用户名: 密码: 验证码:
吉林省双阳水库汇水区农业非点源污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应对防治农业非点源污染的实际需求,以GIS技术作为技术支撑平台,开发应用农业非点源污染模拟模型AnnAGNPS(Annualized Agricultural Nonpoint Source),用以分析吉林省双阳水库汇水区农业非点源污染问题。首先运用人工神经网络和判别分析等方法对研究区地表水的水质进行了评价,分析水质的年际变化和年内变化状况。结合监测和实验分析结果探讨了研究区降雨条件下氮、磷浓度随径流变化规律。通过野外调查实验、室内测试分析、地理信息技术及数理统计等技术途径,确定了AnnAGNPS模型的各项输入参数,经模型验证,论证了模型可行性。在此基础上,分析了研究区内非点源污染负荷的时空分布特征。并运用AnnAGNPS模型对双阳水库汇水区农业非点源污染进行预报应用,预测了退耕还林和控制管理化肥方案下,总氮、总磷和泥沙污染物的输出量。在汇水区单元格的划分过程中,首次利用反馈分析法选定最佳的单元格划分水平,提高了模型的精度和有效性。最后,提出双阳水库汇水区农业非点源污染的调控建议。
Presently, preferable control and harnessing are applied to nonpoint source pollution (NSP) worldwide, but the surface water contamination caused by the NSP is getting outstanding increasingly. The investigation indicates that, the NSP is the main cause which leads to the surface water contamination, and the agricultural nonpoint source pollution (ANSP) possesses the max contribution ratio. In our country, the ANSP is also serious. The status of many water areas are unoptimistic, such as the Tai Lake in Jiangsu, the Cao Lake in Anhui, the Fuxian Lake in Yunnan, the Miyun Reservoir in Beijing, the Yuqiao Reservior in Tianjin and the Xinlicheng Reservior in Jilin. The research and control of the ANSP get starting later in our country, so that more work need to be done in the field.
     As the most important commodity grain production base, the Jilin province is brought the severe potential harm to its environment by plowland over-reclamation, over-fertilization and excessive crop-dusting. At the same time, the climate changes in recent years (especially the precipitation) result in uptight water resources supply in North China. The Shuang Yang reservoir is one of the standby waterhead sites for Changchun that is a hydropenic city. As for Changchun, the important task of the current study is assuring the security of the domestic water supply and meeting the agricultural process water demand, so systematically investigating the water environment contamination, especially the ANSP, in the Shuang Yang reservoir watershed, is practical and meaningful.
     In this paper, the Shuang Yang reservoir watershed is taken as the study object. A survey is implemented to ravel the circumstantialities of the nature resources and agriculture output in the watershed. Combining qualitative and quantitative analysis, associating field investigation with indoor experiment and supported by the GIS, researches in the followed fields are carried through.
     The paper profoundly discusses the mechanism of the four processes of the ANSP, namely precipitation and runoff, soil erosion, ground surface solute stripping and soil solute leakage. The BP artificial nerve network package of MATLAB7 is employed to evaluate the water quality of the three rivers around the study area, evaluations of annual water quality changes (1997~2005) about the Yinma River and the Chalu River are given respectively, so is the evaluation about the Shuangyang River (2000~2005), while the discriminatory analysis is drawn to verify the evaluation results which indicate that: from 1997 to 2005, water from the cross-sections of Yantongshan, xingxingshao and Shitoukoumen have preferable quality, generally belong toⅡandⅢ; but form 2000~2005, quality of water from the Xinan cross-section makes people worried, the mean annual water quality belongs toⅣ. The interannual water quality evaluation of the Xinan cross-section shows that water quality isⅣduring the drought period, while water quality isⅢin high water period.
     Collecting water samples from the surface water and the groundwater around the study area, total nitrogen content and total phosphorus content are determined to assess their pollution in the area. Surface water evaluation shows that: the total nitrogen of water in and around the reservoir is badly overproof, while the total nitrogen of the surface water in the upstream area is within the standard. In most places of the study area, the phosphorus is within the standard, while the index is one time higher than the standard in water near the reservoir; groundwater assessment presents that: the total nitrogen content and total phosphorus content are dispersedly distributed in the area, several places are heavily polluted; the GIS is employed to map the distribution maps of the nitrogen and phosphorus in the water. The statistic result of the ANSP in the watershed indicates that the total fertilizer dosage is 8537.4ton in 2006 in the Shuangyang reservoir watershed. During the period of the research, the leaking total nitrogen reaches 457.2ton, and the leaking total phosphorus comes up to 32.9ton; at the same time, the investigation indicates that irrational fertilization and leakage of pesticide are the key source of contamination.
     Through monitoring the precipitation, the rainfalls whose raininess exceeds 30mm are taken as the main rainfall type of the study area in 2006. In the period, the precipitation agent of erosion R is 93.12, the max R appears in June, while the min R occurs in May. Trough the analysis of concentration of nitrogen and phosphorus in single rainfall, time-variation rules of the concentration of nitrogen and phosphorus are attained; the trend of the total nitrogen concentration outputs of different land-use types is paddy land>corn field>mountain country>timberland, while that of the total phosphorus is corn field>paddy land> mountain country>timberland.
     By the methods, such as field investigation, testing and analysis and document retrieval etc, the parameters for the ANSP model of the Shuangyang reservovir watershed are determined. The parameters include geological information data, soil parameters, the parameters of fertilizer and pesticide, weather data, the CN of runoff curve and soil erosion factor K etc. When extract the geological information of the watershed and sub-catchment, the simulation of the Shuangyang reservoir AnnANGNPS model is executed. Fitting feedback analysis method is employed to distribute the catchment areas in the Shuangyang reservoir. The optimum grid partition level of the catchments is given, while the model reaches stabilization, and the result indicates the number of the optimum partition grid is 94.
     With the parameters determined, the AnnAGNSPS model is established, so that the estimations of the total nitrogen, the total phosphorus and the loss of sediment are gained. From the result of the simulation, we can see, during the research period (2006.5~2006.10), in the Shuangyang reservoir watershed the burden of the total nitrogen, the total phosphorus and the sediment is 341.6ton, 25.86ton and 43691.7ton respectively. As for temporal distribution, the burden of the total nitrogen, the total phosphorus and the sediment mainly concentrate in June, July and August (80% for both the total nitrogen and the total phosphorus, 74% for the sediment). It is obvious that the ANSP is closely correlative with the precipitation. When it comes to the spatial distribution, the burden of the total nitrogen, the total phosphorus and the sediment mainly concentrate in the hillslope and irrational fertilization area.
     The model is validated by the single rainstorm event. The result shows the simulation of the total nitrogen has a good agreement, its discrepancy of the total nitrogen falls within 10%, while the discrepancy of the sediment is in the range between 14% and 21%, which is a poorer agreement. As for the total phosphorus, as a whole, the simulation shows great uncertainty, and yields large discrepancy, though the discrepancies of several rainfalls are small. So the model has a weaker ability to simulate the total phosphorus.
     The sensitivity analysis is carried out with 8 parameters as follows, E of the SCS curve, Manning’s roughness coefficient K, Soil erodibility factor L, soil conservation factor N, slope F, slope length H, slope of main drainage way I, side-slope of main drainage way J. Most of the parameters affect the sediment yield, the result is F>N>L>E>I, K and J. As for the total nitrogen and total phosphorus, the result is F>N>E and L>H, I, J and K.
     Based on the ANSP feature of the watershed, the pollution harm is ranked in the study area. A place with fine ecological regime and high percentage of vegetation coverage is ranked as faint polluted area, such as the South Dajianggang. A serious polluted area is the place that has steep hillslope, and land over-reclamation and over-fertilization, such as the Northwest Laoyemiao. The schemes and means for the ANSP control and management in the study area are put forward as follows: 1 return the farmland with the hillslope over 25 degrees to forest, the simulation result shows the pollution burden of the total nitrogen, the total phosphorus and the sediment drops 15% respectively at least; 2 reduce 30% fertilization, the simulation result shows the pollution burden of the total nitrogen and the total phosphorus decrease more than 40%, and the burden of sediment is cut down about 10%.
引文
[1] Lee S I. Nonpoint source pollution [J] Fisheries, 1979, (2):50~52.
    [2] Novotny V and Olem H. Water quality: prevention, identification and management of diffuse pollution[M]. New York: Van Nostrand Reinhold Reinhold Company, 1994.
    [3] Duda A M. Addressing nonpoint source of water pollution must become an international priority [J].Water Science and Technology, 1993, (3-5):1~11.
    [4] Dennis L. C. Peter J V. Keith I. Modeling non-point source pollution in vadose zone with GIS [J]. Environmental Science and Technology.1997, 8:2157~2175.
    [5] 孟丹.基于 GIS 的石头口门水库流域农业非点源污染研究[D].东北师范大学,2006.
    [6] 刘振峰.石头口门水库双阳河流域农业非点源污染发生潜力评价[D].东北师范大学,2006.
    [7] 张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51~55.
    [8] Miller G T. Living in the Environment: An Introduction to Environmental Science [M]. Seventh Edition.Belmont: Wadsworth Publishing Company, 1992.
    [9] Edwin D, Ongley. Control of water pollution from agriculture[J]. FAO Irrigation and Drainage, 1996: 55.
    [10] Kronvang B., et al., Diffuse Nutrient Losses in Denmark [J]. Water Science and Technology 1996, 33(4-5):81~88.
    [11] Atsushi Ichiki and Kiyoshi Yamada, Study on characteristics of pollutant runoff into Lake Biwa, Japan. Water Science and Technology, 1999, 39(12):17~25
    [12] Boers, Paul C. M. Nutrient Emission from Agriculture in the Netherlands: Causes and Remedies [J].Water Science and Technology 1996, 33(4-5):183~189.
    [13] 张宝文.积极发展生态农业努力防治面源污染[J].中国农业信息快讯,2001,(7):3~5.
    [14] 范成新,季江.太湖富营养化现状、趋势及其综合治理对策[J].上海环境科学,1997,16(8):4~7,17.
    [15] 张益智,赫颖.新立城水库非点源污染的研究[J].吉林水利,1994,8:31~33.
    [16] 鲍全盛.王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16( 1) : 66~72.
    [17] 李贵宝,尹澄清,单宝庆.非点源污染控制与管理研究的概况与展望[J].农业环境保护,2001 ,20(3):190~191.
    [18] 魏文区.水库水质富营养化趋势分析[J].环境与开发,1998,13(4):29~30.
    [19] 李庆成 . 全国重点环境考核城市地下水污染概况与防治对策 [J]. 地下水,1992,14(1):2~4,5.
    [20] 吕耀.苏南太湖流域农业非点源污染及农业持续发展战略[J].环境科学动态,1998,(2):1~4.
    [21] 李淑英,黄秋萍等.江西农业面源污染及其控制对策[J].江西农业学报.2006,18 (1):74~79.
    [22] 郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,13(1):105~110.
    [23] 郑炳辉,张永泽等.滇池生态动力学模型的改进[J].环境科学研究,1994, 7(4):1~5.
    [24] 杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1999,7(5):60~67.
    [25] 张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51~55.
    [26] 牛志明,解明曙.非点源污染模型在土壤侵蚀模拟中的应用和发展动态[J].北京林业大学学报.2001,23(2):78~84.
    [27] 严登华,邓伟等.满洲里市地下水中污染物的变化特征及成因分析[J].环境科学究,2001,14 (2):18~21.
    [28] 张思聪,吕贤弼.唐山市农业区地下水垂向剖面中硝态氮污染的究[J].中国环境科学,2000,20(3):254~257.
    [29] 赵林,王榕树,林学钰.地下水中氮的表现形式及其污染的微生物控制[J].环境科学学报,1999, 19 (4):443~447.
    [30] 朱继业,窦贻俭.城市水环境非点源污染总量控制研究与应用[J].环境科学学报,1999,19(4):415~420.
    [31] 李怀恩 . 估算非点源污染负荷的平均浓度法及其应用 [J]. 环境科学学报,2000,20(4):482~488.
    [32] 庄季屏 . 农业非点源污染的流域单元划分方法 [J]. 农业环境保护 ,2001, 20(1):34~37.
    [33] 朱萱,鲁纪行,边金钟等.农田径流非点源污染特征及负荷定量化方法探讨[[J].环境科学,1985,6(5):6~1l.
    [34] 陈西平,黄时达.涪陵地区农田径流污染输出负荷定量化研究[J]..环境科学,1991,12(3):6~11.
    [35] 夏青等.计算非点源污染负荷的流域模型[J].中国环境科学,1985,(4):23~30.
    [36] 刘枫,王华东等.域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,1988,43(4):329~339.
    [37] 蕉荔.USLE 模型及营养物流失方程在西湖非点源污染调查中的应用[J].环境污染与防治,1991,13(6):5~8,17.
    [38] 李定强,王继增等.广东省东江流域典型小流域非点源污染物流失规律研究[J].土壤侵蚀与水土保持学报,1998,4(3):12~18.
    [39] 贺宝根,周乃晨等.农田降雨径流污染模型探讨[J].长江流域资源与环境,2001,10(3):159~165.
    [40] 陈西平.城市径流对河流污染的 GIS 模型与计算[J].水利学报,1993(3):57~63.
    [41] 陈鸣剑.非点源水质模型研究[[J].上海环境科学,1993,12(1):16~19.
    [42] 李怀恩,沈晋.非点源污染数学模型[M].西安:西北大学出版社,1996.
    [43] 李怀恩,沈冰,沈晋.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学.1997(01):15~18.
    [44] 李怀恩,吴晓光.逆高斯分布水文频率分析模型[J].西北水电,1997(02):55~58.
    [45] 张瑜芳,张蔚榛等.排水农田中氮素运移、转化及流失规律的研究[J].水动力学研究与进展,1996,11(3):251~260.
    [46] 黄元仿,李韵珠等.田间条件下土壤氮素迁移的模拟模型的田间检验与利用[J].水利学报,1996(6):15~23.
    [47] 刘凌,崔广柏.湖泊水库水体氮、磷允许纳污量定量研究[J].环境科学学报,2004,24(6):1053~1058.
    [48] 陈欣,郭新波.采用 AGNPS 模型预测小流域磷素流失的分析[[J].农业工程学报,2000, 16(5):44~47.
    [49] 曹文志,洪华生等.AGNPS 在我国东南亚热带地区的检验[J].环境科学学报,2002,2(4):537~540.
    [50] 董亮.GIS 支持下西湖流域水环境非点源污染研究[D].浙江大学,2001.
    [51] 吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江大学,2002.
    [52] 张红举,崔广柏.农业非点源污染模型研究概况[J].江苏环境科技,2002,2(15):37~39.
    [53] 牛志明,解明曙等.非点源污染模型在土壤侵蚀模拟中的应用和发展动态[J].水土保持研究,2001,3:20~22.
    [54] Karen A P, Barbara L B.GIS-based nonpoint source pollution modeling: Considerations for wetlands [J]. Journal of Soil and Water Conservation, 1995,(6):613~619.
    [55] 任磊,黄廷林.水环境非点源污染的模型模拟[J].西安建筑科技大学学报,2002,34 (1):9~13.
    [56] 姜馨,吴健平等.基于 RS 和 GIS 的农业土地利用污染分析[J].上海环境科学, 2004,23 (3):104~107.
    [57] 李韵珠等.土壤水和养分的有效利用[M].北京农业人学出版社,1994,8.
    [58] 张水铭等 . 农田排水中磷素对苏南太湖水系的污染 [J]. 环境科学 ,1993, 14( 6):24~29.
    [59] 贺缠生.非点源污染的管理及控制[J].环境科学,1998,5:87~96
    [60] 陈欣,姜曙千等.红壤坡地磷素流失规律及其影响因素[J].土壤侵蚀与水土保持学报,1999,5(3):38~44.
    [61] 罗良国. 闻大中.北方稻田生态系统养分渗漏规律研究[J].中国农业科学,2000, 33(2):68~74.
    [62] McCuen,R.H.A guide to Hydrologic Analysis Using SCS Methods.Prentice Hall,Inc.Englewood.Cliffs.1982.
    [63] Rnclra, R. P. et al.The Importance of Precise Rainfall Inputs in Nonpoint Source Pollution Modelling[J].Trans. Am.Soc.Agric.Eng.1993,36,44.
    [64] 阮仁良.苏州河截流区外非点源污染调查[J].上海环境科学,1997,16(1):20~22.
    [65] 陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,(1):48~52.
    [66] 汪忠善等.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究,1996,3(2):84~97.
    [67] 李玉山等.中美小流域治理和农业的对比研究[J].水土保持通报,1993, 13( 1) :11~15.
    [68] 王百群,刘国彬.黄土丘陵地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报.1999,5(2):18~22.
    [69] 李定强,王继增等.广东省东江流域小流域非点源污染物流失规律研究[J].土壤侵蚀与水土保持学报.1998.4 (3):12~18.
    [70] Flanagan, D.C., Foster,G.R.Storm patter effect on nitrogen and phosphorus losses in surface runoff: Transactions of the ASAE[J],198932(2):535~544.
    [71] 刘秉正,李光录等.黄土高原南部土壤养分流失规律.水土保持学报[J]. 1995. (2):7779。
    [72] Sharpley,AN.,Smith,S.J.,et a1.The transport of bioavailable phosphorus in agricultural runoff[J]。 Journal Environment quality,1992.21:30-35;
    [73] 吕喜玺,史德明.第四纪红薪土侵蚀劣地土壤养分随径流和泥砂的迁移规律[J].中国水土保持.1994.5: 12~15.
    [74] Fleming,N.K,Cox,J.W.,et al.Pathways,loads,and forms of phosphorus in runofffromadjacent subcatchmeuts on a dairy farm at Flaxley, South Australia[M], CRC for Soil and Land Management. 1997.
    [75] 雷志栋,杨诗秀等.土壤水动力学[M].清华大学出版社,1988.
    [76] 孙玉龙等.用TDR确定沙壤土非饱和淹灌条件下NH4+反应及NO3-的入渗迁移[J].环境科学报,1997,17(4):417~422.
    [77] Kellogg, R. 1. et al. The potential for leaching of agrichemicals used in crop production: A noational perspective[J]. Soil Il7ater Conservation.1994, 49(3):294~298.
    [78] 阮晓红.非点源污染负荷的水环境影响及其定量化方法研究[D].河海大学,2002.
    [79] Van Riemsdijk, W.H., T.M. Lexmond, C.G. Enfield, and S.E.A.T.M. Van der Zee. 1987. Phosphorus andheavy metals: Accumulation and consequences. P. 213-227. In H.C} Van der Meer et al. (ed.) Animal manure on grassland and fodder crops. Fertilizer or waste Martinus Nijhofh Publ.,Dordrecht, the Netherlands. 1987.
    [80] Gilliam, J.W., J.L. Baker, and K.R. Reddy. Water quality effects of drainage in humid regions. In R.W.Skaggs (ed.) Drainage. Agron. Monogr. Madison, WI (in press). 1994.
    [81] .Hoffmann,Mjohnsson,H.,et a1. Leaching of nitrogen in Swedish agriculture-a historical perspecrive, 2000.80:277~290.
    [82] Smith,C.L,and Bond,W.J.,Losses of nitrogen from an effluent irrigated planfttion.Austl.Res.1999(7):371~389.
    [83] Hubburd, RK, Lowrance, RR, Solute transport and filtering through a riparian forest Transaction of the ASAE, 1996.39(2): 477~488.
    [84] 杨新民,沈冰,王文焰.降雨径流污染及其控制述评[J].土壤侵蚀与水土保持学报.1997.3(3):58~70.
    [85] 王兴祥,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡[J].生态学报.1999.19(3):336~341.
    [86] S. Grunwald and L. D. Norton. Calibration and validation of a non-point source pollution model[J]. Agricultural Water Management,2000, 45(1):17-39.
    [87] Tony Allan. Deforestation : social dynamics in watersheds and mountain ecosystems[J]. Applied Geography, 1989, 9(4):305-306.
    [88] Renard,K.G.,Foster,G.R.,Weesies,G.A.,McCool,D.K and Yoder,D.C. Perdicting Soil Erosion by Water. A Guide to Conservation Planning With the Revised Universal Loss Equation(RUSLE). 1997.USDA Agriculture Handbook No.703,404p.
    [89] 贾玉军.塔里木河中游水质污染原因浅析[J].干旱环境监测,2004,18(4):229~231.
    [90] 金鑫.汾河水库及其上游干流水质趋势研究[J].山西水利科技,2003,149(3):29~31.
    [91] 李艳华.云南省境内怒江流域水质变化趋势分析[J].云南环境科学,2006,25(增刊):119~121.
    [92] 吉林省水利局,长春市中型水库水文资料(1970-1994 年),1995,5.
    [93] 吉林省水利水电勘测设计研究院,吉林省长春市双阳水库配套引水工程可行性研究报告,2001.3.
    [94] 吉林省地质矿产局第二水文地质工程地质大队,吉林省长春市齐家水源地勘探报告,1998.
    [95] 王安勤,许万才.双阳河水库工程对生态环境的影响[J].黑龙江水产,1994,2:33~35,44.
    [96] 刘德林,刘贤赵.主成分分析在河流水质综合评价中的应用[J].水土保持研究,2006,13(3):124~128.
    [97] 劳期团 . 模糊数学方法在水库水质综合判别中的应用 [J]. 中国环境科学,1989,9(3):225-228.
    [98] 国家环保局,《水和废水监测分析方法》编委会编.《水和废水监测分析方法》第三版.中国环境科学出版社,1997.
    [99] 王旭.人工神经元网络原理与应用[M],沈阳:东北大学出版社,2000.
    [100] Tiesong Hu etc.multireservoir operations using an artificial neural network.International symposium on medium and small sized hydropower station.China,1993:114-117.
    [101] Karnina E.D. A simple procedure for pumning backpropagationtrained neural networks.IEEE Transactions on Neural Network,1990,(2):239-242.
    [102] 郭惠霞.化工过程计算中 Matlab 的应用[J].甘肃科技,2007,23(1):73~75.
    [103] 王福昌,张宝雷等。神经网络工具 nntool 及其应用[J]. 计算机与现代化 2003,9:84~85.
    [104] 张立明.人工神经网络的模型及应用[M].上海.复旦大学出版社,1993.
    [105] 董聪.多层向前网络的全局最优化问题[J].大自然探索,1996,15(4):27-31.
    [106] 徐政邦,娄元仁.数学地质基础[M]..北京:北京大学出版社.1990.
    [107] 刘承祚,孙惠文.数学地质基本方法与应用[M].北京:地质出版社.1981.
    [108] 王学仁. 地质数据的多变量统计分析[M]..北京:科学出版社.1982.
    [109] 杜绍敏,赵秀云,彭卉.判别分析在水文地质分析中的应用[J].黑龙江水专学报.2000,12.
    [110] Agterberg,F.P.. Geomathematics, mathematical background and geoscience Applications.Elsevier Scientific Publishing Company[M].Amsterdam, 1974.
    [111] Joreskog, K. G.et al..Statistical analysis of geological data. Vol .1,Vol .2.John Wiley & Sons ,Inc., New York.
    [112] 国家环保局,《水和废水监测分析方法》编委会编.《水和废水监测分析方法》第三版.中国环境科学出版社,1997.
    [113] 吉林长农网.http://www.ccain.com/index.asp.
    [114] 陈子明,袁锋明,姚造华.氮肥施用对土体中氮素移动利用及其对产量的影响[J].土壤肥料,1995,(4):36~42.
    [115] 张效朴,李伟波,詹其厚.吉林黑土上肥料施用量对玉米产量及肥料利用率的影响[J].玉米科学,2000,8(2):70~74.
    [116] 刘宏斌,李志宏,张维理等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J]。植物营养与肥料科学,2004,10(3):286~293.
    [117] 朱兆良,文启孝.中国土壤氮素[M]南京:江苏科学技术出版社,1992.
    [118] 马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [119] 张大弟,章家骐,汪雅谷.上海市郊主要的非点源污染及防治对策[J].上海环境科学,1997,16(3):1-3.
    [120] 杨新民.降雨径流污染及其控制评述[J].土壤侵蚀与水土保持学报,1997, 3(3):58~62.
    [121] 史志华,蔡崇法等.基于 GIS 的汉江中下游农业面源氮磷负荷研究[J].环境科学学报,2002,22(4):473~477.
    [122] 孙艳玲,谢德体等.基于DEM的流域降雨径流模拟研究——以三峡库区晏家河小流域为例[J].水土保持学报,2004,18(1):82~84,92.
    [123] 中国土壤数据库.http://www.soil.csdb.cn/.
    [124] Fairfield J,Leymarie P.Drainage networks from grid digital elevation models[J].Water Resources Research.1991,27(4):29~61.
    [125] O′Callaghan F, Mark D M.The extraction of drainage networks from digital elevation data[J].Computer Vision Graphics and Image Processing.1984,28:323~344.
    [126] Bingner, R.L., J. Garbrecht, J.G Arnold, et al. Efect of watershed subdivision on simulation runof and finesediment yield[J]. Transactions of the ASAE, 1997.,40 (5):3329-1335.
    [127] 何电源.农业生态系统的养分平衡是可持续农业的重要条件[J].农业现代化研究,1999,20(4):241~243.
    [128] 王淑平,周广胜等.土壤微生物量氮的动态及其生物有效性研究[J].植物营养与肥料学报,2003,9(1):87~90.
    [129] 何电源.中国南方土壤肥力与作物栽培施肥[M].科学出版社,1994.
    [130] 肖春华,李少昆等.对玉米养分吸收动态和利用效率的影响[J].土壤肥料,2005,2:10~13.
    [131] 张效朴,李伟波等.吉林黑土上肥料施用量对玉米产量及肥料利用率的影响[J].玉米科学,2000,8(2):70~74.
    [132] Wischmeier W H,Johnson CB and Cross B V. Asoil erodibility nomograph for fearmland and construction sites[J].J Soil Water Conser,1971,26:189~193.
    [133] 王静.丹江库区黑沟河流域农业非点源污染研究.[D],湖北: 华中农业大学,2006.
    [134] 邵妍.AnnAGNPS 模型在土门西沟小流域退耕还林模拟中的应用.北京林业大学.[D],2006.7.
    [135] Orlob G T. Mathematical modeling of water quality: streams, lakes, and reservoirs[R]. IIASA, 1983.
    [136] Faycal Bouraoui . Development of a Continuous , Physically Based , Distributed Parameter , Nonpoint Source Model . Doctoral Dissertation of Virginia Polytechnic Institute and State University. Blacksburg , Virginia , 1994. 1~35.
    [137] 李如忠,洪天求.巢湖流域农业非点源污染控制对策研究[J].合肥工业大学学报(社会科学版),2006,20(1):105~110.
    [138] 姜 翠 玲 , 崔 广 柏 . 湿 地 对 农 业 非 点 源 污 染 的 去 除 效 应 [J]. 农 业 环 境 保护,2002,21(5):471~473,476.
    [139] 陈金林,潘根兴,张爱国等.林带对太湖地区农业非点源污染地控制[J].南京林业大学学报(自然科学版),2002,26(6):17~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700