用户名: 密码: 验证码:
侧柏种源遗传多样性与地理变异规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侧柏(Platycladus orientalis (L.) Franco)起源于中国,种质资源极为丰富,是我国重要的荒山造林绿化树种。针对侧柏缺乏良种的现实,本文根据分子系统学、群体遗传学的原理和方法,利用AFLP标记结合表型性状,从分子和形态两个水平对侧柏种源遗传多样性进行评价,探讨其遗传变异规律,为侧柏优良种源选择、种源区划分、种子调拨及遗传改良等提供依据。主要研究结果如下:
     1.通过对17省(市、自治区)41个侧柏种源的生长性状、21个种源的球果形态进行研究,结果表明,生长性状的变异系数在5.41%~47.55%间,其中以分枝角的变异系数最大(28.74%),树高的变异系数最小(10.73%)。种子的变异范围为4.77%~47.42%,其中单粒重的变异系数最大,为30.28%,种子厚为11.63%、种子宽为10.42%,种子长的变异最小(CV=8.67%)。生长性状的变异系数比种子性状的变异系数大,说明种子的遗传稳定性高。生长性状、球果形态的变异系数和相对极差在种源间分别存在极显著差异,表现出丰富的遗传多样性。
     2.侧柏种源间生长性状表型分化最大的性状是树高(Vst=46.82%),分化最小的是冠幅(Vst=20.92%),生长性状的平均表型分化系数为30.12%,即生长变异的69.88%来自种源内。种子的表型分化系数范围为16.78%~27.66%,平均表型分化系数为22.92%,即种子的变异77.08%来自种源内。说明侧柏表型变异种源内远高于种源间的,种源内变异是侧柏种源的主要变异来源。
     3.生长和种子性状与经纬度的灰色关联分析表明,各性状与纬度的关联度大于经度,说明侧柏的表型变异是以纬向变异为主。对44个种源8个种实性状与种源点经纬度进行典型相关分析,揭示出侧柏种源种实性状的变异受纬度和经度双重控制,变异的基本模式是以纬向变异为主的类型,经纬度可解释种球变异量的38.48%。
     4.空间相关分析表明,不同生长性状的全局Moran’s I系数在-0.1878~0.1921间,种子的全局Moran’s I范围为-0.4842~0.7518,自相关系数多不显著,表现为近距离时呈现一定的相关性,随距离增大,表现为空间不相关或空间随机性。胸径的Moran’s I系数多大于树高的,说明胸径的空间变异性大于树高的空间变异性。各种源生长性状的G系数在-1.097~5.6426间,种子的G系数在-2.1899~1.9142间,且负值多,表明侧柏种源表型性状的空间聚集不明显,大多数种源与较小的种源相邻,即随纬度增加,表型性状呈变小的趋势。部分北方、南方种源的G系数为0,与周围种源无空间相关性,呈现随机分布状态。
     5.半方差函数结果说明胸径和树高的块金系数分别为58.72%、47.78%,两者均具有中等的空间相关性,分枝角的块金系数达90.6%,其空间相关性很弱。“Krige”分析反映出侧柏种源的生长性状存在一定的空间结构,呈现出渐变、双向渐变和不规则斑块的非随机分布模式。表明侧柏种源间表现为多数生长性状缺乏空间结构和部分生长性状具特定空间结构的复合模式。
     6.树高和胸径遗传力在两地点表现不同,平阴点树高遗传力0.7049~0.9557、胸径遗传力0.7007~0.8858,枣庄点树高遗传力0.2684~0.8102、胸径遗传力0.3262~0.9424,平阴点树高遗传力大于胸径的遗传力,枣庄点则是胸径遗传力多大于树高的遗传力。总体来说,23年生时胸径、树高的遗传力低于幼龄林遗传力。不同林龄生长量与经纬度相关分析表明:随着林龄的增大高生长与经度相关系数逐步缩小,与纬度相关系数有增大趋势;侧柏种源胸径生长量与经度相关系数逐步增大趋势,与纬度相关系数有减小趋势。
     7.以26个种源的254个单株为试材,利用荧光AFLP标记对侧柏种源的分子遗传多样性和遗传结构进行了研究,结果表明:8对引物扩增的平均多态位点数为100.4,多态位点百分率为46.47%。各种源扩增的多态位点数(A)差异较大,全国种源的平均多态位点数为83.6~118.5个,多态位点百分率(PPA)为38.72%~54.86%。山东种源扩增的平均多态位点数为54.5个~124.8个,PPA为25.23%~57.75%。四种源区扩增的多态位点数和多态位点百分比相比较,南部种源(A = 104.5,PPA = 48.35%)>北部种源(A = 104.2,PPA = 48.25%)>中部种源(A = 102.1,PPA = 47.28%)>山东种源(A =95.4,PPA = 44.14%)。说明南部种源的遗传多样性最为丰富,北部种源次之,中部和山东种源的遗传多样性水平较低。
     8.不同侧柏种源的遗传多样性有显著差异,观测等位基因(Na)的变幅为1.2622~1.6122,有效等位基因(Ne)变幅为1.0983~1.2519,Nei’s基因多样度(H)变幅为0.0635~0.1531,Shannon信息指数(I)变幅为0.1025~0.2371。26个侧柏种源的平均Na=1.5311、Ne=1.2022、H =0.1305、I =0.2102。侧柏种源种级水平观测的等位基因数为Na = 2.000,有效等位基因数为Ne = 1.2406,Nei’s基因多样度为H = 0.1605,Shannon信息指数为I = 0.2695,四个参数在种级水平上显著高于种源水平。
     在区域水平上,南部种源的Nei’s基因多样度、Shannon信息指数(H=0.1434、I = 0.2366)高于北部种源(H = 0.1425、I = 0.2305)和中部种源(H = 0.1377、I = 0.2283),但无显著性差异,显著高于山东种源(H = 0.1285、I = 0.2227),说明南、北部种源的杂合体多,遗传多样性丰富,而山东种源的遗传多样性低。
     9.遗传多样性分析结果显示:种级水平总的基因多样度Ht为0.1518,种源内基因多样度HS为0.1106,种源间的遗传分化系数Gst为0.2703,也就是说总变异的27.03%来源于种源间遗传变异,72.97%属于种源内的遗传变异。分子方差(AMOVA)分析结果显示,种源间的遗传变异占总变异的14.02%,种源内变异占74.86%,区域间变异占11.12%,表明侧柏种源出现了较高程度的遗传分化,遗传多样性主要存在于种源内。
     10.遗传分化系数计算得到种级水平的基因流Nm = 1.3804,说明侧柏4个种源区间存在适度的基因交流,但各区域的基因流显著高于全分布区的基因流(1.3804),其中北部种源的基因流最高,达3.8442,中部种源为3.3679,南部种源为2.5390,山东种源为2.1078,说明尺度小的区域内,侧柏种源的基因交流频繁。
     11. 26个侧柏种源间的遗传一致度介于0.8422~0.9919之间,平均为0.9380;遗传距离为0.0086~0.1717,平均值0.0647,说明种源间具有较高的基因相似度,遗传距离小。基于侧柏样本间的Nei遗传距离进行UPGMA聚类,26种源可分为5大类,大致按地域聚在一起:第一类为南部种源,包括云南文山、福建南平、贵州贵阳3个种源;第二类为北部种源,包括北京密云、内蒙乌拉山、辽宁朝阳和新疆伊犁4个种源;第三类为西南部种源,包括四川西昌、湖北荆门和河南确山3个种源;第四类为中部的8个种源,为甘肃徽县、江苏铜山、陕西黄陵、山西石楼、宁夏银川、河北易县以及山东的枣庄、莒南8个种源;第五类为山东种源,包括费县、曲阜、泰安、博山、安丘、平度、平阴和聊城8个种源。聚类结果显示纬度(地理距离)相近的种源被聚到了一起,反映了侧柏的遗传分化和生境有着一定的相关性,经Mantel检验,种源的地理距离与遗传距离之间显示正相关,但未达到显著性水平(r=0.288 6,P = 0.0930)。
Orientalis (Platycladus orientalis (L.) Franco) originates in China.It’s germplasm resource is very abundant. Orientalis is an important tree species of afforestation on the rocky barren.According to the reality of the lack of good provenances. The diversity of four orientalis intraspecific populations was analyzed using morphological traits, the genetic diversity and population genetic structure for four geo-ecological groups using principles of molecular systematic and fluorescent-AFLP marker techniques were studied by morphology traits and molecular markers, respectively, in order to provide science evidence for conservation and utilization, to select good provenance and to divid provenance region and to allocate seed.. The main results are as follows:
     1. The diversity of growth traits of 41 provenances and cones of 21 provenances in 17 provinance of P.orientalis were investigated. The results indicated: There were significant differences among and within provenances. The growth traits have great diversity with the variation coefficient (CV), the range varied from 5.41% to 47.55%. The variation coefficient of branching angle was highest (28.74%), and the one of tree height was lowest; The variation coefficient of seeds was from 4.77% to 47.42%, and the variation coefficient of the seed thickness was the highest, the one of the seed length was the lowset. The variation coefficient of the seed traits is lower than the growth traits, this showed that the genetic stability of seeds is higher.There are siginificantly diversity of the variation coefficient and the relative range in the cone shape and the growth traits, the analysis indicated that there are abundant genetic diversity in the P.orientalis.
     2. The largest morphological differentiation coefficient of the growth traits among the orientalis was the tree height(Vst= 46.82%), the smallest was the crown(Vst = 20.92%). The average morphological differentiation coefficient of the growth traits was 30.12%, in means that the Vst within the provenance was 69.88%;The range of the morphological differentiation coefficient was from 16.78% to 27.66%. The average of the Vst is 22.92%, the genetic variation among provenance accounted for 77.08% of total variations. This suggested that the variation of morphological traits among provenance of orientalis is much higher than within provenance.
     3. The result of grey correlative analysis between the growth traits, the seed traits and the latitude, longitude indecates: The correlation of between all traits and the latitude was greater than the longitude, this showed that the morphological diversity of the orientalis mainly came from the latitudinal variation. The typical correlation analysis between the 44 provenances with 8 different traits of the cone showed: the geography variation of oreitalis was a variation that latitude mainly brought on. It’s variation mode was two-way variation from latitude and longitude.
     4.Spatial correlation analysis showed that global moran’s I of growth characters is from -0.1878 to 0.1921,the global moran’s I of seed is from -0.4842 to 0.7518, most autocorrelation coefficient is not significant,the result showed that presents certain correlation over short distance, while presented spatial uncorrelation or spatial random with distance increases. Global moran’s I of DBH is highter than tree height,indicated that variation of DBH is highter than tree height.Local G coefficient of growth characters is from-1.097 to 5.6426,while the seed’s is from -2.1899 to 1.9142,and most of them is negative, showed a lack of spatial structure,around provenance is smaller. Local G coefficient of few of northern and southern provenance is 0,they are randomly distributed.
     5. The semivariance analysis showed that the nugget of DBH growth and height growth were respectively 58.72% and 47.78%, both of which had moderate spatial correlation. While the nugget of branch angle was as high as 90.6%,and the spatial correlation was very weak. When analysis in krige method were performed, the growth Characters of the provenances of platycladus orientalis had certain kinds of spatial structures which presenting a non-random distribution such as progressive change,bi-directional progressive change and irregular patch.
     Analysis among the provenances P. orientalis also showed a complex pattern that most growth characters seldom have any spatial structure,while A small proportion of the growth characters have spatial structure any way.
     6. The heritability in, behaved differently between the Pingyin and Zaozhuang sites. At Pingyin site, the heritability in height and DBH was respectively 0.7049~0.9557 and 0.7007~0.8858. At this site, the tree height had higher heritabilities. At Zaozhuang site, the heritability in height and DBH was respectively 0.2684~0.8102 and 0.3262~0.9424. At this site, the DBH had higher heritabilities than the tree height had. Totally, trees in 23 years old had lower heritabilities of both in DBH and tree heigh than young trees had.
     The correlation analysis between geographical coordinate and annual increment of trees in different forest ages in Platycladus orientalis had the following results:
     The correlation coefficient between tree height and longitude tended to become weaker with forest got older, while the correlation coefficient between tree height and latitude tended to become stronger with forest got older. Correspondingly, the correlation coefficient between tree DBH and longitude tended to become stronger with forest got older, while the correlation coefficient between DBH and latitude tended to become weaker with forest got older.
     7.Population genetic structure was studied using fluorescent-AFLP markers on 256 orientalis (P. orientalis (L.) Fr.) accessions collected from the Southern group, the Northern group, the Central of Chian group and the Shandong province group of fluorescent-AFLP markers. The purpose of this study was to determine the genetic structure and genotypic diversity amongst the different provenance of orientalis. The results showed that the average number of polymorphic loci (A) was 100.4, the percentage of polymorphic loci (P) was 46.47% by 8 pairs of EcoR I /MseI (Mse I - a FAM fluorescent marked primer) primers in orientalis of four groups. Analysis for the average number of polymorphic loci (A) and the percentage of polymorphic loci (P) in four orientalis groups indicated that the Sourthern group (A = 102.1,P = 47.28%)> the Northern group (A = 104.2,P = 48.25%)> the Cemtral Chian group (A = 102.1,P = 47.28%)> the Shandong Province group (A =95.4,P = 44.14%); The analysis of diversity and genetic structure from four geo-ecological groups showed that genetic diversity of orientalis provenance in the Southern Group is most abundant, then it is the Northern group; the Northern group and the Shandong Provence group were lowest.
     8. There was significantly different of genetic diversity among orientalis provenance, the range of is from 1.2622 to 1.6122, is from 1.0983 to 1.2519, the Shannon Index is from 0.1025 to 0.2371. The observed number of alleles (Na), the effective number of alleles (Ne), the Nei’s gene diversity (H) and Shannon information index (I) at species level were respectively 1.5311, 1.2022, 0.1305 and 0.2102. The observed number of alleles (Na), the effective number of alleles (Ne), the Nei’s gene diversity (H) and Shannon information index (I) at provenances level were respectively 2.000, 1.2406, 0.1605 and 0.2695. Four parameters at species level was high significant higher than at provenances level.
     At regional level, Nei’s gene diversity and Shannon information index (H=0.1434、I = 0.2366)in the Southern group was higher than those in the Northern group (H = 0.1425、I = 0.2305)and in the Central China group(H = 0.1377、I = 0.2283), there were no significant differences; but they were significant higer than those in the Shandong Province group(H = 0.1285、I = 0.2227). The analysis of four population diversity and genetic structure from four provenances showed that genetic diversity of orientalis provenances in the Southern Group was most abundant, there were many heterozygous in the Southern group and the Northern group, the genetic diversity of orientalis provenances in the Shandong Province Group was lower.
     9. The parameters--genetic differentiation coefficient and gene flow of population genetic structure in orietnalis were analyzed in this study. The genetic diversity at the species level (Ht) was 0.1106, the genetic differentiation coefficient (Gst) among the provenances was 0.2703, This showed that orientalis genetic variation was mainly within the provenances and accounted for 72.97% of total variations, the genetic variation between provenances accounted for 27.03% of total variations. The results from AMOVA analysis showed that the orientalis genetic variation was mainly within the provenances and accounted for 74.86%. The genetic variation of within regional accounted for 11.12%. There was a high level of genetic differentiation at provenances level, and the genetic diversity was mainly at provenances level.
     10. The gene flow (Nm) was 1.3804 according to the genetic differentiation coefficient between groups (Nm = 1. 3804). This indicated that there are partly gene exchanges among four regional of orientalis. The gene flow (Nm) at regional level was high significant higher than at species level. Analysis for gene flow (Nm) in four orgional groups indicated that the Northern group (Nm = 3.8442) > the Central China group (Nm = 3.3679)> the Southern group (Nm = 2.5390)> the Shandong province group(Nm = 2.1078). This showed that the gene exchange was frequently within the small scale region.
     11. Nei’s genetic identities in 26 orientalis provenances were between 0.8422-0.9919, the average was 0.9380; Genetic distances were between 0.0086~0.1717, the average was 0.0647. It was suggested that there were higher similarity between various geo-ecological groups in orientalis and lower genetic distance.
     12. The results from UPGMA cluster analysis for 26 provenances showed that all the orientalis could be divided into 5 groups. Almost all provenances from the same population could be clustered into the same group. Three provenances in groupⅠwhich was call the Southern population came from Ynnan Wenshan, Fujian Nanping, Guizhou Guiyang ; There were 4 provenances found from Northern population in groupⅡ, which came from Beijing Miyun, Neimenggu Wulashan, Liaoning Chaoyang, and Xinjiang Yili; Totally 3 provenances were clustered in groupⅢ, Among them, 1 originatel from Sichuan Xichang, 1 from Hubei Jingmen, and the last one is from Henan Qunshan; The groupⅣcame from 7 provinces of the Central Chian, including Gansu Weixian, Jiangsu Tongshan, Shanxi Huangling, Shanxi Shilou, Ningxia Yinchuan, Hebei Yixian, Zaozhuang and Junan of Shandong Province; The groupⅤcame from Shandong Province, including 8 provenances, they are Feixian provenance, Qufu provenance, Tai’an provenance, Boshan provenance, Anqiu provenance, Pingdu provenance, Pingyin provenance and Liaochen provenance.
     The Mantel test showed: There was a positive correlation between geographical distance and genetic distance (r=0.288 6,P = 0.093 0). The results from UPGMA cluster analysis for four region groups showed that the Southern group and the Central China group was clustered together firstly and the Northern group were clustered together, at last the Shandong Province group were clustered together. This indicated further that the similarity between the Southern group and the Central China group was highest and genetic relationship was closest.
引文
曹凤来.侧柏种源引种试验.江苏林业科技, 1992, (2): 13 - 15, 26
    侧柏课题组.侧柏种源试验与优良种源选择.山西林业科技, 1993 (4): 1 - 4
    陈伯望,洪菊生.杉木种源胸径生长地理变异的趋势面分析.林业科学, 1995, 31(2): l10 - 115.
    陈翠玲.侧柏种源试验初步研究.北京林业大学学报, 2001, 23(6): 60 - 62
    陈代喜.我国林木遗传改良进展综述.广西林业科学,2001, (30): 13 - 17
    陈灵芝(主编).中国的生物多样性---现状及其保护对策.北京:科学出版社, 1993, 31 - 113
    陈美高.马尾松种源胸径生长的空间异质性.福建林学院学报, 2005, 25(4): 333 - 337
    陈小勇,林鹏.我国红树植物分布的空间自相关分析.华东师范大学学报, 2000, (3): 104 - 109.
    陈小勇.安徽黄山Cyclobalanopsis glauca种群遗传结构的空间自相关分析.植物生态学报, 2001, 25(1):29– 34
    陈晓阳,陈振丙,吴栓柱,等.侧柏种苗性状地理变异趋势及其气候生态基础.河南林业科技, 1990b, (1): 5 - 10.
    陈晓阳,沈熙环,石文玉.侧柏不同种源在北京越冬和生长表现.北京农学院学报, 1990,5(1):
    陈晓阳,沈熙环.侧柏种源造林成活和幼林生长变异的研究.北京林业大学学报, 1994, 16(1): 20 - 27.
    陈晓阳,王东洋,吴栓柱.侧柏种源苗木根系性状遗传变异的研究.北京林业大学学报, 1990b, 12(2): 13 - 20
    陈晓阳.树木种内的地理变异及其利用.贵州林业科技, 1989, 17(1): 79 - 85
    陈晓阳.典型相关分析在树种地理变异研究中的应用.北京林业大学学报, 1990a, 12(3): 53 - 60
    陈雄文,张新时,周广胜,等.中国东北样带(NECT)森林区域中主要树种空间分布特征.林业科学, 2000, 36(6): 35 - 38.
    陈彦,吕新.基于GIS和地统计学的土壤养分空间变异特征研究-以新疆农七师125团为例.中国农学通报, 2005, 21(7): 389 - 391, 405
    大中次三郎.日木植物志. 1978
    邓朝经,马军,董素华.侧柏种源苗期性状变异的初步研究.四川林业科技1986, 7(4): 27 - 34
    邓聚龙.农业系统灰色理论与方法.济南:山东科学技术出版社, 1988: 39 - 74
    丁小飞,陈红林,曹健,等.檫木三个群体的遗传结构初探.湖北林业科技,2006,(总141期):1-2
    窦全丽,何平,肖宜安,李玉泉,谢大军.濒危植物缙云卫矛果实、种子形态分化研究.广西植物,2005, 25(3):219 - 225
    方精云,郭庆华,刘国华.我国水青冈属植物的地理分布格局及其与地形的关系.植物学报, 1999, 41(7): 766 - 774
    冯富娟.天然红松种群遗传生态学的研究.东北林业大学博士学位论文,2003
    冯益明,唐守正,李增元.空间统计分析在林业中的应用.林业科学, 2004, 40(3): 149 - 155
    冯毅,王朱涛,蔡应君,等.川西北地区康定柳天然群体表型多样性研究.西南林学院学报, 2010, 30
    符建明,沈熙环.侧柏种子和苗木性状在种源间和种源内变异的研究.北京林业大学学报, 1987, 9(2): 133 - 139
    葛剑平,郭海燕,仲莉娜.地统计学在生态学中的应用(I) -基本理论和方法.东北林业大学学报, 1995, 23(2): 88 - 94
    葛颂,洪德元.遗传多样性及其检测方法.见:钱迎倩,马克平(主编),生物多样性研究的原理与方法.北京:中国科学技术出版社, 1994, 123 - 140
    葛颂,王海群,张灿明,等.八面山银杉林的遗传多样性与群体分化.植物学报, 1997, 39(3): 266 - 271
    葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构.林业科学, 1988, 24(4): 399 - 409
    葛颂.同工酶与林木群体遗传变异研究.南京林业大学学报,1985,12(1):68-76
    葛颂.植物群体遗传结构研究的回顾和展望.北京:高等教育出版社, 1998
    谷加存,王政权,韩有志,等.采伐干扰对帽儿山天然次生林土壤表层水分空间异质性的影响.生态学报, 2005, 25(8): 2001 - 2009.
    谷俊涛.中国刺槐次生种源遗传结构及遗传多样性研究.河北农业大学, 2006,博士论文
    顾少华.华东地区黑果蝇自然群体同工酶遗传多态的研究.遗传学报,1992,19:228 - 235.
    顾万春,王棋,游应天,等.森林遗传资源学概论.北京:中国科学技术出版社. 1996, 16 - 20
    顾万春.森林资源遗传学概论.北京:中国科学技术出版社, 1998, 36 - 49
    韩有志,王政权.天然次生林中水曲柳种子的扩散格局.植物生态学报, 2002a, 26(1): 51 - 57
    韩有志,王政权.天然次生林中水曲柳种子库的空间格局与过程.植物生态学报, 2002b, 26(2): 170 - 176.
    韩照祥,朱惠娟,张文辉,等.不同地区不同尺度下栓皮栎种群的空间分布格局.西北植物学报, 2005, 25(6): 1216 - 1221
    何承忠.毛白杨遗传多样性及起源研究.北京林业大学博士学位论文,2005
    何贵平,陈益泰,唐雪元,等.枫香地理种源幼林生长性状变异研究.江西农业大学学报. 2005, 27(4): 585 - 589
    何敬胜,李作洲,黄宏文.濒危物种---巴东木莲等位酶遗传变异的空间自相关分析. 云南植物研究. 2005, 27(2): 171 - 180
    何天明,陈学森,吴燕.从蔷薇科果树硅胶干燥叶片中制备DNA.石河子大学学报, 2004, 22(4): 316 - 319
    何田华,杨继,饶广远.植物居群遗传变异的空间自相关分析.植物学通报, 1999, 16(6): 636 - 641
    何祯祥,施季森.林木遗传图谱构建的技术与策略.浙江林学院学报, 1998, 15 (2): 151 - 157
    红雨,王林和,梁小荣.不同生境臭柏种群的遗传多样性分析及其与环境因子的相关性. 干旱区资源与环境, 2006a, 20(3): 184 - 187
    红雨,王林和,梁小荣.不同生境臭柏种群的遗传多样性分析及其与环境因子的相关性. 干旱区资源与环境,2006a,20(3):184-187
    红雨,王林和,张国盛,等.不同演替阶段臭柏种群的遗传多样性.应用生态学报, 2006b, 17(11): 2006 - 2010
    洪伟,吴承祯.侧柏种源的地理变异趋势分析.东北林业大学学报, 1997, 25(2): 1 - 4
    洪伟,吴承祯.杉木种源胸径生长地理变异规律的研究.植物生态学报, 1998, 22(2): 186 - 192
    洪伟,吴承祯.杉木种源高径生长的空间变异及其分形特征.福建林学院学报, 2001, 21(2): 97 - 100.
    胡志昂,王洪新.北京地区野大豆天然群体遗传群体结构.植物学报,1985,27(6):599 - 604.
    华丽,潘伯荣.遗传多样性透视.干旱区研究, 2003, 20(1): 27 - 31
    黄铨.中国沙棘的地理变异.沙棘, 2003, 16(l): 8 - 13
    黄少甫,赵治芬.侧柏染色体核型的试验.
    黄致喜,王慧辰.萜类香料化学.北京:中国轻工业出版社, 1999
    回瑞华,侯冬岩,李铁纯,等.千山侧柏叶挥发性化学成分分析.鞍山师范学院学报, 2005, 7( 2): 46 - 48
    季维智,宿兵.遗传多样性研究的原理与方法.杭州:浙江科学技术出版社, 1999
    江泽平.柏科分类和分布:亚科、族和属.植物分类学报, 1997, 35(3): 236 - 248
    姜春玲,赵则海,李英,等.蒙古栎萌发种子空间分布的分数维分析.高师理科学刊, 1999, 19(2): 54 - 56
    解奇明,许广岐,张延民,等.樟子松天然群体的遗传结构.林业科技,1995,20(1):1 - 5
    兰彦平,周连第,周家华,等.中国板栗北方种群表型变异频率研究.华北农学报, 2007, 22(05): l06 - l09
    兰彦平.皂荚表型多样性及其扩繁技术研究.中国林科院博士后出站报告, 2003, 17 - 41
    郎萍,黄宏文.栗属中国特有种居群的遗传多样性及地域差异.植物学报,1999,41(6):651 - 657
    黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999 ,15(4) :19 - 22.
    李昂,罗毅波,葛颂.采用空间自相关分析研究两种兰科植物的群体遗传结构.生物多样性, 2002, 10(3): 249 - 257
    李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究.生物多样性, 2002, 10(2): 181 - 188
    李斌,顾万春,夏良放,等.鹅掌楸种源遗传变异与选择评价.林业科学研究, 2001b, 14(3): 237 - 244
    李斌,顾万春,夏良放,谭德仁,封建文.鹅掌楸种源材性遗传变异与选择.林业科学, 2001a, 37(2): 42 - 50
    李斌,顾万春.松属植物遗传多样性研究进展.遗传, 2003, 25(6): 740 - 748
    李长喜.林木天然群体表型变异研究概述.林业科学研究. 1988, 1 (6): 657 - 664
    李继华.山东柏树的栽培历史和现状.山东林业科技, 1985, (1): 73 - 74
    李建民,周志春,吴开云,等. RAPD标记研究马褂木地理种群的遗传分化.林业科学,2002,38(4):61-66
    李立,李昆,崔凯.云南铁杉地理种源表型变异研究.林业科学研究,2008,21(1) : 31-36
    李亮亮,依艳丽,凌国鑫,等.地统计学在土壤空间变异研究中的应用.土壤通报, 2005, 36(2): 265 - 268
    李林初,岑益群,许萍,等.扁柏属的核型及柏木亚科的细胞分类学研究.云南植物研究,1996, 18 (1): 72 - 76
    李林初.柏科的细胞分类学研究.云南植物研究,1998,20(2):197 - 203.
    李梅.辽东栎天然群体表型多样性研究.北京:北京林业大学, 2005: 1 - 58
    李秋艳,何志斌,赵文智,等.不同生境条件下泡泡刺(Nitraria sphaerocarpa)种群的空间格局及动态分析.中国沙漠, 2004, 24(4): 484 - 488
    李珊,蔡宇良,钱增强,赵桂仿.云南金钱槭形态变异与遗传变异的相关性研究.生态学报, 2004, 24(5): 925 - 931
    李书靖,何虎林,彭维娴,等.侧柏地理种源选择的研究.甘肃林业科技, 1998, (1): 1 - 10.
    李书靖,何虎林,王芳.侧柏种源幼林期生长及适应性状变异的研究.甘肃林业科技, 1995, (1): 7 - 11
    李文英,顾万春.栎属植物遗传多样性研究进展.世界林业研究.2002,15(2):42 - 49
    李文英.蒙古栎天然群体遗传多样性研究.北京林业大学博士学位论文, 2003
    李晓储,蒋继宏,黄利斌,等.生态保健树种最新研究进展.中国城市林业, 2005, 3(6): 61
    李晓东,黄宏文,李建强.子遗植物水杉的遗传多样性研究.生物多样性, 2003, 11(2): 100 - 108
    李晓东,杨佳,史全芬,等. 8个栽培水杉居群遗传多样性的等位酶分析.生物多样性, 2005,13(2): 97 - 10
    李秀玲,陈健,王刚.西北地区红砂种群ISSR遗传空间自相关分析.中国沙漠, 2008 ,28(3): 46 8- 472
    李兆丰,周东雄.福建柏变异类型的核型研究.林业科学,1995,31(3):215 - 220
    李正才,傅慰毅,姜景民,等.毛竹天然林表型特征的地理变异研究.林业科学研究, 2002, 15(6): 654 - 659
    李志辉,杨模华.巨桉种源遗传多样性的RAPD分析.中南林学院学报, 2003,23(4):5-9
    李作洲,龚俊杰,王瑛,等.水杉孑遗居群AFLP遗传变异的空间分布.生物多样性,2003, 11(4): 265 - 275
    李作洲,郎萍,黄宏文.中国板栗居群间等位酶基因频率的空间分布.武汉植物学研究, 2002, 20(3): 165 - 170
    梁统,覃燕梅,梁念慈,等.侧柏总黄酮的抗炎作用及机制.中国药理学通报, 2003, 19 ( 12): 1407 - 1410
    梁一池,陈祖松,陈伯望,等.侧柏地理种源遗传距离的初步研究.福建林学院学报, 1987, 7(2): 57 - 66
    梁一池,陈祖松.侧柏种源的地理变异趋势.福建林学院学报, 1989, 9(2): 134 - 139
    梁一池.侧柏种源苗期生长与原产地气候因子间的典范相关分析.林业学, 1990, 26(4): 308 - 315
    刘迪,刘继生,全雪丽.文冠果表型多样性比较研究.林业实用技术, 2010, (12): 34 - 35
    刘光兴.遗传标记技术在海洋桡足类生物多样性和系统发生研究中的应用.中国海洋大学学报,2007 ,37(1) :33 - 37.
    刘国华,方精云.我国栗属物种(Castanea millissima)地理分布及其空间特征分析.生态学报, 2001, 21(1): 164 - 170
    刘华,贾继增.指纹图谱在作物品种鉴定中的应用.作物品种资源, 1997(2) :45 - 48.
    刘建锋,肖文发.濒危植物崖柏遗传多样性的RAPD分析.江西农业大学学报, 2008, 30(1): 68 - 72
    刘军,陈益泰,孙宗修,等.基于空间自相关分析研究毛红椿天然居群的空间遗传结构. 林业科学, 2008, 44(6): 46 - 53
    刘勋成,李玉媛,陈少瑜.不同榉树种源遗传多样性的ISSR分析.西部林业科学,2005,34(2):43-47
    刘亚令,李作洲,张鹏飞,等.猕猴桃自然居群SSR遗传变异的空间自相关分析.生物多样性, 2006, 14(5): 421 - 434
    吕振岳,周达民,黄东东. AFLP标记及在微生物和动物中的应用.生物技术通报, 2001, (6): 18 - 22
    罗建勋,顾万春.云杉天然群体表型多样性研究.林业科学, 2005, 41(2): 66 - 73
    罗建勋,顾万春.云杉天然群体种实性状变异研究.西北农林科技大学学报:自然科学版, 2004, 32(8): 60 - 66
    罗建勋,和献峰,辜云杰.攀枝花地区麻疯树天然群体表型多样性研究.西南林学院学报, 2008, 28(6): 31 - 35
    罗建勋,李晓清.云杉天然群体管胞和木材基本密度性状变异的研究.北京林业大学学报, 2004, 26(6): 80 - 85
    罗建勋.云杉天然群体遗传多样性研究.中国林业科学研究院博士论文,2004,27 - 46,
    罗美娟.短枝木麻黄种源群体遗传多样性与遗传变异规律研究.福建农林大学硕士学位论文,2005
    马晓慧,胡东. 2008.羊草草原土壤微生物量磷的空间异质性分析.首都师范大学学报(自然科学版), 29(1): 61 - 65
    马颖敏,邢世岩,王玉山,等.中国侧柏地理种源核型分析与进化趋势.分子植物育种,2009,7(6):1186 - 1192
    马友平,常胜.高岩子林场天然林分中主要树种的空间格局研究.湖北民族学院学报(自然科学版), 2004, 22(4): 60 - 63
    马玉敏,陈学森,何天明,吴传金,王娜.中国板栗3个野生居群部分表型性状遗传多样性.园艺学报, 2008, 35(12): 1717 - 1726
    马玉敏.中国野生板栗(Castanea mollissim Blume)群体遗传结构和核心种质构建方法. 山东农业大学, 2009,博士论文
    毛爱华,李建祥,张超英,等. 19年生侧柏种源变异及选择研究.北京林业大学学报, 2010, 32(1):
    明军,顾万春.紫丁香表型多样性研究.林业科学研究, 2006a, 19(2): 199 - 204
    明军,顾万春.紫丁香天然群体遗传多样性的AFLP分析.园艺学报, 2006b, 33(6): 1269 - 1274
    穆立蔷.紫锻种群地理变异与环境相关性研究.东北林业大学, 2006,博士论文
    那冬晨.兴安落叶松地理种源遗传多样性与利用研究.东北林业大学,2005,博士论文
    潘文斌,邓红兵,唐涛,等.地统计学在水生植物群落格局研究中的应用.应用生态学报, 2003, 14(10): 1692 - 1696
    庞广昌,姜冬梅.群体遗传多样性和数据分析.林业科学. 1995, 31(6): 543 - 550
    裴颜龙,邹喻苹.矮牡丹与紫斑牡丹RAPD分析初报.植物分类学报, 1995, 33(4) : 350 - 356
    漆荣.秃杉地理种源变异的研究.武汉:华中农业大学, 2005: 16 - 17
    祁述雄.桉树种源引种试验研究报告.林业部桉树研究开发中心,中国林学会桉树专业委员会编,国际按桉树学术研讨会论文集.北京:中国林业出版社, 1992
    曲绪奎.国内侧柏种源苗期研究综述.山东林业科技, 1987, (3): 50 - 53
    全国侧柏种源试验协作组.侧柏种源苗高的基因型与环境交互作用的研究.北京林业大学学报, 1987a, 9(3): 232 - 240
    全国侧柏种源试验协作组.全国侧柏种源试验苗期生长和越冬性状变异的研究.北京林业大学学报, 1987b, 9(3): 241 - 248
    全国侧柏种源试验协作组陕西分组.侧柏种源试验苗期生长性状变异的研究.陕西林业科技, 1990(4): 1 - 6
    沈熙环.种子园优质高产技术.北京:中国林业出版社, 1994
    施立明,贾旭,胡志昂.遗传多样性.见:陈灵芝主编.中国的生物多样性.北京:科学出版社, 1993: 99 - 113
    施行博,郑吉联,曲绪奎.侧柏地理变异的研究.林业科学研究, 1992, 5(4): 402 - 408
    施行博,郑吉联.侧柏种源区划分的研究.林业科技通讯, 1993, (1): 1 - 5
    施行博.侧柏地理变异的研究.林业科学研究, 1992, 5(4): 402 -4 08
    石文玉,郭蓓.侧柏种源子代试验.北京农学院学报, 1996, 11(1): 106 - 109
    石文玉.侧柏种源试验苗期的初步研究.北京林业大学学报, 1986, 8(1): 74 - 83
    史全芬,杨佳,李晓东,等.水杉栽培居群的遗传多样性研究.云南植物研究,2005,27(4): 403 - 412
    税珺,黄少伟,陈炳铨.火炬松原生种源和引种群体RAPD遗传多样性.华南农业大学学报,2005,26(3):74 - 77
    四川植物志编辑委员会.四川植物志.成都:四川人民出版社, 1983, 2: 157 - 160
    宋从文,包满珠.天然珙桐群体的RAPD标记遗传多样性研究.林业科学, 2004, 40(4): 75 - 79.
    苏晓华,张倚纹.林木遗传图谱研究的现状与展望.林业科技通讯, 1995, (5): 10 - 12
    孙成志,谢国恩,李萍,等.杉木地理种源材性变异及建筑材优良种源评估.林业科学, 1993, 29(6): 429 - 435
    孙伟中,赵士洞.长白山北坡椴树阔叶红松林群落主要树种分布格局的研究.应用生态学报, 1997, 8(2): 119 - 122.
    孙玉玲,李庆梅,杨敬元,谢宗强.秦岭冷杉球果与种子的形态变异.生态学报, 2005, 25(1): 176 - 181
    孙志虎,王庆成.采用地统计学方法对水曲柳人工纯林表层根量的估计.生态学报, 2005,25(4): 923 - 930.
    孙仲序,丰震,李云荣,等.侧柏种源研究报告.山东林业科技, 1992, (3) :1 - 6
    唐启义,冯明光.DPS数据处理系统.北京:科学出版社, 2007, 504 - 528
    滕兆岩.星星草RAPD-PCR反应体系建立与优化.生物技术,2007 ,17(1) :48 - 49.
    涂忠虞,沈熙环.中国林木遗传育种进展.北京:科学技术文献出版社. 1993
    汪宝卿,王庆美,张海燕,等.北方甘薯农艺性状与产量的相关性及灰色关联度分析.青岛农业大学学报(自然科学版), 2010, 27(4): 296 - 299
    汪小全,邹喻苹,张大明,等.银杉遗传多样性的RAPD分析.中国科学(C辑), 1996, 26(5): 436 - 441
    王彩梅.侧柏封土保护抗旱造林试验.防护林科技, 2004, (2): 21 - 22
    王彩绒,吕家珑,胡正义,等.太湖流域典型蔬菜地土壤氮磷钾养分空间变异性及分布规律.中国农学通报, 2005, 21(8): 238 - 242
    王红霞.核桃遗传多样性分析及核心种质的构建.河北农业大学博士论文, 2006
    王洪新,胡志昂.植物的繁育系统、遗传结构和遗传多样性保护.生物多样性, 1996, 4(1): 92 - 96
    王军辉,顾万春,李斌,郭文英,夏良放.桤木优良种源、家系的选择研究.林业科学, 2000, 36(3): 59 - 66
    王军辉,顾万春,夏良放,等.恺木种源的地理变异和种源区划.浙江林学院学报, 2005, 22(5): 502 - 506
    王力华,张颂云,许思明.辽宁抚顺地区日本落叶松人工林生长早期相关和早期选择的初步研究.见:张颂云主编.主要针叶树种应用遗传改良论文集.北京:中国林业出版社, 1990, 135 - 143
    王秋玉,任旭琴,姜静.红皮云杉地理种源遗传多样性的RAPD分析.东北林业大学学报,2004,32(6):1-3
    王秋玉,吴月亮,蔡宝明,等. 15年生红皮云杉种源的地理变异及种源选择.东北林业大学学报, 1997, 25(3): 6 - 8
    王淑霞,胡运乾,周浙昆,等.灰背栎遗传多样性和遗传结构的AFLP指纹分析.云南植物研究, 2005, 27(1): 49 - 58
    王婷,叶永忠,滕开琼.嵩山侧柏(Platycladus orientalis)人工林恢复过程中物种多样性变化研究.河南科学, 2006, 24(5): 663 - 667
    王艇,苏应娟,欧阳蒲月,等.利用RAPD标记分析濒危植物白豆杉种群的遗传结构.生态学报,2006,26(7):2313 - 2321
    王喜忠,杨玉华.群体遗传学原理.成都:四川大学出版社, 1992
    王小平,刘晶岚,王九龄,刘春江.白皮松种子及球果形态特征的地理变异.北京林业大学学报,1998,20(3):25-31
    王晓春,韩士杰,邹春静,等.长白山岳桦种群格局的地统计学分析.应用生态学报,2002,13(7):781-784.
    王娅丽,李毅.祁连山青海云杉天然群体的种实性状表型多样性.植物生态学报, 2008, 32(2): 355 - 362
    王峥峰,王伯荪,李鸣光,等.锥栗种群在鼎湖山三个群落中的遗传分化研究.生态学报, 2001, 21 (8): 1308 - 1313
    王政权,王庆成.森林土壤性质的空间异质性研究.生态学报, 2000, 20(6): 945 - 950
    王志林,赵树进,吴新荣.分子标记技术及其进展.生命的化学,2001 ,21(1) :39 - 42.
    魏凤英,曹鸿兴.地统计学分析技术及其在气象中的适用性.气象, 2002, 28(2): 3 - 5
    翁跃进. AFLP---一种DNA分子标记新技术.遗传, 1996, 18 (6): 29 - 31
    吴承祯,洪伟,林思祖.杉木种子涩籽的空间特征分析.山地学报, 2006, 24(1): 117 - 122
    吴承祯,洪伟.杉木数量经营学引论.北京:中国林业出版社, 2000, 100- 148
    吴若菁.天然马尾松群体遗传结构的研究.林业科学,2002,38(5):160 - 165
    吴夏明.侧柏的地理变异.北京林业大学学报, 1986, (3): 1 - 16
    吴正镒主编.西藏植物志.第一卷.北京:科学出版社, 1983
    夏德安,张士波,张培杲,等.红松群体酯酶同工酶遗传结构的研究.东北林业大学学报,1991b,19(育种专刊):135-141
    夏德安,张士波,张培杲.红松群体酯酶同工酶遗传结构的研究.东北林业大学学报,1991a,19(育种专刊):142-147
    夏铭,周晓峰,赵士洞.天然红松群体遗传多样性的RAPD分析.生态学报, 2001, 21(5): 730 - 737
    向振勇,宋松泉,王桂娟,等.云南南部不同种源地小桐子遗传多样性的ISSR分析.云南植物研究,2007, 29 (6):619-624
    谢永军,施汉钰.遗传力研究及马尾松种源遗传性状分析.中国园艺文摘, 2010, (3): 4 - 5
    谢运海.东北地区水曲柳地理种源遗传多样性分析及优良种源选择.东北林业大学硕士学位论文,2005
    熊立仲,王石平,刘克德,等.微卫星和AFLP标记在水稻分子标记连锁图上的分布.植物学报,1998 ,40(7) :605 - 614.
    徐小林.栓皮栎群体遗传结构研究.南京林业大学硕士论文,2003
    闫志峰,张本刚,张昭,等.珍稀濒危药用植物黄檗野生种群遗传多样性的AFLP分析. 生物多样性. 2006, 14(6): 488 - 497
    严锡林,肖国荣,朱宁华,等.白榆地理变异模式及种源区划研究.湖南林业科技, 1996, 23(4): 22 - 30
    阎爱民,陈文新.苜蓿、草木樨、锦鸡儿根瘤菌的表型多样性分析.生物多样性, 1999, 7(2): 1 - 8
    杨传平.长白落叶松种群遗传变异与利用.哈尔滨:东北林业大学出版社,2001.
    杨传强,丰震,孙仲序,等. 21年生侧柏种源的变异及种源选择.林业实用技术, 2004, (11): 10 - 11
    杨传强,丰震,孙仲序,等. 21年生侧柏种源的地理变异及种源选择.山东农业大学学报(自然科学版), 2005, 36(2): 196 - 198
    杨传强.侧柏种源的地理变异与选择及其子代的遗传变异研究.山东农业大学硕士论文, 2005
    杨慧珍. RAPD标记在林木育种中的应用.山西农业科学,2007 ,35(1) :73 - 76.
    杨继.植物种内形态变异的机制及其研究方法.武汉植物学研究, 1991, 9(2): 185 - 195
    杨模华.巨桉不同种源群体遗传结构的RAPD分析.中南林学院硕士论文,2001
    杨秀虹,李适宇.地统计学方法在环境污染研究中的应用.中山大学学报(自然科学版), 2005, 44(3): 97 - 101
    杨秀清,韩有志.华北山地6种天然次生林土壤氮素的空间异质性特征.中国水土保持科学, 2010, 8(6): 95 - 102
    姚莉.中国特有种-濒危植物岷江柏(Cupressus chenggiana S.Y.Hu)的遗传多样性研究. 四川大学硕士学位论文, 2005
    叶功富,罗美娟,林益明,等.短枝木麻黄地理种源遗传多样性的RAPD分析.厦门大学学报(自然科学版),2005,44(6):856-860
    尤勇,洪菊生. RAPD标记在杉木种源遗传变异上的应用.林业科学,1998,34(4):32-38
    于秀林,任雪松.多元计方法.北京:中国统计出版社, 2004: 216 - 217
    余昊,邵强,王运兵,等.新疆和田地区春尺蠖种群空间格局动态分析.中国农学通报, 2005, 21(9): 334 - 338
    俞新妥.马尾松种源试验阶段报告.林业科学, 1978, 14(1): 4 - 13
    张春雨,赵秀海,夏富才.长白山次生林树种空间分布及环境解释.林业科学, 2008, 44(8): 1 - 8
    张大勇,姜新华.植物交配系统的进化、资源分配对策与遗传多样性.植物生态学报, 2001, 25(2): 130 - 143
    张旦儿,杨旭林,刘素琴.侧柏地理变异苗期生长初步探讨.山西林业科技, 1995, (1): 38 - 40
    张冬梅,沈熙环,何田华. A paternity analysis of seeds from different clones in a Pinus tabulaeformis Carr. seed orchard.植物生态学报, 2001, 25: 166 -174
    张刚华,聂洁珠,萧江华.毛竹种群空间格局的地统计学分析.中国农学通报, 2007, 23(12): 136 - 141
    张桂霞,陈静,王文江,等. AFLP技术及其在果树上的应用研究进展.河北农业大学学报, 2003, 26 (增刊): 60 - 63
    张国盛,张小红,王林和,等.内蒙古地区天然臭柏种群遗传多样性的RAPD分析.干旱区资源与环境, 2005,19(7):193-198.
    张含国,高士新,张敏莉,等.长白落叶松天然群体遗传结构的研究.东北林业大学学报, 1995, 23(6): 21 - 31
    张含国.红皮云杉遗传多样性的研究.东北林业大学博士论文, 2000,30 - 40
    张恒庆,安利佳,祖元刚.天然红松种群形态特征地理变异的研究.生态学报, 1999, 19(6): 992– 998
    张辉,柳鎏.板栗群体的遗传多样性及人工选择的影响.云南植物研究,1998,20(1):81-88
    张杰.蒙古栋地理种源遗传多样性的研究.东北林业大学博士学位论文,2005
    张军丽,王峥峰,王伯荪,等.鹤山人工林大叶相思种群遗传结构的AFLP分析.应用生态学报, 2001, 12(4): 491 - 495
    张萍.木荷地理种源变异及分子基础.北京:中国林业科学研究院, 2005: 6 - 13
    张仁波,窦全丽,何平,等.濒危植物崖柏遗传多样性研究.广西植物, 2007,27(5): 687 - 691
    张松林,张昆.空间自相关局部指标Moran指数和G系数研究.大地测量与地球动力学, 2007, 27(3): 31 - 34
    张维生.黑龙江省森林空间自相关分析.东北林业大学学报, 2008, 36(10): 16– 18
    张文标,金则新,李钧敏.不同生境夏蜡梅群体遗传多样性的RAPD分析.植物研究,2007,27(3): 313-318
    赵安玖,胡庭兴,陈小红.山地阔叶混交林林木生长的空间异质性.林业科学研究2008, 21(6): 751 - 756
    赵斌,蔡庆华.地统计学分析方法在水生态系统研究中的应用.水生生物学报, 2000, 24(5): 514 - 520
    赵淑清,武维华. DNA分子标记和基因定位.生物技术通报,2000(6) :1 - 2.
    赵志刚,郭俊杰,沙二,等.我国格木的地理分布与种实表型变异.植物学报, 2009, 44 (3): 338 - 344
    中国科学院青藏高原综合考察队(吴征镒主编).西藏植物志.北京:科学出版社, 1983
    中国科学院西北植物研究所.秦岭植物志.北京:科学出版社, 1976,1: 21
    中国科学院中国植物志编辑委员.中国植物志.北京:科学出版社. 1978, 7: 322 - 325
    中国树木志编委会.中国主要树种造林技术.北京:中国农业出版社, 1976
    周延清. DNA分子标记技术在植物研究中的应用.北京:化学工业出版社,2005:56 - 57.
    周志春,黄光霖,金国庆.马尾松不同种源对环境的反应函数和优良种源的合理布局. 林业科学研究,1999, 12(3): 229 - 236
    朱翔,杨传平,李忠,等. 2年生白桦种源的地理变异.东北林业大学学报, 2001, 29(6): 7 - 10
    朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,2002.
    竺利波,顾万春,李斌.紫荆群体表型性状多样性研究.中国农学通报, 2007, 23(3): 138 - 145
    邹喻苹,葛颂,王小东.系统与进化植物学中的分子标记.北京:科学出版社, 2001, 117
    Allard R W, Kahler A L, Clegg M T. In:Christiansen R B, Fenchel TMEds. Measureing Selection in Natural Populations. NewYork: Springer - Verlag, 1977, 1 - 19
    Avise J C, J L Hamrick. Conservation Genetics, Case Histories from Nature. Chaman & Hall, New York, 1996
    Bagchi S K, D N Joshi and D S Rrwat. Variation in seed size of Acacia spp. Silvae Genetica, 1990, 39(3-4): 107 - 110
    Baker, H. G. Reproductive methods as factors in speciation in flowering plants. Cold Spring Harbor Symposium on Quantitative Biology, 1959, 24: 177 - 191.
    Bartish, J. V., N. Jeppsson, and H. Nybom. Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Molecular Ecology ,1999, 8: 791-802
    Bergmann F. The allelic distribution at an acid phosphatase locus in Norway Spruce (Picea abies) along similar climatic gradients.Theoretical and Applied Genetics, 1978, 52(2): 57– 64
    Bohonak, A J.2002.IBD (Isolation By Distance): a program for analyses of isolation by distance. Journal of Heredity, 93:153-154.
    Canavera, D. S.and Wright, J. W. A 4-Year provenance test of Jack pine, Mich. Exp. Stat. Res. Rep. 1973, 204: 1 - 7
    Charlesworth D, Charlesworth B.Annual Review of Ecology and Systematics, 1987, 18: 237 - 268
    Clegg M T, Epperson B K.Advanced of Genetics, 1985, 23: 235 - 269
    Cliff A D, Ord J K. Pion London: Spatial Autocorrelation .1973
    Daniel L H andG C Andrew.Principles of Population Genetics.Sinauer Associates, inc USA.1989,1 - 670
    El-kassaby YA&O Sziklai.Genetic variation of allozyme and quantitative traits in a selected Douglas - fir populations. Forestry Ecology and Managemen , 1982, (4): 115 - 126
    Ellstrand N C, Elam D R. Population genetic consequences of population size: implications for plant conservation. Annual Review of Ecology and Systematic, 1993, 24, 217 - 242
    Elsner G.Morphological variability of oak stands (Quereus petmea and Q.robur ) in northern Germany. Ann Sci For.,1993, 50: 228 - 232
    Epperson B K, Allard R W.Genetics, 1989,121: 369 - 377
    Epperson B K, Clegg M T. American Naturalist, 1986,128: 840 - 858 Epperson B K, Genetics, 1990b, 124: 757 - 771
    Epperson B K, In: Brown A DH, Clegg MT, Kahler AL et al Eds. Plant Population genetics, Breeding and Genetics resources. Sinauer Associates M A, 1990a, 229– 253
    Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 1992,131:479-491.
    Francis C Y, Yang R C, Popgene version 1.32. http//www.ualberta.ca/_fyeh/index.htm, 2000
    Gaiotto, femanda mato, Ana Yamaguishi Ciampi, DAK10RIO GRATTAPAGLIA Laboratorio de Genetica de plantas, EMBRAPA - CENARGEN C. P. 02372 Brasilia, D. F. Braxxil 70849- 970. AFLP in Eucalyptus:Fast construction of linkage maps and estimation ofmating system and genetic variation in a breeding population
    Gitzendanner MA,Soltis PS.Patterns of genetic variation in rare and widespread plant congeners. American Journal of Botany, 2000, 87: 782 - 792
    Goddard,R.E.et al. Cooperative forest genetics research program, 15th annul report, Univ. Fla. Sch. Forest Resour, Conserv. Rep.1973, 21: 1 - 19
    Grant, V. The regulation of recombination in plants.Cold Spring Harbor Symposium on Quantitative Biology, 1958, 23: 337 - 363
    Hamrick JL,Godt MJW. Sherman-Broyes.Factors influencing levels of genetic diversity in woody plant species.New Forest,1992,6,95-124.
    Hamrick, J. L. & M. J. W. Godt. Effects of life history traits on genetic diversity in plant species. In: Silvertown, J., W. M. Franco&J. L. Harper eds.Plant life history: ecology, phylogeny and evolution.Cambridge: Cambridge University Press. 1997, 102 - 118
    Hamrick, J. L.&M. J. W. Godt. Allozyme diversity in plant species. In: Brown, A. M. D., M. T. Clegge, A. L. Kahler & B. S. Weir eds. Plant population genetic, breeding and genetic resources. Sunderland, MA: Sinauer. 1990: 43 - 63
    Hatakeyman, S, Adach. Y.Geographic variation of birch species in Hokkaido, I, Clustering of populations and correlations between progeny performance and characteristics of native habitat. Hokkaido Forest Rep. Stat. Bull, 1968, (6): 109 - 135
    Heywood J S. Annual Review of Ecology and Systematics, 1991, 22: 335– 355
    Huang H W, Dane F, Kubisiak T L. Allozyme and RAPD analysis of the genetic and geographic variation in wild population of the American chestnut Castanea dentata (Fagaceae). Amer J Bot, 1998, 85: 1013 - 1021
    Huff D R, Peakall R, Smouse P E. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theoretical and Applied Genetics, 1993,86:927-934.
    Khalil M A K. Genetic of cone morphology of black spruce (picea mariana (Mill) B S P.) in New foundland, Canada. Silvae Genetica, 1984, 33: 101 - 109
    Khasa P D, Dancik B P. Rapid identification of white-Engelmann species by RAPD markers. Theor. Appl. Genet., 1996, 92: 46 - 52
    Khosia, P. K. .Advances in forest genetics.Ambika Publications, 1981: 101 - 117
    King J N, F C Yeh, J C Heaman. Selection of growth and yield traits in controlled crosses of coastal Douglas-fir populations. Slvae Genetica, 1998, 37(3 - 4): 158 - 164
    King YT,Chinag YC. Companing differentiation of wild soya bena(Clycine soja Sieb andZuee.)Population based on isozymes and quantitative traits.Bot ball Acad Sin.,1990,31:129 - 142.
    Kremer A,Petit R J.Gene diversity in nature population of oak species.Ann Sci For,1993,50(Suppl1):186-202
    Lei M D.Evergreen conifer forest. In: Lei M D ed. Vegetation in Shaanxi, China. Be ijing: Science Press. 1999, 126
    Leonardi S, Raddi S, Borghetti M. Canadian Journal of Forest Research,1995, 26: 63 - 71
    Li-peng, Beaulieu J, Bousquet J. Genetic structure and patterns of genetic variation among populations in eastern white spruce (picea glauca) .Canadian Journal of Forest Research, 1997, 27(2): 189 - 198
    Loveless M D,Hamrick J L.Ecological determinants of genetic structure in Plant Populations.Annu.Rev.Ecol.Syst.,1984,15:65 - 95.
    Meffe G K, C R Carroll. Princeples of Conservation Biology. Sinauer Associates, Inc., Sunderland, Massachusetts, 1994
    Mergel. K. Principled Plant Nutrition. Beijing:Beijing Agricultural University, 1982, 262 - 264
    Mossele rA, Egger K N, Hughes G A. Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers. Can .J. For. RES., 1992, 22: 1332– 1337
    Nei M. Molecular Evolutionary Genetics. New York: Columbia Univ. Press, 1987: 187– 192
    Nybom H.2004.Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants.Molecular Ecology,13:1143-1155.
    Nybom Hilde, Igor V Bartish. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants [J]. Perspectives in Plants, 2000, 3(2): 93 - 114
    Oh G S, Kim J H, Kang S S et al.Plant Species Biology, 1995, 10: 155 - 161
    OTSEN M,BIEMAN M D. Amplified fragment length polymorphisms used for the genetic characterization of rat inbred stains[C]/ / Proceedings 24th International Society for Animal Genetics. [ s. l . ] :[ s. n] ,1994.
    Paula E Marquardt, Ryan K Epperson. Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology, 2004, 13(11): 3305 - 3315
    Piedra T E. Geographic variation inneedles, cones and seeds of pinus tecumomanin in Guatemala . Silvae Genetic, 1984, 33(2): 2 - 3
    Putenikhin V P. Phenotype analysis of Picea obovata in the southern Urals populationstructure. Lesovedenie, 1997, 6: 37 - 39
    Ruby J L, Wright J W. A Revised Classification of Geographic Variation in Scotspine. Silvae Genetica, 1976, 25(5): 41 - 48
    Ruby J L..The correspondence between genetic,morphological and climatic variation patter in scotch pine.Silvae Genetic,1967, 16(2): 50 - 56
    Scall B.A, et a1.Comparison of methods for assedding genetic variation in plant conservation biology,In Falk D.A.and K.E.Holdinger.Genetics and conservation of rare plants.NewYork:Oxford University Press.1991,123-124
    Shapcott A. Heredity, 1995, 74: 28 - 38
    Smith A. L., C. L. Campbell, D. B. Walker et al. Geographic Variation in the Essential Oil Monoterpenes of Liriodendron Tulipifera. Biochemical SYstematics and Ecology, 1988, 16(7-8): 627 - 630
    Sokal R Oden N L. Spatial autocorrelation in biology. 1. Methodology.Biological Journal of the Linnean Society, 1978, (10): l99 - 228
    Sokal R Oden N L. Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biological Journal of the Linnean Society, 1978, (10): 229 - 249.
    Sokal R R, Menozzi P. AmericamNatrulist, 1982, 119: 1 - 17
    Sokal R R, Smouse P E, Neel J V. Genetics, 1986, 114: 259 - 287
    Sokal R R, Uytterschaut H, Rosing F W et al. American Journal of Physical Anthropology, 1988, 74: 1 - 20
    Sokal R R, Winkler E M. Human Biology, 1987, 59: 147 - 164
    Sqillace, A. E. Geographic variation in Slash Pine. Forest Sci. Monogr, 1966, (10): 1 - 56
    Squillace A E. Geographic Variation in Slash Pine [J]. Forest Science Monograph. 1966, (10): 355 - 367
    Stead, J.W., Studies of variation in central america pines,a numerical study of variation in the Pseudostrobus group. Silvae Genetica, 1983, 32, (3 - 4): 101 - 114
    Stebbins, G. L. Self - fertilization and population variability in the higher plants. American Naturalist, 1957, 91: 337– 354
    Sun Y, Kim S, Park C W. AFLP examination for putative hybrids between Aconitrm japonicum ssp. Napifome and A. jalu-ence (Ranunculaceae). Korean Jour Plant Tax., 1997, 27(1) : 59 - 71
    Szmidt A E, Wang X R, Lu M Z. Empirical assessment of allozyme and RAPD variation in pinus sylvestrist (L.) using haploid tisuue analysis. Heredity, 1996,76: 412 - 420
    Takahashi T, Konuma A, Ohkubo T, et al. Comparison of spatial genetic structures in Fagus crenata and F.japonica by the use of microsatellite markers. Silvae Genetica, 2003, 52: 5 - 6
    Tani N, Tomaru N, Tsumura Y et al. Journal of Plant Research, 1998, 111: 7 - 15
    VELAPPAM N,SONDRASS J L ,HAKOVIRTA J R. Rapid identification of path genoic bacteria by single enzyme amplified fragment length polymorphism analysis.Diagnostic Microbiology and Infections Disease ,2001,39 :77 - 83.
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23 (21): 4407 - 4414
    Wagner D B, Sun Z X, Govidarju D B et al. American Naturalist, 1991, 138: 156 - 170
    Wagner D B. Nuclear, chloroplast, and mitochondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New Forests. 1992, 6: 373 - 390
    Well,o.o. Geographic variation in Ponderosa Pine,I,The ecotypes and their distribution, II, Correlations between progeny performance and characteristics of the native habitat. Silvae Genetica,1964, 13, 89 - 103, 125 - 132
    WILLIAMS JCK,KUBELIKAR,LIVAK KJ. DNA polymorphism amplified byarbitrary primers are useful genetic markers. Nucleic Acids Res ,1990 ,18 :6531 - 6537.
    Wright J W, Geographic variation in scotch pine. Silvae Genetica, 1963a, 12: 1 - 25
    Wright J W, W. L. Bull. Geographic Variation in European Black Pine-2 years results. Forest Science, 1963b, 8(l): 32 - 42
    Yeh F C and Y A El-Kassaby.Enzyme variations in natural populations of Silka Spruce. Canadian journal of Forest Research. 1980, (10): 415 - 422
    Yeh F C, Chong D K X, and Yang R - C. RAPD variation within and among natural populations of trembling aspen (Populus tremuloides Michx.) from Alberta. Journal of Heredity, 1995, 86: 454 - 460
    Ying, C. C. Genetic variation of eastern cottonwood, Neb. Agr. Exp. Stat. Dep. Forest program, Rep. 1974, (1): 1 - 148
    Zabeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting [P]. European Patent Application 92402629. 7 (Publication No. 0534858A1). Paris: European Office, 1993
    Zhang H Q, An L J and Zhu Y G. Geographic variation morphology characters for natural population of pinus s koraiensis. Acta Ecologica Sinica,1999, 19(6): 932 - 938
    Zheng Z. The characteristics of the flora and an outline of the distribution of plants in Hubei Province. J Wuhan Bot Res, 1983, 1: 165 - 175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700