用户名: 密码: 验证码:
掺Tm~(3+)双包层光纤激光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输出波长位于2μm附近的掺铥光纤激光器在现代军事技术(光电对抗)、生物医学和激光雷达等方面都有重要的应用。作为其核心器件的掺铥双包层光纤制备技术一直被国外研究小组掌握,极大地限制了国内掺铥光纤相关器件的发展。本论文的目的是研究我们组制备的掺铥双包层光纤的激光性能,为制备出高斜率效率、高功率的掺铥双包层光纤打基础,打破国外的技术垄断。
     本文对已有的双包层掺杂光纤速率方程数学模型进行改进,用龙格-库塔方法对其进行求解,模拟、分析了铥离子掺杂浓度和光纤长度对掺铥光纤输出激光性能的影响。
     采用改进的化学汽相沉积法(Modified Chemical Vapor Deposition,MCVD)和汽、液相掺杂技术制备了6种掺铥光纤预制棒,用拉丝塔拉制出6种双包层掺铥光纤。
     搭建了掺铥双包层光纤激光器系统,对实验室自行制备的6种掺铥双包层光纤优化长度、测试了激光性能(斜率效率、激光波长、阈值)以及弯曲直径和不同泵浦波长对激光性能的影响,得出以下结论:1.斜率效率最低27.93%,最高43.23%,阈值从9.2W到14.25W变化,输出激光波长变化范围从2013nm至2043nm;2.使用掺铥双包层光纤DCTDF-M004的激光器,弯曲直径适当变小会增加斜率效率,当弯曲直径小于一定程度时,会使斜率效率下降;弯曲直径对阈值、输出激光波长的影响不大;3.掺铥双包层光纤DCTDF-M006的最佳泵浦波长位于791nm附近,此时斜率效率最大,为43.39%;输出激光波长随泵浦波长的增加发生红移;泵浦波长的变化对于阈值影响不大。对以上测试结果进行分析,为制备出高性能的光纤奠定基础。
The thulium-doped fiber laser whose output wavelength is 2 micron plays an important role in modern military technology(electrooptical countermeasures),biomed icine and lidar.As the core equipment,the preparation technology of thulium-doped double-cladding fiber has been mastered by foreign research team,which has limited the development of the thulium-fiber-using equipment home.This paper aims to research the laser characteristic of thulium-doped fiber prepared by our team,in order to prepare high slope efficiency and high output power fiber,breaking the monopoly of foreign countries.
     Firstly,we modify the velocity equation and solve it using the runge-kutta solution.,then simulate and analyse the influence of thulium-ion-doped concentration and fiber length to the laser characteristic.
     Using the Modified Chemical Vapor Deposition and solution or vapour doping technology,we prepared six kinds thulium-doped perform,then draw them to double-cladding fiber.
     We establish the thulium-doped fiber laser system and test the laser characteristic(slope efficiency,laser wavelength,threshold) of six thulium-doped double-cladding fiber and the influence of bend diameter and different pump wavelength to the laser characteristic,conclusion as follows:1.The minimum slope efficiency is 27.93%,the maximum is 43.23%,threshold changes from 9.2W to 14.25W,output wavelength is between 2013nm and 2043nm;2.Using DCTDF-M004 as gain medium,small bend diameter doesn’t always lead to high slope efficiency;bend diameter has ignore influence on threshold and output wavelength;3.The appropriate pump wavelength for DCTDF-M006 is around 791nm,corresponding to the maximum slope efficiency 43.39%;the output wavelength shifts red with the pump wavelength increases;the change of pump wavelength has ignore influence to the threshold.Analyse the test result and establish foundation for preparing high performance fiber.
引文
[1] DA Simpson. Spectroscopy of thulium doped silica glass: [Ph.D paper]. Victoria University: Victoria University Library, 2008
    [2] Anping Liu, Kenichi Ueda. The absorption characteristics of circular, offset, and rectangular double-clad fibers. Optics Communications, 1996, 132: 511~518
    [3]嵇叶楠.掺铥光纤激光器的实验研究: [硕士学位论文].北京:北京交通大学, 2009
    [4]张云军.包层泵浦掺Tm3+光纤激光器的研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2006
    [5]龙井宇,白晋涛,任兆玉,杨凯. 2μm掺Tm3+石英光纤激光器的泵浦效率分析和研究进展.激光杂志, 2009, 30(4): 1~2
    [6] P. F. Moulton et al, IEEE J. Sel. Topics in Quantum. Elect, 2009, 15(1): 85
    [7] G. Goodno et al. , Proc. Assp postdeadline paper PD MF2, 2009. 1~4
    [8] Stuart D Jackson and Terence A King. Theoretical modeling of Tm-doped silica fiber lasers. IEEE J. Quantum Electron, 1999, 17(5): 948~956
    [9] M. J. F. Digonnet, Rear-Earth-Doped Fiber Lasers and Amplifiers. (Second Edition, Revised and Expanded). New York Basel, 2001. 423~424
    [10] B. M. Walsh, N. P. barnes. Comparison of Tm: ZBLAN and Tm: silica Fibre Lasers; Spectroscopy and Tunable Pulsed Laser Operation around 1.9μm. Appl. Phys. B, 2 004, 78(3~4): 325~333
    [11]崔锦江.大功率高效中红外光纤激光器的研究进展.激光技术与应用, 2008, (4): 12~14
    [12]魏瑞,裴丽. 2μm波长Tm3+光纤激光器的研究进展.光纤与电缆及其应用技术, 2007, (6): 6~8
    [13]魏瑞.掺铥光纤激光器研究: [硕士学位论文].北京:北京交通大学, 2008
    [14]廖梅松,房永征,孙洪涛,胡丽丽,张军杰.掺铥氟磷玻璃的结构、热学性质和光谱性质.光子学报, 2006, 26(5): 713~716
    [15] Stuart D. Jackson, Alexander Sabella, and David G.Lancaster. Application andDevelopment of High-Power and High Efficient Silica-Based Fiber Lasers Operating at 2μm. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13(3): 568
    [16]黎大军,杜戈果,闫培光. LD泵浦掺铥(Tm3+)光纤激光器的数值分析.应用光学, 2007, 28(4): 439~441
    [17] Ido Kelson, Amos Hardy. Optimization of Strongly Pumped Fiber Lasers. Journal of Lightwave Technology, 1999, 17(5): 892~894
    [18] Amos Hardy. Signal Amplification in Strongly Pumped Fiber Amplifiers. IEEE JOURNAL OF Quantum Electronics, 1997, 33(3): 308~309
    [19] Roger R. Petrin, Mahendra G. Jani, Richard C. powell. Spectral dynamics of laser-pumped Y3Al5O12: Tm, Ho lasers. OPTICAL MATERIALS, 1992, 1(2): 111~120
    [20]周惠.包层泵浦掺Tm3+光纤激光器及放大器的研究: [硕士毕业论文].哈尔滨:哈尔滨工业大学, 2008
    [21]梁轩.掺铥光纤激光器的交叉弛豫特性研究: [硕士毕业论文].北京:北京交通大学, 2010
    [22]王文杰.掺铥光纤激光器的理论研究: [硕士毕业论文].北京:北京交通大学, 2009
    [23]卓安生.掺铥光纤激光器研究: [硕士毕业论文].北京:北京交通大学, 2009
    [24]黄川.高功率掺镱双包层光纤激光器研究: [硕士毕业论文].武汉:华中科技大学, 2008
    [25]董淑福,陈国夫,赵尚弘. 1180nm激光抽运Tm, Ho石英光纤激光器理论研究.激光技术, 2006, 30(2): 138~141
    [26] D.B. Keck, P. C. Schultz, and F. Zimar, U. S. Patent 3373292, 1973. 1~2
    [27] J. B. MacChesney and P. B. O’Connor, U .S. Patent 4217027, 1974. 2~3
    [28] T. Izawa, S. Kobayashi, S. Sudo and F. Hanawa, in Tech. Dig. 2nd Int. Conf. Int. Opt. , Opt. Fiber Commun. , Tokyo, Japan, 1977. 42~43
    [29] G. R. Newns, K. J. Beales and C. R. Day, in Dig. 2nd Int. Conf. , Int. Opt. , Opt. Fiber Commun, Tokyo, Japan, 1977. 100~111
    [30] J. Koenings, D. Kuppers, H.Lydtin and H. Wilson, in Proc. 5th Conf. Vap. Dep. , 1975. 270
    [31]宁鼎.掺Yb3+单包层和双包层光纤的研制与性能测试研究(一).光纤光缆传输技术, 2004, (3): 11
    [32]衣永青,田海生,宁鼎. MCVD工艺沉积温度对有源光纤掺杂浓度的影响研究.光通信技术, 2007, (1): 60
    [33]衣永青,王东波,梁小红,段云峰,宁鼎.高温汽相掺杂法制备高掺铥石英光纤.激光与红外, 2010, 40(3): 265-266
    [34]李进延,李海清,蒋作文,陈伟,刘学军,李诗愈.双包层掺镱光纤的制备研究.光通信研究, 2004, 123: 53
    [35]冯高锋,张立永,吴金东.双包层掺镱光纤的光谱性能与制备技术.现代传输, 2008, (4): 84~85
    [36]王宝华,姜梦华,惠勇凌,李强.大功率固体激光器高效率光纤耦合.中国激光, 2008, 35(2): 196
    [37]朱辰,李尧,王雄飞,林佶翔,赵鸿.光纤端面处理对光纤激光器输出性能的影响.激光与红外, 2008, 38(5): 448
    [38]杨敬,瞿荣辉,孙国勇,韩秀友,庞拂飞,耿健新,蔡海文,方祖捷.一种新型结构的单纵模光纤激光器.中国激光, 2005, 32(4): 441~442
    [39]赵鸿,张大勇,姜东升,王建军,赵伟,赵书云. LD泵浦高光束质量被动Q开关激光技术研究.激光与红外, 2004, 34(1): 29
    [40]赵石坚. F-P腔He-Ne激光的纵模分析.娄底师专学报, 1988: 52~53
    [41]徐荣青,陆耀东,蓝信钜.一种新型单纵模连续Nd: YAG激光器.华东船舶工业学院学报, 2000, 14(4): 83
    [42]陈柏,林尊琪.掺Yb光纤激光器激射波长与阈值关系研究.光学学报, 2000, 20(6): 750

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700