用户名: 密码: 验证码:
辐照肿胀与蠕变对弥散型核燃料力学行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弥散型核燃料与传统的核燃料相比具有高燃耗和高热导的优点,不仅在各种试验研究堆中得到了广泛的应用,而且在商业堆、核动力舰船以及核废料处理等方面有着良好的发展前景。
     弥散型核燃料元件是由金属包壳和弥散型核燃料芯体组成。且芯体是由核燃料颗粒弥散的分布在基体材料中所构成。在裂变的过程中,核裂变颗粒不仅会产生裂变热和辐照肿胀,而且会产生快中子和其它裂变碎片。在长时间工作的情况下,燃料元件会由于快中子和裂变碎片的辐照作用而发生辐照蠕变、材料硬化变脆以及辐照生长等效应。由于快中子穿透性很强,可以认为基体中快中子流近似均匀分布,与之相反,裂变碎片只在燃料颗粒附近区域有分布,因此,裂变碎片会导致燃料颗粒附近会形成局部的“蠕变增强”区。不均匀蠕变会导致燃料元件堆内的力学行为发生一系列变化。为了保证弥散型核燃料元件的完整性,有必要对其堆内的辐照力学行为进行研究。本文重点考察辐照肿胀和辐照蠕变对弥散型核燃料堆内力学行为的影响。
     本文首先利用解析的方法对稀疏分布的弥散型核燃料进行了分析。针对基体蠕变不均匀以及燃料颗粒附近蠕变比较大的特点,建立了三相模型。并利用Eshelby理论和粘弹性理论的相关知识对模型进行了求解,得到了应力场的解析解。研究发现,基体上的不均匀蠕变导致了第一主应力和Von Mises等效应力最大值出现在离颗粒和基体边界有一段距离的地方,而不是出现在颗粒和基体的边界上。不均匀蠕变区域越大,第一主应力和Von Mises等效应力最大值越小;当不均匀蠕变区域不变时,颗粒的半径越小,第一主应力和Von Mises等效应力最大值越小。基体和颗粒的体积模量之比越小,剪切模量之比越小,第一主应力和Von Mises等效应力最大值就越小。
     其次,针对燃料颗粒密集排布的弥散型核燃料元件,本文利用ANSYS有限元软件对其进行了数值计算和研究。不论是板状弥散型核燃料元件,还是棒状弥散型核燃料元件,本文都采用了既能反映其结构特点又能切实考虑边界条件的有限元模型。并考虑了不均匀蠕变区域蠕变率的连续变化。研究表明,相对于均匀蠕变的情况,考虑裂变产物的影响后,基体应力应变的分布会发生相应的变化:基体区域的蠕变率增大,而且离颗粒越近增加的幅度就越大,从而导致基体Von Mises等效应力减小,离颗粒越近减小的幅度越大。而另一方面由于包壳离颗粒较远,受裂变碎片非均匀蠕变效应的影响很小,包壳应力应变的分布和均匀蠕变时的结果相差很小。
     本文的研究有助于弥散型核燃料元件的优化设计,能为实际的试验提供一定的理论参考,减少其盲目性。
Compared with the traditional nuclear fuel rods, the dispersion nuclear fuel elements have higher burn-up and higher thermal conductivity, so they have been extensively used in the research reactors, and they have good prospects in the nuclear vessels, nuclear waste disposal and commercial reactors.
     The dispersion nuclear fuel element consists of the metal cladding and the dispersion nuclear fuel meat. The fuel meat is distinguished by having the nuclear fuel particles dispersed through the matrix. Inside the demanding environment of the reactors, the fuel particles generate heat by nuclear fissions, the fission product accumulation results in irradiation-induced swelling of the fuel particles. At the same time, fast neutron and fission products release from the fuel particles. Under the long-time-work, the in-pile materials creep under the attack of fast neutron and fission products. Because of the strong penetrability of fast neutron, the distribution of fast neutron flux in the matrix can be considered as uniform. But the fission products are only distributed near the fuel particles. So, the matrix materials near the particle get enhanced creep. The inhomogeneous creep in the matrix can result in different in-pile mechanical behaviors. In order to ensure the safety and reliability of the dispersion fuel rod, it is necessary to study the in-pile irradiation behaviors, especially the effects of irradiation-swelling and irradiation-creep on the in-pile irradiation behaviors.
     Firstly, mechanical behaviors of the sparsely dispersed nuclear fuel are investigated through analytic solutions, considering the thermal effect, irradiation swelling of the fuel particle and the inhomogeneous irradiation-creep of the surrounding matrix. Analytic solutions of the stress fields are obtained with the method of solving the Eshelby's inclusion problem in a three-phase, spherically concentric solid. The result indicates that the maximum of the first principal stress in the matrix appears at some distances away from the interface between the matrix and the inclusion instead of on the interface, and that is induced by a locally enhanced creep of the matrix. When the ratio of the volume modulus or shear modulus between the matrix and the inclusion is smaller, the matrix is more difficult to perform fracture considering the same inclusion or matrix.
     Subsequently, mechanical behaviors of the densely dispersed nuclear fuel are investigated through the finite element method. Two classical computing models, considering the design feature of the elements and the practical boundary conditions, are adopted to simulate the dispersion fuel plate and the dispersion fuel rod separately. The results indicate that:compared with the situation of a homogeneous distribution of the creep rate in the matrix, different distributions of stress and strain perform in the matrix, when considering the effect of fission product:the creep rate increases in the matrix, and the creep rate increases more intensely when the point has a closer distance from the particle; Accordingly, the Von Mises stress decreases in the matrix, and the Von Mises stress decreases more intensely when the point has a closer distance from the particle. Because of the distance between the cladding and particle, the similar distributions of stress and strain in the cladding perform both on the conditions of homogeneous creep rate and inhomogeneous creep rate in the cladding.
     This study is useful to the optimal design of the dispersion nuclear fuel elements, and it could provide numerical reference basis for the actual operation of the fuel element.
引文
[1]李冠兴.研究试验堆燃料元件制造技术[M].北京:化学工业出版社,2007.
    [2]Sean Mcdeavitt. Thoria-Based Cermet Nuclear Fuel [A]. In:Cermet Fabrication and Bahavior Estimates [C]. Proceeding of ICONE 10, Arlington, VA:April 14-18, 2002.
    [3]邢忠虎,应诗浩.高燃耗时U3Si2-Al弥散型燃料的辐照肿胀模型[R].中国核学会材料分会,1998年.
    [4]A. N. Holden. Dispersion Fuel Elements [M]. New York:Gordon and Breach Science Publishers, Inc.,1967.
    [5]Lee Van Duyn. Evaluation of the mechanical behavior of metal-matrix dispersion fuel for plutonium burning [D]. Georgia Institute of Technology:A Thesis for the Degree Master of Science in Mechanical Engineering,2003.
    [6]E. A. C. Neeft, K. Bakker, R. L. Belvroy. Mechanical behavior of macro-dispersed inert matrix fuels [J]. Journal of Nuclear Materials,2003,317:217-225.
    [7]BRT.弗罗斯特主编,周邦新等译.核材料(第一部分),材料与技术丛书[M].北京:科学出版社,1999.
    [8]E. A. C. Neeft, K. Bakker, R. P. C. Schram. The EFTTRA-T3 Irradiation Experiment on Inert Matrix Fuels [J]. Journal of Nuclear Materials,2003,320: 106-116.
    [9]D. W. White, A. P. Beard, A. H. Willis. Irradiation behaviour of dispersion fuels [R]. The fuels elements conference, KAP-P-1849:Paris, NOV.18-23,1957.
    [10]M. K. Meyer, G.L, Hofman. Irradiation behaviors of U-Nb-Zr alloy dispersed in aluminum [J]. Journal of Nuclear Materials,2001,199:175-179.
    [11]Donald R. Olander. Fundamental Aspects of Nuclear Reactor Fuel Elements [R]. Technical Information Center, Office of Public Affairs. Energy Research and Development Administration,1976.
    [12]黄祖洽编著.核反应堆动力学基础[M].北京:北京大学出版社,2007.
    [13]李文琰主编.核材料导论[M].北京:化学工业出版社,2007.
    [14]C. E. Weber, H. H. Hirsch. Dispersion-Type Fuel Elements [R]. International Conference on the peaceful Uses of Atomic Energy, Vol.9, P196, United Nations, New York,1956.
    [15]C. E. Weber. Progress on Dispersion Elements [R]. Progress in Nuclear Energy. Searies 5, Metallurgy and Fuels, Vol.2,1959.
    [16]J. Rest, G.Hofman. DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements [J]. Nuclear Technology,1999,126:88-101.
    [17]邢忠虎,应诗浩,U3Si2-A1弥散型燃料的辐照肿胀研究[J].原子能科学技术,2001,35(1):15-19.
    [18]A. Leenaers, S. Van Den Berghe, S. Dubois, J. Noirot, M. Ripert, P. Lemoine. Mircostructural analysis of irradiated atomized U (MO) dispersion fuel in an Al matrix with Si addition [A]. RRFM2008 Transaction, Session2:Fuel development and fabrication,106-110.
    [19]丁淑蓉,姜馨,霍永忠.弥散型燃料元件可靠性与优化设计:理论建模与数值模拟[J].核动力工程,2007,vol.28,no.2:16-19.
    [20]丁淑蓉,霍永忠.弥散型燃料板辐照肿胀行为的有限元分析[J].核动力工程,2007,vol.28,no.4:58-62.
    [21]丁淑蓉,霍永忠.弥散型核燃料元件热应力的计算模拟[J].固体力学学报,2006,vol.27:97-102.
    [22]Shurong Ding, Xinjiang, Yongzhong Huo. Reliability Analysis of Dispersion Fuel Elements [J]. Journal of Nuclear Materials,2008,374:453-460.
    [23]Shurong Ding, Yongzhong Huo. Finite Element Modeling of Thermal-mechanical Behaviors of dispersion fuel elements [J]. Nuclear Technology.
    [24]Qiming Wang, Xiaoqing Yan, Shurong Ding, Yongzhong Huo. Journal of Nuclear Materials,2010,400:157-174.
    [25]Shurong Ding, Qiming Wang, Yongzhong Huo. Journal of Nuclear Materials, 2010,397:80-91.
    [26]T. Mura. Micromechanics of defects in solids [M]. Second, revised edition, Dordrecht:Martinus Nijhoff,1987.
    [27]J. D. Eshelby. The Determination of the Elastic Field of An Ellipsoidal and Related Problems [J]. Proc. Roy. Soc.,1957,241:376-396.
    [28]J. D. Eshelby. The Elastic Field Outside An Ellipsoidal Inclusion [J]. Proc. Roy. Soc.,1959,252:561-569.
    [29]J. D. Eshelby. Elastic inclusion and inhomogeneities [J]. In Suddon I. N. and Hill R. eds., Progress in Solid Mechanics,1961:89-140.
    [30]梁军.复合材料动态粘弹性能的细观研究[J].固体力学学报,2001,vol.22(4):427-431.
    [31]A. Maewal, New Haven. Acta Mechanica 1987,66:191-204.
    [32]H. A. LUO, G. J. WENG. Mechanics of Materials 1987,6:347-361.
    [33]Matpro-09. A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior [DB]. USNRC TREE NUEG-1005,1976.
    [34]W. Chubb, V. W. Storhok, D. L. Keller. Factors Affecting the Swelling of Nuclear Fuelat High Temperatures [J]. Nucl. Technol.,1973,18:231-255.
    [35]T. Nakajima, M. Ichikawa. FEMAXI-III:A Computer Code for the Analysis of Thermal and Mechanical Behaviour of Fuel Rods [DB]. AERI-1298,1985.
    [36]W. Wiesenack, M. Vankeerberghen, R. Thankappan. Assessment of UO2 Conductivity Degradation Based on In-pile Temperature Data [DB]. HWR-469, 1996.
    [37]Chan Bock Lee, Dae Ho Kim. J. Nucl. Mater.,2000,282:196-204.
    [38]Bland DR. Pergamon Press,1960.
    [39]J. Lindhard, H. Scharff, M. E. Schicptt. Range concepts and heavy ion rangs (Notes on atomic collisions Ⅱ), Mat. Fys. Medd. Dan. Vid. Selsk,1963,33(14).
    [40]A. EI-Azab, N. M. Ghoniem. Mechanics of Materials 1995,20:291-303.
    [41]Shuong Ding, Yongzhong Huo, Xiaoqing Yan. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements [J]. Journal of Nuclear Materials, (2009), doi:10.1016/j.jncmat.2009.04.015.
    [42]Qiming Wang, Xiaoqing Yan, Yongzhong Huo, Shurong Ding. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements [J]. Journal of Nuclear Materials, Vol.399, No.1, Apr.2010, pp.41-54. doi:10.1016/j. jnucmat.2010.01.001.
    [43]丁淑蓉.核裂变颗粒复合材料的辐照力学行为研究[R].上海:复旦大学,2008.
    [44]王启明.板型弥散型核燃料元件复杂堆内行为的数值模拟[D].上海:复旦大学,2010.
    [45]严晓青.弥散型核燃料板辐照力学行为的数值模拟[D].上海:复旦大学,2011.
    [46]T. Belytschko, W. K. Lin, B. Moran. Nonlinear Finite Element for Conium and Structure [M]. John Wiley & Sons Ltd., U.K.,2000.
    [47]Harald Berger, Sreedhar Kai, Ulrich Gabber. A comprehensive numerical homogenization technique for calculating effective coefficients of uniaxial piezoelectric fiber composite [J]. Material Science and Engineering A,2005, 412:53-60.
    [48]Hagrman D. L., Reyman G. A. MAPRO-Version II:A Handbook of Materials Properties for use in the analysis of light water reactor fuel rod behavior [DB]. NUREG/CR-0497, TREE-1280, Rev.3,1979.
    [49]姜馨.弥散型核燃料的等效性质及棒状元件的辐照力学行为研究[D].上海:复旦大学,2009.
    [50]P. G. Lucuta, H. S. Matzke, I. J. Hastings. A pragmatic approach to modeling thermal conductivity of irradiated UO2 fuel:review and recommendations [J]. Journal of nuclear materials,1996,232:166-180.
    [51]Fisher E. F., Renken C. J. Single-crystal elastic moduli and hcp-trasformation in Ti, Zr and Hf [J]. phys. Rev.,1954:482-494.
    [52]F. Huet, V. Marelle, J. Noirot, P. Sacristan, P. Lemoine. Proceedings of the 2003 international meeting on reduced enrichment for research and test reactors, Chicago, IL,5-10 October 2003.
    [53]H. J. Ryu, Y. S. Han, J. M. Park, S. D. Park, C. K. Kin. J. Nucl. Mater.,2003,321: 210.
    [54]A. Leeners, S. Van den Berghe, E. Koonen. J. Nucl. Mater.,2004,335:39.
    [55]F. Huer, J. Noirot, V. Marelle, S. Dubois, P. Boulcourt, P. Sacristan, S. Nauiy, P. Lemoine. Proceedings of the Ninth international topical meeting on research reactor fuel management, Budapest, Hungary,10-13 April 2005.
    [56]J. E. Harbo-itle. Irradiation growth in zr an its alloys [J]. Journal of Nuclear materials,1988,159:43-61.
    [57]M. A. Meyers and K. K. Chawla. Mechanical metallurgy:Principles and Applications [M]. Prentice Hall, Inc.1984.
    [58]J. R. Matthews, M. W. Finnis. Journal of nuclear materials,1988,159:157-285.
    [59]D. W. White and A. P. Beard and A. H. Willis. Irradiation behavior of dispersion fuels [A]. Paper presented at the fuels elements conference, KAPL-P-1849:Paris, Nov.18-23,1957.
    [60]H. Taboada, J. Rest, M. V. Miscarda, M. Markiewicz, E. Estevz. Proceedings of the 24th international management on reduced enrichment for research and test reactors, San Carlos de Bariloche, Argentina,3-8 November 2002.
    [61]J. Rest. The DART dispersion analysis research tool:A mechanical model for predicting fission-product-induced swelling of aluminum dispersion fuel [J]. ANL-95/36,1995.
    [62]S. L. Hayes, G. L. Hofman, M. K. Meyer, F. Rest, J. L. Snelgrove. International meeting on reduced enrichment for research and test reactors, Bariloche, Argentima,3-8 November 2002.
    [63]V. Marelle, S. Dubios, M. Ripert, J. Noirt, P. Lemoine. The RERTR-2007 international meeting reduced enrichment for research and test reactors,23-27 September, Diplomat Hoterl-Prague, Prague, Czech Republic,2007.
    [64]V. Marelle, F. Huet, P. Lemoine. Proceedings of the Eighth international topical meeting on research reactor fuel management, Munchen, Germany,21-24 March 2004.
    [65]Roberto Saliba, Horacio Taboada, Ma. Virginia Moscarda.2003 international meeting on reduced enrichment for research and test reactor, Chicago, IL,5-10 October 2003.
    [66]殷有泉.固体力学非线性有限元引论[M].北京大学出版社,1987.
    [67]蒋友谅.非线性有限元法[M].北京工业学院出版社,1988.
    [68]吴永礼.计算固体力学方法[M].科学出版社,1988.
    [69]方岱宁,周储伟.有限元计算力学对复合材料力学行为的数值分析[J].力学进展,1998,vol.28,no.2:1-7.
    [70]J. C. Maxwell. A treatise on electricity and magnetism [M]. Oxford Clarendon press,1873.
    [71]陈则韶,钱军.复合材料等效导热系数的理论推算[J].中国科学技术大学学报,1992,12:416-421.
    [72]陈则韶,倪海涛.多孔介质等效导热系数的较高精度通用计算公式[J].工程热物理学报,1991,12:305-308.
    [73]Guoqing Gu, Zengrong Liu. Effects of contact resistance on thermal conductivity of composite media with a periodic structure [J]. J. Psy.,1992,25:249-255.
    [74]H. S. Kou, K. T. Lu, and C. C. Yu. Effective thermal conductivity of composite material with spherical inclusions in orthorhombic structure [J]. Composite & Structures,1994,53(3):569-577.
    [75]Zhang Yinping, Liu Xing. Numerical analysis of effective thermal conductivity of mixed solid materials [J]. Material & Design,1995,16:91-95.
    [76]D. F. Adams, D. A. Crane, Combined loading micromechanical analysis of a unidirectional braided composite [J]. Composites,1984,15(3):181-192.
    [77]Mohaier Jasbi S., Helicopters D., Prediction for coefficients of thermal expansion of 3 dimensional braided composites [J]. AIAA Journal,1997,35:141-144.
    [78]D. E. Bowels, S. S. Tompkins. Prediction of coefficients of thermal expansion for unidirectional composite [J]. Journal of Composite Materials,1989,23:370-388.
    [79]Y. L. Shen. coefficients of thermal-expansion of metal-matrix composites for electronic packaging [J]. Metallurgical and materials transactions a-physical metallurgy and materials science,1994,25:839-850.
    [80]Y. L. Shen. Combined effects of micro-voids and phase contiguity on the thermal expansion of metal ceramic composites [J]. Materials Science and Engineering A, 1997,237:102-108.
    [81]张子明,张明,宋智通.基于细观力学方法的混凝土热膨胀系数预测[J].计算力学学报,2007,24:806-810.
    [82]Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusion [J]. Acta Matall,1973,21:571-574.
    [83]Hill R. Theory of mechanical properties of fiber-strengthened materials III Self-consistent model [J]. J Mech Phys Solids,1965,13:189-198.
    [84]Hill R. A self-consistent mechanics of composite materials [J]. J Mech Phys Solids,1965,13:213-222.
    [85]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [86]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
    [87]Voiget W. Uber die Beziehung zwischen den beiden Elastizitatakomstanten istroper korper [J]. Wied Ann,18893,38:573-587.
    [88]Reuss A. Berechung der Fliebgrenze von Mischkristallem auf Grund der Plastizitatsbedingung fur Einkristalle [J]. Z Angew Math Mech,1929,9:49-58.
    [89]Hashin Z., Shrikman S. On some variational principles in anistropic and nonhomogeneous elasticity [J]. J Mech Phys Solid,1962,10:335-342.
    [90]Hashin Z., Shrikman S. A variational approach to the theory of the elastic behavior of multiphase materials [J]. J Mech Phys Solid,1963,11:127.
    [91]Milton G. W. Bounds on the electro-magnetic, elastic and other properties of two component composites [J]. Phys Rev Lett,1981,46:542.
    [92]Aboudi J. Micromechanical analysis of composites by the method of cells [J]. Appl. Mech. Rev.,1989,42:193-221.
    [93]Aboudi J. Mechanics of composite materials [M]. Elsevier, Amsterdam,1991.
    [94]Aboudi J. Micromechanical analysis of composites by the method of cells-update [J]. Appl. Mech. Rev.,1996,49:S83-S91.
    [95]Aboudi J. High order theory for periodic multiphase materials with inelastic phase [J]. Int. J. Plast.,2003,19:805-847.
    [96]Wang X., Shen Y. P. On double circular inclusion problem in anti-plane piezoelectricity [J]. Int J Solids and Structures,2001,38:4439-4461.
    [97]王旭,沈亚鹏.压电复合材料中的Eshelby夹杂问题[J].力学学报,2003,35:26-32.
    [98]A. Molinari. Validation of the tangent formulation for the solution of the non-linear Eshelby inclusion problem [J]. Journal of Plasticity,2004,20: 291-301.
    [99]梁军,杜善义.粘弹性复合材料力学性能的细观研究[J].复合材料学报,2000,18:97-100.
    [100]H. K. Lee, S. H. Pyo. An elastoplastic multi-level damage model for ductile matrix composites considering evolutionary weakened interface [J]. Journal of Solids and Structures,2008,45:1614-1631.
    [101]XI-QIAO FENG, ZHI TIAN, YING-HUA LIU and SHOU-WEN YU. Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites [J]. Applied Composite Materials,2004,11:33-55.
    [102]J. Rodriguez-Suarez, S. Lopez-Esteban, J. F. Bartolome, J. S. Moya. Mechanical properties of alumina-rich magnesium aluminate spinel/tungsten composites [J]. Journal of the European Ceramic Society,2007,27:3339-3344.
    [103]郁金南编著.材料辐照效应[M].北京:化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700