamics..Vol.18,No.2, March-April1995:287-290P.
    [134]王亚锋,刘华平,孙富春,张友安.基于误差四元数的捷联惯导全姿态导航与控制[J].中国惯性技术学报.2007,15(4):390-393.
    [135]李杰,刘俊,张文栋.微型惯性测量装置[J].仪器仪表学报.2006,27(6):1450-1451.
    [136]郑巍,尚捷,顾启泰.运动参数惯性测量模拟弹设计与实验[J].中国惯性技术学报.2006,14(2):18-23.
    [137]康帅,庞华伟,周伟林.捷联惯导系统中一种高精度姿态更新算法的推证[J].中国空间科学技术.2004(5):67-71.
    [138]赵忠,马戎,栗瑞江,李勇建,侯正君,吕志清.一种超低成本捷联惯性制导系统的研制[J].弹箭与制导学报.2000(2):11-15.
    [139] Kirill Mostov, Chin-Woo Tan, Pravin Varaiya.“Development of Integrated Navigation SystemsBased on Gyro-Free INS.”PATH Laboratory Department of EECS University of California atBerkeley.
    [140] Iwata T. Precision attitude and position determination for the advanced land observing satellite(ALOS)[C].Proceedings of SPIE. Bellingham, WA,2005, Vol.5659:34-50.
    [141]周红进,许江宁,覃方君,郝世勇.基于加速度计的单轴旋转自主式寻北方法[J].中国惯性技术学报.2007,15(3):370-373.
    [142]李旭东,孟范伟,林玉荣.基于相关滤波算法的全姿态加速度计寻北方案[J].中国惯性技术学报.2008,16(1):44-48.
    [143] SUN Guo-fu, GU Qi-tai. Accelerometer based north finding system[C].IEEE Position Location andNavigation Symposium,2000:399-403.
    [144] LI Ben-liang, GU Qi-tai, LIU Xue-bin. Study and simulation on a dynamic gyroless northfinder[C].IEEE Position Location and Navigation Symposium,2000:502-505.
    [145]李冬临,林土胜.轮胎加速度传感器的汽车制动性能监测分析[J].传感器与微系统.2006,25(12):15-17.
    [146]李新忠,岱钦,王希军.多尺度小波降噪的数字散斑相关搜索[J].光学精密工程,2007,15(1):57-62.
    [147]方勇华,孔超,兰天鸽等.应用小波变换实现光谱的噪声去除和基线校正[J].光学精密工程,2006,14(6):1088-1092.
    [148]马建军,郑志强,吴美平. MIMU信号频谱分析及降噪方法[J].光学精密工程,2007,12(2):261-266.
    [149]徐延海.基于横摆角速度的ABS整车控制方法的研究[J].系统仿真学报.2008,20(2):490-493.
    [150]喻凡,林逸著.汽车系统动力学[M].北京:机械工业出版社,2005:172-173.
    [151] Jiangtao Cao, Honghai Liu, Ping Li, Browne David, Dimirovski Georgi. An improved activesuspension model for attitude control of electric vehicles [C].2007IEEE International Conferenceon Mechatronics and Automation, ICMA2007, Aug5-82007,2007:147-152.
    [152]郭孔辉,刘青,丁国峰.轮胎包容特性分析及其在汽车振动系统建模中的应用[J].汽车工程.1999,21(2):65-80.
    [153]郭孔辉.汽车振动与载荷分析的一种方法[J].汽车科技.1994.
    [154] Xue Yuchun, Hagiwara I, Zhang Yimin. On vibration modeling and simulation of hybrid electricvehicles [C]. Control Conference (CCC),201029th Chinese,2010,:5478-5482.
    [155]郭孔辉,吴海东.轮胎垂直方向刚性环模型[J].科学技术与工程.2007,07(4):556-559.
    [156] Captain K M. Analytical tire models for dynamic vehicle simulation[J].Vehicle System Dynamics,1978,8:1-32.
    [157]陈栋华,靳晓雄.轮胎刚度和阻尼非线性模型的解析研究[J].中国工程机械学报.2004,02(4):408-412.
    [158]石琴,陈无畏,洪洋,谷叶水.基于有限元理论的轮胎刚度特性的仿真研究[J].系统仿真学报.2006,18(6):1445-1449.
    [159] Chen Bo-Chiuan. Warning and control for vehicle rollover prevention[M]. The University ofMichigan. A dissertation Submitted in Partial Fulfillment of the Requirements for the Degree ofDoctor of Philosophy,2001.
    [160] K. J. Hunt, J. C. Kalkkuhl, H. Fritz, T. A. Johansen. Constructive empirical modelling of longitudinalvehicle dynamics using local model networks [J]. Control Engineering Practice,1996:167-178.
    [161]于国飞,艾维全,王承,吴光强.车辆稳态转向特性中车身侧倾角的影响因素[J].同济大学学报(自然科学版).2006,34(9):1237-1241.
    [162]刘照,杨家军,廖道训.车速对汽车转向力矩的影响分析[J].中国机械工程.2005,16(8):748-751.
    [163]李剑峰,高利,刘碧荣.基于SIMULINK的参数化车辆模型及其实验验证[J].仪器仪表学报.2006,27(6):98-99.
    [164] SUN L, LUO F. Nonstationary Dynamic Pavement Loads Generated by Vehicles Traving at VaringSpeed [J].Journal of Transportation Engineering,2007,133(4):252-2621.
    [165] Whittemore AP et al. Dynamic pavement loads of heavy highway vehicles. Highway Research Board,National Academy of Sciences,Project15-5,1969.
    [166]管迪华,代易宁,谢先海.利用试验模态参数建立轮胎滚动模型[J].清华大学学报(自然科学版).2003,43(8):1138-1142.
    [167] Satyamurthy D, Hirschfelt L R. An axisymmetric finite element and its use to examine the effects ofconstruction variables on radial tires [J]. Tire Science and Technology,1987,15(2):97-122.
    [168] J.C. Dixon, Tyres,Suspension and Handing, Cambridge University Press, Cambridge,U.K,1991.
    [169] Zhang Lijun1, Wang Rui. Key Factors Effect on Vehicle Braking Performance Based on Nonlinear3DOF Vehicle Dynamic Model [J]. Key Engineering Materials,2010,439-440:950-955.
    [170]李熙亚,吴诰珪,廖俊,周全.汽车ABS制动过程的道路识别[J].华南理工大学学报(自然科学版).2006,34(4):24-27.
    [171]吴诰珪,许季,刘绍辉.汽车防抱制动系统制动时的车速计算[J].华南理工大学学报(自然科学版).2002,30(2):76-78.
    [172]黄德中.汽车防抱死制动系统测试装置研究[J].仪器仪表学报.2003,27(1):80-86.
    [173]林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [174] Wanxin Kang, Xiucheng Dong, Renyun Sun, Yunyun Xu. Development on Intelligent Controller ofAutomobile ABS Based on the Slip Ratio [C].2010ISECS International Colloquium on Computing,Communication, Control, and Management (CCCM),2010:266-269.
    [175] Kaw abe T, Nakazaw a M, Notsu I, Watanabe Y. A sliding mode controller fo r wheel slip ratiocontrol system. Vehicle Systems Dynam ics,1997,27:393-408.
    [176] Taehyun S,Sehyun C,Seok L.Investigation of Sliding-Surface Design on the Performance of SlidingMode Controller in Antilock Braking Systems.IEEE Transactions on Vehicular Technology,2008,57(2):747~759.
    [177]宋健,杨财,李红志,李亮. AYC系统基于多传感器数据融合的路面附着系数估计算法[J].清华大学学报(自然科学版).2009,49(5):101-104.
    [178]吕建刚,邢志,李猛.小波分析在路面反应谱中信号降噪的应用[J].振动工程学报.2005,18(2):257-260.
    [179] Sun Lu,Deng Xuejun1Predicting Vertical Dynamic Loads Caused by Vehicle-PavementInteraction1Journal of Transportation Engineering,1998,124(5).
    [180]国家质量监督检验检疫总局.中华人民共和国国家标准《车辆振动输入-路面平度表示方法Vehicle vibration—Describing method For road surface irregularity》(GB7031-1986)[S].1986.
    [181]李忠国,张为公,刘庆华,董晓马.基于车轮垂直动载的路面不平度识别研究[J].仪器仪表学报.2006,27(6):2132-2133.
    [182]李伯全,董现伦,何仁,田洪胜,赵洪利.基于EMB和路面自动识别的汽车ABS仿真术[J].机械设计与制造.2009,(9):186-188.
    [183]刘力,罗禹贡,李克强.基于归一化轮胎模型的路面附着系数观测[J].清华大学学报(自然科学版).2009,49(5):116-120.
    [184]杨财,李亮,宋健,李红志.基于轮胎力观测器的路面附着系数识别算法[J].中国机械工程.2009,20(7):873-876.
    [185]叶先军,赵韩.基于路面识别的HEV制动系统控制算法研究[J].系统仿真学报.2010,22(12):2990-2994.
    [186] LEE Chankyu, Hedrick K, YI Kyongsu. Real-time slip-based estimation of maximum tire-roadfriction coeff icien t [J]. IEEE/ASME Transact ions on Mechatronics,2004,9(2):454-458.
    [187] Gustafsson F. Estimation and change detection of tire-road friction using the wheel slip [C].Proceedin gs of the1996IEEE Int er national Symposium on Computer-Aided Control SystemDesign Dearborn, MI,1996.
    [188] Gustaf sson F. Monitoring Tire-road Friction Using the Wheel Slip [J]. IEEE,1998,18(4):42249.
    [189] Zegelaar P W,Pacejka H B.Dynamic Tire Responses to Brake Torque Variations. and InternationalTire Colloquium on Tire Models for Vehicle Dynamic Analysis, Berlin, February20-21,1997.
    [190] Kinche U, Daiss A. Estimation of tyre friction for enhanced ABS system [C].Proc Aveg CongressTokyo:[s n],1994.
    [191] Wang Jun-min. Alexander Lee, Rajamani Rajesh. Friction estimation on highway vehicles usinglongitudinal measurements [J]. Journal of Dynamic Systems,Measurement,and Control,2004,126(2):2652275.
    [192]张屺,刘国福,王跃科,周婷婷. ABS系统车轮角加速度计算方法研究[J].仪器仪表学报.2004,25(4):94-96.
    [193]林土胜,潘梦鹞,杜明辉.轮胎内置加速度传感器的汽车制动特性传感方法[J].华南理工大学学报(自然科学版).2007,35(1):1-6.
    [194] Zhang Xiaolong, Peng Jiankun, Xia Ping. Design of Roadway Test System for Motor Vehicle BrakePerformance and Its Evaluation Methods [C].2010International Conference on Computer,Mechatronics, Control and Electronic Engineering (CMCE),2010:392-395.
    [195] Wanxin Kang, Xiucheng Dong, Renyun Sun, Yunyun Xu. Electronic Brake Force DistributionControl Methods of ABS Equipped Vehicles During Cornering Braking [J]. Journal of BeijingInstitute of Technology,2007,16(1):34-37.
    [196] Mingli Shang, Liang Chu, Jianhua Guo, Yong Fang. Hydraulic Braking Force Compensation Controlfor Hybrid Electric Vehicles [C].2010International Conference on Computer, Mechatronics,Control and Electronic Engineering (CMCE),2010:335-339.
    [197] Freescale Semiconductor I. MMA7455L Datasheet[M]. www.freescale.com,2008.
    [198] Freescale Semiconductor I. MMA1200D Datasheet[M]. www.freescale.com,2008.
    [199] Analog Devices I. ADXL323Datasheet[M]. www.analog.com,2006.
    [200]徐勇军,刘峰,王春芳.低速无线个域网实验教程[M].北京:北京理工大学出版社,2008.
    [201]丁明理,王祁.无陀螺惯性测量组合实验系统设计[J].哈尔滨工业大学学报.2006,38(10):1748-1749.
    [202]许卫星,秦丽,余靖娜,张会新,张文栋.无陀螺捷联惯性测试研究[J].弹箭与制导学报.2006,26(1):14-16.
    [203]博格斯,马科维奇.小波与傅里叶分析基础[M].北京:电子工业出版社,2010.
    [204]陈晓光,房建成.微惯性测量单元信号小波自适应滤波仿真研究[J].航天控制.2007,25(4):51-56.
    [205]李金力,刘文怡,彭旭峰.一种全加速传感器角速度的优化方法[J].弹箭与制导学报.2010,30(3):196-198.
    [206] Kung S. Y. Digital Neural Network. New Jersey, PTR Prentice-Hall Inc,1993.
    [207] R. H. Nielsen. Theory of the back propagation neural network. IJCNN’89, pp.2593-2605.
    [208] Kolmogorov. On the representation of continuous functions of one variable and condition. Dokl.Akad. Nauk, USSR.114,1957, pp.953-956.
    [209]蔡自兴,徐光祐.人工智能及其应用.清华大学出版社.1996.
    [210]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车道路试验方法通则Motorvrhiles–General rules of road test method》(GB12534-1990)[S].1990.
    [211]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车操纵稳定性试验方法蛇行试验Controllability and stability test procedure for automobiles–Pylon course slalom test》(GB/T6323.1-94)[S].1994.
    [212]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车操纵稳定性试验方法转向瞬态响应试验Controllability and stability test procedure for automobiles—Steering transient responsetest》(GB/T6323.2-94)[S].1994.
    [213]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车最低稳定车速试验方法Motorvehicles-Minimum stable speed–Test method》(GB/T12547-1990)[S].1990.
    [214]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车加速性能试验方法Motorvehicles-Acceleration pertormancs–Test method》(GB/T12543-1990)[S].1990.
    [215]张小龙,张为公,周木子.汽车ABS侧向稳定性能道路试验评价系统研究[J].中国机械工程.2006,17(10):1091-1095.
    [216] Masuda T, Kamada T, Fujita T. ABS control by measuring force between road surface and tires[J]. J SAE Paper20055242,2005.
    [217]马骏. C#网络应用编程[M].北京:人民邮电出版社,2010.
    [218]费希利. SQL基础教程[M].北京:人民邮电出版社,2009.
    [219]国家质量监督检验检疫总局.中华人民共和国国家标准《机动车运行安全技术条件Safetyspecifications for power driven vehicles operating on roads》(GB7258-2004)[S].2004.
    [220]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车操纵稳定性指标限值与评价方法Criterion thresholds and evaluation of controllability and stability for automobiles》(QC/T480-1999)[S].2004.
    [221]国家质量监督检验检疫总局.中华人民共和国国家标准《道路车辆外廓尺寸、轴荷及质量限值Limits of dimensions, axle load and masses for road vehicles》(GB1589-2004)[S].2004.
    [222]国家质量监督检验检疫总局.中华人民共和国国家标准《轮胎使用与保养规程Regulation ofapplication and maintenance of tyres》(GB9768-1988)[S].1988.
    [223]国家质量监督检验检疫总局.中华人民共和国国家标准《汽车制动系统结构、性能和试验方法Road vehicle–Braking systems–Structure,performance and test methods》(GB12676-1999)[S].1999.
    [224]国家质量监督检验检疫总局.中华人民共和国国家标准《机动车和挂车防抱制动性能和试验方法Vehicles anti-lock braking systems Performance requirements and test procedures》(GB9768-1988)[S].1988.
    [225] Michigan Scientific corp. Wheel Load Transducer.6-axis [EB/OL].www.michsci.com.2002.
    [226]周耀群,张为公,刘广孚,李忠国.基于新型车轮六分力传感器的汽车道路试验系统设计与研究[J].中国机械工程.2007,18(20):2510-2514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700