用户名: 密码: 验证码:
二极管泵浦固体激光器若干重要问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了激光二极管泵浦固体激光器的若干问题。激光晶体吸收的泵浦光能量中部分转化为热能,产生热耗,引起晶体的热效应。激光晶体的热效应是影响DPL功率、空域、时域、频域等特性的重要因素。本文研究的重点是激光晶体空域和时域热效应以及其对激光器性能的影响;本文还讨论了声光调Q激光器脉冲的产生、形态和输出特性;研究了激光二极管端面泵浦峰值功率百千瓦级紧凑型声光调Q Nd:YAG激光器设计方法并设计了软件。论文主要内容分为四部分:
     论文第一部分,对晶体内空间非均匀分布的热耗及散热状况进行了综合研究,采用解析法和有限单元法分析了泵浦光空间分布对晶体内温度分布和热致畸变的影响。在端面泵浦条件下,研究了晶体热透镜的球差效应;偏心泵浦对晶体内热效应和热致畸变的影响。在侧面泵浦条件下,研究了晶体内泵浦光空间分布的影响因素,晶体的热致畸变规律。研究结果表明:由温度梯度导致的热透镜不能简单的采用理想透镜等效,热透镜焦距随晶体径向位置而改变;当平行光入射晶体后,不同径向位置的出射光不能汇聚在光轴上同一点,在不同轴向位置处观察到的出射光呈弥散斑;晶体的衍射损耗受泵浦光与振荡光半径之比、泵浦功率以及超高斯泵浦光阶数的影响;当偏心泵浦时,晶体的热致畸变效应发生了偏移;随着偏心度的增大,晶体端面温度最高值的位置逐渐移动且最高值下降。
     研究了激光晶体的散热技术,理论和实验研究了多种热沉内的热传导问题,包括热沉的材质、结构及散热方式;重点研究了晶体和热沉之间的热传导问题,将铟箔、银箔、铝箔和碳纳米管等分别作为晶体和热沉之间填充材料进行了实验研究,由于材料热传导性和延展性的差异,采用银箔获得最佳实验结果。
     论文第二部分,研究脉冲激光二极管泵浦激光器中激光晶体的时变热效应,着重讨论短脉冲、长周期泵浦状态下热效应的时变过程。研究中引入晶体的热弛豫时间并分析其影响因素;分析了激光晶体的热波动对谐振腔的影响;提出了几种基于激光晶体热效应的调Q方式。研究结果表明:晶体温度时变过程,受泵浦光、晶体特性和散热条件影响,温度上升过程主要受泵浦光和晶体掺杂浓度的影响;下降过程主要受晶体尺寸、热物性参数以及散热条件的影响。在周期性脉冲泵浦条件下,晶体中温度最终呈周期性变化,温度梯度周期性波动,并且受到热弛豫时间的影响。强烈的热弛豫变化,引起晶体的温度、折射率、热透镜和谐振腔急剧变化,使得整个脉冲过程中,受热透镜影响的谐振腔结构始终随时间变化,上述现象在短脉冲、长周期即低时间占空比的脉冲激光器中表现更加严重。
     论文的第三部分,研究了腔内倍频声光调Q Nd:YAG激光器中的若干问题,包括输出激光脉冲的形成过程及影响因素;完全相位匹配时KTP晶体长度和谐振腔参数对激光输出的影响;KTP晶体的热效应对相位匹配的影响;考虑到完全相位匹配较难实现,本文研究了相位失配的程度对激光输出的影响。结果表明:倍频过程加剧了激光脉冲的时域非对称性;基频光功率提高使KTP晶体温度升高、折射率改变及相位失配程度加剧,导致倍频效率下降。
     论文的第四部分,基于自适应调整算法,完成了激光二极管端面泵浦峰值功率百千瓦级紧凑型声光调Q Nd:YAG激光器的综合设计软件。该软件具有反向设计功能,在用户窗口输入峰值功率、脉冲宽度、重复频率及光束质量因子等激光器性能参数,运行软件可获得泵浦光功率、腔长、泵浦光半径、输出镜透过率和曲率半径等激光器参数;并可进行晶体热效应分析,绘制激光脉冲波形。该软件还具有正向设计功能,在用户窗口输入上述激光器参数,运行软件亦可给出相应激光器性能参数。
Several key issues of laser-diode-pumped solid-state laser (DPL) are discussed in this paper. A part of pumping energy absorbed by laser crystal is changed into heat and the thermal effects are caused by the heat consumption. The thermal effects of laser crystal are the important factors which affect the output power, spatial and time characteristics, frequency characteristics of DPL. The key issues of this paper are to study the spatial and time varying thermal effects of the laser crystal and the influences of thermal effects on laser performances. The generation and output characteristics of laser pulse output by acousto-optic Q-switched Nd:YAG lasers are also discussed in this paper; the laser design method is studied and a software is developed, it is suitable for the 100-kW-class compact laser-diode (LD) end-pumped acousto-optic Q-switched Nd:YAG laser. The key issues discussed in this paper are divided into four parts:
     In the first part of this paper, the spatial non-uniform distribution of heat consumption and heat dissipation conditions of the laser crystal are studied synthetically, the analytical method and finite element method are used to analyze the influences of the pumping beam distribution on temperature and the thermal induced distortion of laser crystal. In the end-pumped solid-state lasers, the spherical aberration of crystal thermal lens is studied, and the influences of the eccentricity pumping on thermal effects and thermal induced distortion are also discussed. In the side-pumped lasers, the spatial distribution of pumping beam in the laser crystal and the thermal induced distortions of crystal are studied. The results show that, the thermal lens caused by the temperature gradient can not be equivalent by an ideal lens, and the focal length of thermal lens is varied with the radial coordinate. If the light rays transmitted parallel to the optical axis, they will not converged to one point after across the thermal lens, the dispersion speckle of output beam will be observed at different axial position. The thermal induced diffractive loss is influenced by the ratio of pumping beam and the oscillating beam radius, the pumping power and the order of super-Gaussian. In the eccentric pumping condition, the thermal induced distortion is shifted, the maximum temperature in the crystal is decreased gradually and the position of highest temperature is shifted when the eccentricity of pumping beam is increased.
     The laser crystal cooling technology is studied. Theoretical and experimental researches of heat conduction in heat sinks are made, such as the material, structure and the heat dissipation method. Focuses on the problem of thermal conduction between the laser crystal and the heat sink, many experiments are made, the indium foil, silver foil, aluminum foil and carbon nanotubes is chosen as the filling material between the crystal and the heat sink respectively, due to the thermal conductivity and ductility of the material, the best results are obtained when using the silver foil.
     In the second part of this paper, the time varying thermal effects in the pulsed laser-diode-pumped solid-state lasers are studied. The time varying thermal effects in the short-pulse, long-period lasers are mainly researched. The thermal relaxation time of the crystal is introduced and its influencing factors are analyzed. The influences of thermal fluctuation in the laser crystal on the resonator are researched and several Q-switch methods based on the thermal effect are presented. The results show that, the time varying temperature in the crystal is influenced by pumping beam, crystal properties and cooling conditions, the temperatures rising process is mainly affected by the pumping beam and the crystal doping concentration; the temperature decreasing process is mainly affected by the crystal size, thermal properties, and the cooling conditions. In the periodic pulse pumping conditions, the temperature of crystal and the temperature gradient periodically change with time and they are influenced by the thermal relaxation time. The temperature, refractive index, thermal lens and the resonant cavity are all changed rapidly because of the strong thermal relaxation effect, which induce the resonant cavity structure influenced by the thermal lens changed with time and can not reached steady state during the pulse process. The phenomenon is even more significant in the short-pulse, long-period (the low-duty-cycle) pulse laser.
     In the third part of this paper, many issues about the intracavity frequency doubled acousto-optic Q-switched Nd:YAG lasers are discussed, including the generation process of laser pulse and its influencing factors. The influence of the KTP length and the cavity parameters on the output power under the completely phase-matched condition; the influences of KTP thermal effects on the phase matching; because of achieving the phase match is difficult in the actual condition, the influences of phase mismatch degree on the laser output performances are discussed in this paper. The results show that, the output laser pulse non-symmetry in time-domain is deterioration in the intracavity frequency doubled acousto-optic Q-switched lasers. The higher the basic frequency laser power, the higher the temperature of KTP, refractive index changed with the temperature so the phase mismatch condition is much more serious, which cause the efficiency of frequency doubling reducing.
     In the fourth part of this paper, based on the adaptive method, an LD end-pumped 100-kW-class compact acousto-optic Q-switched Nd:YAG laser design software is completed. The reverse direction design function of this software: input the laser performance parameters such as peak power, pulse width, repetition rate and laser beam quality factor into the user window, the laser parameters such as pumping power, cavity length, pumping light radius, transparent rate of the output mirror and the curvature radius can be displayed in the output window by running the software, the analyses of crystal thermal effects and drawing the laser pulse waveform can also be down by running this software. The positive direction design function: enter the laser parameters above into the user window, the corresponding laser performance parameters can be displayed by running the software.
引文
[1]李晋闽.高平均功率全固态激光器发展现状、趋势及应用[J].激光与光电子学进展, 2008, 45(7): 16-29.
    [2] Vetrovec J.. Gain media for high-average power solid-state lasers [J]. Proc. SPIE, 2003, 5120: 517-520.
    [3] Vetrovec J., Rashmi Shah, Tom Endo et al.. Progress in the development of solid-state disk laser [J]. Proc. SPIE, 2004, 5332: 235-243.
    [4] Hall R. N., Fenner G. E., Kingsley J. D. et al.. Coherent Light Emission From GaAs Junctions [J]. Phys. Rev. Lett. 1962, 9(9): 366-368.
    [5] Newman R.. Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs [J]. J. Appl. Phys., 1963, 34(2): 437-438.
    [6] Keyes R. J., Quist T. M.. Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers [J]. Appl. Phys. Lett., 1964, 4(3): 50-52.
    [7] Ross M.. YAG laser operation by semiconductor laser pumping [C]. Proc. IEEE, 1968, 56: 196-197.
    [8] Ostermayer F. W., Allen Jr. R. B., Dierschke E. G.. Room-temperature CW operation of a GaAs1-xPx diode-pumped YAG:Nd laser [J]. Appl. Phys. Lett., 1971, 19: 289-295.
    [9] Allen R. B. Scalise S. J.. Continuous operation of a Yaig:Nd laser by injection luminescent pumping [J]. Appl. Phys. Lett., 1969, 14: 188-190.
    [10]唐淳.高亮度高平均功率固体激光器技术评述[J].量子电子学报, 2005, 22(4): 488-496.
    [11] Brand Th., Ozygus B., Weber H.. Diode-Pumped Solid-State Lasers in the kW Range [J]. Laser Physics, 1998, 8(1): 222-226.
    [12] Schmidt G., Wester R., Hoffermann H. D. et al.. New Diode pumped multi KW solid state laser-modeling of the performance in comparison with experimental results [J]. Part of the SPIE conference on solid state lasers, 1999, 3613: 8-15.
    [13] Takada A., Akiyama Y., Takase T. et al.. Diode laser-pumped cw Nd:YAG lasers with more than 1-kW output power [C]. OSA/ASSL, 1999: 21-23.
    [14] Akiyama Y., Takada A., Takase T. et al.. Efficient 2-kW diode-pumped cw Nd:YAG single rod laser [C]. OSA/ASSL 2000, MA7.
    [15] Akiyama Y., Sasaki M., Yuasa H. et al.. Efficient high-power diode-pumpedNd:YAG rod laser [C]. Conference on Lasers and Electro-Optics, CLEO/Pacific Rim, the 4th Pacific Rim. 2001: 558-559.
    [16] Akiyama Y., Takada H., Sasaki M.. Efficient 10 kW diode-pumped Nd:YAG rod laser [J]. Proc. SPIE, 2003, 4831: 96-100.
    [17] Honea E. C., Beach R. J., Mitchell S. C. et al.. High-power dual-rod Yb:YAG laser [J]. Opt. Lett., 2000, 25(11): 805-807.
    [18] Bruesselbach H., Sumida D. S.. A 2.65 kW Yb:YAG single-rod laser [J]. IEEE J . Selet. Top. Quant. Eletron., 2005, 11(3): 600-603.
    [19]林学春,方高瞻,马骁宇等. 3 kW高效、高功率全固态连续波激光器[J].中国激光, 2006, 33(6): 831.
    [20]林学春,张玲,马骁宇等. 4 kW高功率全固态连续波激光器[J].中国激光, 2006, 33(12): 1647.
    [21]林学春,侯玮,张玲等. 6 kW高效、高功率全固态连续波激光器[J].中国激光, 2007, 34(7): 900.
    [22] Comaskey B. J., Albrecht G. F., Beach R. J. et al.. One-kilowatt average-power diode-pumped Nd:YAG folded ZigZag slab laser [J]. Proc. SPIE, 1993, 1865: 9-16.
    [23] Machan J. P., Long W. H., Zamel Jr. et al.. 5.4 kW diode-pumped, 2.4×diffraction- limited Nd:YAG laser for material processing [C]. OSA/ASSL, 2002, 549-551.
    [24] Nishikawa Y.. Slab-shaped 10 kW all-solid-state laser [J]. The Review of Laser Engineering, 2003, 31(8): 513-518.
    [25] Goodno G. D., Komine H., McNaught S. J. et al.. Coherent combination of high- power, zigzag slab lasers [J]. Opt. Lett., 2006, 31(9): 1247-1249.
    [26] Gong M. , Lu F., Liu Q. et al.. Efficient corner-pumped Yb:YAG/YAG composite slab laser [J]. Appl. Opt., 2006, 45(16): 3806-3810.
    [27] Giesen A., Hügel H., Voss A. et al.. Scalable concept for diode-pumped high-power solid-state lasers [J]. Appl. Phys. B: Lasers and Optics, 1994, 58(5): 365-372.
    [28]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[J].北京:科学出版社, 2007, 13-15.
    [29] Chen Y., Chen B., Patel M. K. R. et at.. Calculation of Thermal-Gradient-Induced Stress Birefringence in Slab Laser-I [J]. IEEE J. Quantum Electron., 2004, 40(7): 909-916.
    [30] Tsunekane M., Dascalu T., Taira T.. High-power, diode edge-pumped, single- crystal Yb:YAG ceramic YAG composite microchip Yb:YAG laser for materialprocessing [C]. OSA/CLEO, 2005, CTuZ3.
    [31] Liu Q., Fu X., Ma D. et al.. Edge-pumped asymmetric Yb:YAG/YAG thin disk laser [J]. Laser Phys. Lett. 2007, 4(10): 719-721.
    [32] Giesen A., Speiser J.. Fifteen years of work on thin-disk lasers: Results and scaling laws [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 598-609.
    [33] Giesen A.. High-power thin-disc laser [J]. OSA/ASSP, 2007, MA1.
    [34]周寿桓.固体激光器中的热管理[J].量子电子学报, 2005, 22(4): 497-509.
    [35]周寿桓,赵鸿,唐小军.高平均功率全固态激光器[J].中国激光, 2009, 36(7): 1605-1618.
    [36]田长青,徐洪波,曹宏章等.高功率固体激光器冷却技术[J].中国激光, 2009, 36(7): 1686-1692.
    [37]曹志峰,唐裕霞,刘景和等.微通道热沉冷却大功率半导体激光器[J].长春理工大学学报, 2003, 26(4): 33-36.
    [38]李兵斌,过振,宋小鹿等.端面抽运固体激光器中抽运端面的直接散热[J].中国激光, 2009, 36(1): 59-65.
    [39]任宁,刘敬民,秦凤英.美国高能激光武器发展现状及远景规划[J].红外与激光工程, 2008, 37(Suppl. 9): 375-378.
    [40]李晋闽.高功率全固态激光器研究及应用[J].红外与激光工程, 2007, 36(Suppl. 6): 1-3.
    [41]姬寒珊,秦致远,赵东新.国外激光武器发展的经验与前景[J].激光与光电子学进展, 2006, 43(5): 14-19.
    [42]李源,陈治平,王鹏华.高能激光武器现状及发展趋势[J].红外与激光工程, 2008, 37(Suppl. 9): 371-374.
    [43] Rotter M. D., Mitchell S.. Diode-pumped Nd:GGG laser-first light [J]. Laser Science and Technology, 2002, 12(12): 12.
    [44] Vetrovec J.. Conceptual design of a 100 kW-class solid state laser [C]. Fourteenth Annual on Solid-State and Diode. Laser Technology Review, 2001: 100-103.
    [45] Hecht J.. Laser weapons go solid-state [J] Laser Focus World, 2004, 40(9): 61-68.
    [46] Beach R. J., Freitas B. L.. Practical 100-kW-class diode arrays energy [J]. Laser Focus World, 2001: 103-107.
    [47]任国光,黄吉金.美国高能激光技术2005年主要进展[J].激光与光电子学进展, 2006, 43(6): 3-9.
    [48]梅遂生.向100 kW进军的固体激光器——浅析国外高能固体激光技术发展现状与趋势[J]. 2005, 42(10): 2-8.
    [49]任国光.高能激光武器的现状与发展趋势[J].激光与光电子学进展, 2008, 45(9): 62-69.
    [50]任国光,黄裕年.二极管抽运固体激光器迈向100 kW [J].激光与红外, 2006, 36(8): 617-622.
    [51]李强,姜梦华,雷訇.工业用大功率固体激光加工系统[J].中国激光, 2008, 35(11): 1847-1852.
    [52]冷箭利.大功率激光加工技术在机械工业中的应用概况[J].金属加工, 2008, (8): 36-37.
    [53]姚远.激光加工技术在国内外汽车工业中的应用概况[J].金属加工, 2008, (5): 24-26.
    [54]揭彦秋.精细激光工业加工的应用概况[J].激光技术与应用, 2007, (6): 24-26.
    [55]王恺宜.激光加工技术在汽车工业中的未来应用[J].激光技术与应用, 2006, (7): 23-25.
    [56]杨沿平,唐杰,范叶.激光加工技术在我国汽车工业中的应用及发展建议[J].长沙交通学院学报, 2005, 21(4): 58-61.
    [57]王玉英.激光加工技术在汽车工业中的应用[J].激光技术与应用, 2006, (10): 29-33.
    [58]马品仲,马劲峰,张金艳.半导体激光在医疗中应用研究[J].应用激光, 2007, 27(3): 254-259.
    [59]闫新玉.激光器及其医学用途[J].中国计量, 2009, (5): 106.
    [60]周复正,陈有明,胡文涛等.半导体激光泵浦固体激光器的新进展和应用前景[J].中国激光, 1994, 21(5): 354-360.
    [61]王爱华,陈长水. Cr:LiCaF晶体370nm激光在医疗诊断上的应用[J].人工晶体学报, 2000, 29(5): 214.
    [62]胡冰,熊耀恒.嫦娥探月卫星上角反射器阵列的设计[J].天文研究与技术, 2008, 5(2): 156-160.
    [63]郑向明,郭锐,李语强等.我国月球激光测距研究与进展[J].天文研究与技术, 2007, 4(3): 231-237.
    [64]施翔春,陈卫标,侯霞.全固态激光技术在航天领域的应用[J].红外与激光工程, 2005, 34(2): 127-131.
    [65] McCormick M. P., Hostetler C. A.. LITE-The first spaceborne lidar [C]. Combined Optical-Microwave Earth and Atmosphere Sensing, 1995: 163-166.
    [66] Winker D. M., Couch R. H., McCormick M. P.. An overview of LITE NASA’s lidar in-space technology experiment [J]. Proc. IEEE, 1996, 84(2): 164-180.
    [67] Afzal R. S., Dallas J. L., Yu A. W. et al.. The geosceience laser altimeter systemlaser transmitter [C]. CLEO, 2000: 50.
    [68] Afzal R. S., Dallas J. L., Lukemire A. et al.. Space qualification of the geoscience laser altimeter system (GLAS) laser transmitter [C]. CLEO, 2002: 427.
    [69] García-López J. H., Aboites V., Kir’yanov A. V. et al.. High repetition rate Q-switching of high power Nd:YVO4 slab laser [J]. Opt. Commun., 2003, 218(3): 155-160.
    [70] Omatsu T., Isogami T., Minassian A. et al.. 100 kHz Q-switched operation intransversely diode-pumped ceramic Nd3+:YAG laser in bounce geometry [J]. Opt. Commun., 2005, 249(4-6): 531-537.
    [71] Ogawa T., Imai T., Onodera K. et al.. Efficient pulse operation of Nd:GdVO4 laser with AO Q-switch [J]. Appl. Phys. B: Lasers and Optics, 2005, 81(4): 521-524.
    [72] Coherent Inc.. http://www.coherent.com/
    [73] Bright Solutions Srl.. http://www.brightsolutions.it/
    [74]胡文涛,周复正,陈有明等. LD泵浦Nd:YAG激光器的连续激光输出和高重复率调Q [J].光学学报, 1994, 14(12): 1281-1284.
    [75]生卫东,吴峰,刘宏伟等.激光二极管泵浦的高重复频率Nd:YAG激光器[J].光学学报, 1996, 16(5): 595-597.
    [76] Chen Y. F., Lan Y. P., Wang S. C.. Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser with a planar cavity [J]. Optical Letters, 2000, 25(14): 1016-1018.
    [77]王石语,过振,文建国等.连续激光二极管抽运的调Q高重复率Nd:YAG激光器研究[J].光学学报, 2000, 20(11): 1467-1472.
    [78]过振,王石语,文建国等.高重复频率二极管泵浦激光器窄脉宽调Q技术[J].红外与激光工程, 2001, 30(4): 208-210.
    [79] Liu J., Wang C., Du C. et al.. High-power actively Q-switched Nd:GdVO4 laser end-pumped by a fiber-coupled diode-laser array [J]. Opt. Commun., 2001, 188 (124): 155-162.
    [80]李强,郑义军,王智勇等.采用声光Q开关调制的脉冲Nd:YAG激光器[J].光电子.激光, 2003, 14(1): 9-11.
    [81]蔡德芳,王石语,文建国等.端面抽运声光调Q DPL实现重复频率10 kHz,峰值功率220 kW的脉冲输出[J].中国激光, 2004, 31(7): 856.
    [82]金锋,翟刚,李晶等.二极管泵浦声光调Q窄脉冲Nd:YAG激光器[J].光电子.激光, 2004, 15(3): 303-306.
    [83]黄秀江,李明中,隋展等. LD连续泵浦Nd:YVO4声光调Q激光器[J].强激光与粒子束, 2004, 16(5): 630-632.
    [84]于俊华,高静,李旭东等. LD抽运Nd:GdVO4的激光性能研究[J].强激光与粒子束, 2005, 17(S0): 4-6.
    [85]石朝辉,牛岗,张瑛等.高平均功率高重复率固态双Nd:YVO4基模激光器[J].光电子.激光, 2006, 17(7): 845-848.
    [86]李旭东,于欣,于俊华等.激光二极管双端抽运声光调Q高重复频率Nd:GdVO4激光器[J].中国激光, 2007, 34(4): 461-464.
    [87]王建军,杨涛,姜东升等. 192 W的1319 nm Nd:YAG激光器[J].激光与红外, 2007, 37(8): 717-718.
    [88]王灿召,王暖让,苑利钢等.高功率DPSL声光调Q脉宽压窄的影响因素研究[J].光学技术, 2007, 33(Suppl. 11): 345-349.
    [89]林洪沂,檀慧明,田玉冰等. LDA端面泵浦声光调Q Yb:YAG 1.03μm激光器[J].激光与红外, 2008, 38(1): 25-27.
    [90]梅遂生,王戎瑞.光电子技术——信息化武器装备的新天地[M].北京:国防工业出版社, 2008: 61-62.
    [91]梅遂生,王戎瑞.光电子技术——信息化武器装备的新天地[M].北京:国防工业出版社, 2008: 75-95.
    [92]倪树新,李一飞.军用激光雷达发展趋势[J].红外与激光工程, 2003, 32(2): 111-114.
    [93]郑咏超,赵铭军,张文平等.激光雷达技术及其发展动向[J].红外与激光工程, 2006, 35(Suppl. 10): 240-246.
    [94]杨志卿,张清源. DPL固体激光成像雷达系统研究[J].红外与激光工程, 2006, 35(Suppl. 10): 299-303.
    [95]王咏青,张霞.激光雷达技术专利分析[J].激光与光电子学进展, 2007, 44(12): 74-79.
    [96]周小林,孙东松,钟志庆等.多普勒测风激光雷达研究进展[J].大气与环境光学学报, 2007, 2(3): 161-168.
    [97]孙东松,李颖颖.高低空一体化测风激光雷达[J].红外与激光工程, 2008, 37(2): 238-242.
    [98]克希耐尔W..固体激光工程[M].北京:科学出版社, 2003: 356-385.
    [99]秦华,傅汝廉,郜洪云等.四能级固体增益介质中长脉冲抽运光的吸收[J].光电子.激光, 2005, 16(3): 298-301.
    [100] Koechner W.. Solid-State Laser Engineering [M]. Berlin: Springer, 2005: 46-50.
    [101] Fan T. Y., Byer R. L.. Diode laser-pumped solid-state lasers [J]. IEEE J. Quantum Electron., 1988, 24(6): 895–912.
    [102]刘景和,孙晶,曾繁名等. Nd:GGG晶体光谱特性的研究[J].稀有金属材料与工程, 2006, 35(1): 59-61.
    [103] Fields R. A., Birnbaum M., Fincher C. L.. Highly efficient Nd:YVO4 diode-laser end-pumped laser [J]. Appl. Phys. Lett., 1987, 51(23): 1885-1886.
    [104] Minassian A., Thompson B. A., Smith M. et al.. High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 621-625.
    [105]杜戈果.激光介质掺杂浓度浅议[J].激光与红外, 2000, 30(1): 58-60.
    [106] Mao Y., Deng P., Zhang Y. et al.. High efficient laser operation of the high-doped Nd:YAG crystal grown by temperature gradient technology [J]. Chin. Phys. Lett., 2002, 19(9): 1293-1295.
    [107] Brown D. C.. Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers [J]. IEEE J. Quantum Electron., 1997, 33(5): 861-873.
    [108] Brown D. C.. Nonlinear thermal distortion in YAG rod amplifiers [J]. IEEE J. Quantum Electron., 1998, 34(12): 2383-2392.
    [109] Fan T. Y.. Heat Generation in Nd:YAG and Yb:YAG [J]. IEEE J. Quantum Electron., 1993, 29(6): 1457-1459.
    [110]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社, 2007: 207-214.
    [111]姚仲鹏,王瑞君.传热学[M].北京:北京理工大学出版社, 2003: 17-20
    [112]张玲,杨少辰,路绪鹏等. LD端面泵浦Nd:YAG激光器的热效应研究[J].北方交通大学学报, 2002, 26(6): 45-47.
    [113] Huang F., Wang Y., Niu Y. et al.. Study on thermal effect of fiber-coupled laser diode end-pumped high-repetition-rate Nd:YAG laser [J]. Proc. SPIE, 2005, 5628: 215-222.
    [114]李黎明. ANSYS有限元分析实用教程[J].北京:清华大学出版社, 2005: 1-29.
    [115]霍尔曼J. P..传热学[M].北京:人民教育出版社, 1979: 273-274.
    [116] Bass M., Stryland E. W. V., Williams D. R. et al.. Handbook of Optics Vol. 2 Devices, Measurements and properties [M]. New York: McGraw-Hill, INC., 1995, 35.57-35.59.
    [117] Rapaport A., Zhao S., Xiao G. et al. Temperature dependence of the 1.06-μm stimulated emission cross section of neodymium in YAG and in GSGG [J]. Appl. Opt., 2002, 41(33): 7052-7057.
    [118] Chénais S., Forget S., Druon F. et al.. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG [J]. Appl. Phys. B: Lasers and Optics, 2004, 79(6): 221-224.
    [119] Tidwell S. C., Seamans J. F., Bowers M. S. et al.. Scaling CW diode-end-pumpedNd:YAG lasers to high average powers [J]. IEEE J. Quantum Electron., 1992, 28(4): 997-1009.
    [120]刘均海,吕军华,卢建仁等.高功率半导体激光器端面泵浦Nd:YVO4固体激光器热致损耗的研究[J].量子电子学报, 2000, 17(1): 48-53.
    [121] Nighan W. L., Park M., Kehstead M. S. et al.. Diode pumped laser with strong thermal lens crystal [P]. US Patent, 5410559, 1995.
    [122] Chen Y. F., Kao C. F., Huang T. M. et al.. Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 29-34.
    [123] Chen Y. F., Huang T. M., Kao C. F. et al.. Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect [J]. IEEE J. Quantum Electron., 1997, 33(8): 1424-1429.
    [124] Xie W. J., Tam S. C., Lam Y. L. et al.. Influence of the thermal effect on the TEM00 mode output power of a laser-diode side-pumped solid-state laser [J]. Appl. Opt., 2000, 39(30): 5482-5487.
    [125] Born M., Wolf E.. Principles of optics [M]. New York: Pergamon, 1975: 460-464.
    [126]杨爱粉,过振,王石语等.平顶光端面抽运DPL中热效应对输出功率的影响[J].光子学报, 2007, 36(Suppl.6): 56-59.
    [127]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社, 2007: 200-201.
    [128] Chen Y. F., Liao T. S., Kao C. F. et al.. Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-beam quality [J]. IEEE J. Quantum Electron., 1996, 32(11): 2010-2016.
    [129] Tidwell S. C., Seamans J. F., Bowers M. S.. Highly efficient 60-W TEM00 cw diode-end-pumped Nd:YAG laser [J]. Opt. Lett., 1993, 18(2): 116-118.
    [130] Khizhnyak A., Galich G., Lopiitchouk M.. Characteristics of thermal lens induced in active rod of cw Nd:YAG laser [J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 1999, 2(1): 147-152.
    [131] Chénais S., Balembois F., Druon F. et al.. Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements [J]. IEEE J. Quantum Electron., 2004, 40(9): 1217-1234.
    [132] Chénais S., Balembois F., Druon F. et al.. Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients [J]. IEEE J. Quantum Electron., 2004, 40(9): 1235-1242.
    [133] Bonnefois A. M., Gilbert M., Thro P. Y. et al.. Thermal lensing and sphericalaberration in high-power transversally pumped laser rods [J]. Opt. Commun., 2006, 259: 223-235.
    [134] Yariv A.. Quantum Electronics [M]. New York: Wiley, 1975, 103-113.
    [135] Marcuse D.. Light transmission optics [M]. New York: Van Nostrand Reinhold Company, 1972, 129-137.
    [136]于果蕾,黄春霞,孙尧等.激光二极管端面抽运矩形截面Nd:GdYVO4晶体热效应分析[J].激光与光电子学进展, 2007, 44(7): 57-60.
    [137]卡里卡B. V.,戴斯蒙德R. M..工程传热学[M].北京:人民教育出版社, 1981: 279-308.
    [138] Hanson F.. Improved laser performance at 964 nm and 473 nm from a composite Nd:Y3Al5O12 rod [J]. Appl. Phys. Lett., 1995, 66(26): 3549-3551.
    [139] Tsunekane M., Taguchi N., Inaba H.. High power operation of diode-end-pumped Nd:YVO4 laser using composite rod with undoped end [J]. Electron. Lett., 1996, 32(1): 40-42.
    [140] Tsunekane M., Taguchi N., Kasamatsu T. et al.. Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end- pumped geometry [J]. IEEE J. Select. Topics Quantum Electron., 1997, 3(1): 9-18.
    [141] Tsunekane M., Taguchi N., Inaba H.. Improvement of thermal effects in a diode-end-pumped composite Tm:YAG rod with undoped ends [J]. Appl. Opt., 1999, 38(9): 1788-1791.
    [142] Kracht D., Wilhelm R., Frede M.. 407 W end-pumped multi-segmented Nd:YAG laser [J]. Opt. Express., 2005, 13(25): 10140-10144.
    [143] Gong M. L., Lu F. Y., Liu Q. et al.. Efficient corner-pumped Yb:YAG/YAG composite slab laser [J]. Appl. Opt., 2006, 45(16): 3806-3810.
    [144] International Organization for Standardization.Terminology and Test Methods for Lasers [S]. ISO/TC172/SC9/WG1, 1995.
    [145]杨永明,文建国,王石语等. LD端面泵浦Nd:YAG激光器中的热透镜焦距[J].光子学报, 2005, 34(2): 1669-1772.
    [146]唐志伟,俞昌铭,马重芳.热管性能评价准则探讨[J].北京工业大学学报, 2003, 29(1): 55-58.
    [147]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社, 2000: 196-198.
    [148]兰岚,陈建国,欧群飞等.多个短脉冲辐照下光学元件的温升分布[J].激光技术, 2005, 29(3): 297-00.
    [149]数学物理方程与特殊函数[M].北京:高等教育出版社, 1999: 101-117.
    [150]张光寅,张潮波,丁欣等.固体激光腔动力学稳定性的调控[J].物理学报, 2002, 51(2): 253-258.
    [151]张光寅,郭曙光.光学谐振腔的图解分析与设计方法[J].北京:国防工业出版社, 2003: 134-137.
    [152]周炳坤,高以智,陈倜荣.激光原理[M].北京:国防工业出版社, 2000: 32-37.
    [153]王春雨,朱小磊,陆雨田. LD侧面泵浦固体激光器泵浦光分布模拟[J].光子学报, 2007, 36(6): 961-965.
    [154]杨爱粉,卜英华,陈德东等.线阵激光二极管侧面抽运Nd:YAG激光器特性研究[J].光学学报, 2004, 24(5): 633-640.
    [155]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社, 2007: 152.
    [156]岱钦,李新忠,王希军. LDA侧面泵浦Nd:YAG激光器的热效应分析[J].强激光与粒子束, 2007, 19(2): 197-201.
    [157] Konno S., Fujikawa S., Yasui K.. Highly efficient 68-W green-beam generation by use of an intracavity frequency-doubled diode side-pumped Q-switched Nd:YAG rod laser [J]. Appl. Opt., 1998, 37(27): 6401-6404.
    [158] Honea E. C., Ebbers C. A., Beach R. J. et al.. Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532μm [J]. Opt. Lett., 1998, 23(15): 1203-1205.
    [159] Xu D. G., Yao J. Q., Zhang B. G. et al.. 110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control [J]. Opt. Commun., 2005, 245: 341-347.
    [160] Kojima T., Fujikawa S., Yasui K.. Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP crystal and Nd:YAG rods [J]. IEEE J. Quantum Electron., 1999, 35(3): 377-380.
    [161] Konno S., Kojima T., Fujikawa S. et al.. High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser [J]. Opt. Lett., 2000, 25(2): 105-107.
    [162]冯忠耀,李成荣,李修等.激光二极管侧抽运双棒串接准连续Nd:YAG高功率绿光激光器[J].光学学报, 2008, 28(8): 1543-1546.
    [163] Xu D. G., Wang Y. Y., Li H F et al.. 159 High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd YAG laser [J]. Opt. Express, 2007, 15(7): 3991-3997.
    [164]王石语,过振,傅君眉等.抽运光分布对二极管抽运激光器振荡光光束质量的影响[J].物理学报, 2004, 53(9): 2995-3003.
    [165] Laporta P., Brussard M.. Design criteria for mode size optimization in diode-Pumped solid-state lasers [J]. IEEE J. Quantum Electron., 1991, 27(10): 2319-2326.
    [166]石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社, 2003: 131-139.
    [167]钱士雄,王恭明.非线性光学——原理与进展[M].上海:复旦大学出版社, 2001: 67-70.
    [168] Hobden M. V.. Phase-matched second-harmonic generation in biaxial crystals [J]. J. Appl. Phys., 1967, 38(11): 4365-4372.
    [169] Yao J. Q., Fahlen T. S.. Caculations of optimum phase match parameters for the biaxial crystal KTiOPO4 [J]. J. Appl. Phys., 1984, 55(1): 65-68.
    [170] Kato K., Takaoka E.. Sellmeier and Thermo-Optic Dispersion Formulas for KTP [J]. Appl. Opt., 2002, 41(24): 5040-5044.
    [171]马仰华,赵建林,王文礼等.双轴晶体中二次谐波产生的最佳相位匹配条件[J].物理学报, 2005, 54(5): 2084-2089.
    [172]姚建铨.非线性光学频率变换及激光调谐技术[M].北京:科学出版社, 1995: 32-35.
    [173] Kato K.. Temperature insensitive SHG at 0.5321μm in KTP [J]. IEEE J. Quantum Electron., 1992, 28(10): 1974-1976.
    [174]周炳坤,高以智,陈倜荣.激光原理[M].北京:国防工业出版社, 2000: 61-69.
    [175]王石语,过振,文建国等.连续激光二极管抽运的调Q高重复率Nd:YAG激光器研究[J].光学学报, 2000, 20(11): 1467-1472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700