用户名: 密码: 验证码:
柴达木盆地柴西南三维区岩性地层圈闭识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴西南三维区位于柴达木盆地西南部昆仑山和阿尔金山夹持的地区,油气资源丰富,勘探潜力巨大。该区位于盆地的边缘,阿尔金山和昆仑山两大物源沉积体系发育的沉积砂体为形成各类岩性地层圈闭提供了有利条件,但区内勘探程度低、构造复杂、相变快,以及储层地震响应和测井响应不明显等问题,成为制约岩性油气藏勘探的主要因素。
     本文针对柴西南三维区的勘探现状和地质特点,在层位标定、对比追踪和变速时深转换的基础上,开展现今构造、构造演化史研究工作;尤其是通过系统的古构造研究,不仅为地层层序模式建立、相带划分提供了依据,也明确了古构造对岩性地层圈闭的控制作用,指明了岩性地层圈闭发育的有利区带。
     通过层序地层学研究建立了等时地层格架,将研究区第三系划分为3个Ⅱ级层序和7个Ⅲ级层序,指出了纵向上岩性地层圈闭发育的有利层段。通过沉积相研究,明确了不同地区各层序的沉积相类型、有利储层的分布与性质,初步预测了平面上岩性地层圈闭发育的有利区及其砂体类型。
     在地球物理特征深入分析的基础上,开展了岩性地层圈闭识别技术研究,首次提出了适合柴西南岩性地层研究特点的“四确定一优选”系统理论;针对不同沉积类型的砂体及其地球物理特征,建立了四种相应的识别模式,形成了相应的识别技术系列,发现了大量的岩性地层圈闭;并在有利区带和圈闭综合评价的基础上,优选目标,提出钻探部署建议,取得了较好的勘探效果和经济效益。
     通过本项目研究有以下几项创新点:
     1、首次提出了柴西南岩性地层研究的“四确定一优选”系统理论
     通过对柴西南三维区岩性地层圈闭地质特点、地球物理特征、地震识别与分析技术的研究,结合圈闭地质评价,首次提出了适合柴西南岩性地层勘探特点的“四确定一优选”系统理论:即古构造分析确定圈闭有利发育区:层序地层学研究确定纵向上有利层段;沉积相研究确定平面上有利储层与圈闭的发育规律;地震技术识别和确定圈闭;综合评价优选目标。
     与常规岩性地层圈闭识别理论方法相比,“四确定一优选”理论方法的创新点在于,把古构造研究作为一项重要的、必不可少内容,引入到岩性地层油气藏研究中,特别强调了古构造对岩性地层圈闭的控制作用。在古构造研究中,首次应用地层倾角校正方法和地层剥蚀厚度恢复方法恢复地层真厚度,第一次系统地完成了柴西南区主要目的层的古构造图件,这套图件已成为油田的基础图件,在岩性地层油气藏勘探中发挥着重要作用。
     建立在深入地球物理特征分析基础上的“四确定一优选”岩性地层研究系统理论,适合柴达木盆地的地质特点。
     2、建立了四种圈闭识别模式,形成了相应的地震识别技术系列
     根据岩性地层圈闭形成环境、圈闭类型、主控因素和地球物理特征的不同,首次将研究区内岩性地层圈闭划分为四种基本类型,建立了四种相应的识别模式,并形成了相应的地震识别技术系列,即:三角洲平原-前缘砂体的基于多子波地震道分解预测技术;滩坝砂和席状砂优质储层预测技术;与坡折带相关扇体识别的古构造分析与地震分析相结合的扇体识别技术;不整合面地层圈闭的地层超覆线相干加强和波峰(谷)数分析技术,以及砂岩层厚度定量分析方法。在这些技术当中,古构造分析与地震分析相结合的扇体识别技术、地层超覆线相干加强和波峰(谷)数分析技术,在同行中属于首次提出和开发使用。多子波地震道分解储层分析技术在柴达木尚属首次使用。
     3、技术应用效果明显,钻探效果显著
     本研究提出的“四确定一优选”岩性地层研究系统理论,建立的四种圈闭识别模式与相应的地震识别技术系列,在柴西南三维区的岩性地层勘探中取得了丰硕的地质成果和良好的勘探效益。研究中共发现和落实岩性和地层圈闭137个,圈闭面积946.4km2;建议井位72口,被采纳53口,其中23口获得工业油流。新发现含油面积94km2,为油田上交预测石油储量5376×104t;新增控制含油面积67.1km2;新增控制储量3566×104t;新增探明含油面积44.85km2,新增探明储量2038.08×104t。其中2009年柴达木盆地昆北地区亿吨级油田的重大发现,岩性地层油气藏研究功不可没,储量占到了总储量的43%。
     本研究也极大地推动了柴达木盆地岩性地层勘探的进程,以岩性地层圈闭为勘探目标的钻井数,由研究初期2006年以前的每年1~3口,增加到2009年的27口,所占总勘探井位的比重由当初的13.3%,跃升到70%。
     同时,本研究中提出的“四确定一优选”系统理论和岩性地层圈闭识别技术,不仅在本区得到了很好的应用,还被陆续应用到柴西北区和柴北缘地区,显示了很好的推广价值。
The Southwest Chaidamu 3D survey is located between Kunlun and Aerjin mountains in the south region of west Chaidamu basin, which had been proved to be one of the most promising areas in this basin. The survey area is situated at the edge of the Basin. The sand bodies originated from Kunlun and Aerjin mountains are good for forming various kinds of lithologic stratigraphic traps. Nevertheless, the thinness of oil-baring layers, severe facies change and the weak seismic or sonic responses characterized by this area are the geological factors that hinder the exploration of lithologic stratigraphic reserviors. And what is more, the lack of effective geophysical techniques and systematical research strategy is one of the most important reasons.
     Aiming at the geological characteristics and the current exploration situation in the Southwest Chaidamu 3D survey area, lithologic stratigraphic reservior identification and analysis work was conducted. During the research, the contemporary tectonics and tectonic evolution had been studied to analyze a relationship between tectonics activity and lithologic traps form and development.
     The study of palaeo-structure not only provide the foundation for the stratigraphic sequence model building and, systems tract deposition model division and the establishment of facies classification, but importantly determine a favorable zone for the identification of lithologic and stratigraphic traps.
     An, isochronous stratigraphic framework was established through the study of sequence stratigraphy in the study area. The sequence developing at Tertiary in study area was divided into threeⅡsequences and sevenⅢsequences. Several favorable lithologic stratigraphic zones had been found and determined variable traps to make clearly next research.
     Different sedimentary facies types had been found through studying sedimentary facies. The various cycles of reservoirs distribution and reservoirs nature had been determined and then provided evidence for finding high quality good reservoir.
     The identification techniques and methods had been studied for lithologic stratigraphic traps to establish models of identification and analysis for Southwest Chaidamu Basin exploration basing on geophysical analysis. And the better effect had been obtained in practice.
     The targets had been optimized to provide drilling suggestion basing on favorable zones and lithostratigraphic traps evaluation. The better effect and economic effect had been achieved through drilling.
     Several innovations had been obtained through studying the project.
     1 the theory and methods of "four determinations and one optimization" had been proposed first theorically for lithostratigraphic strata study.
     In this project research, the theory of "four determinations and one optimization" had been first proposed theorically for lithologic traps study through analyzing lithologic stratigraphic trap geologic features, geophysical characteristics and seismic identificaiton and analysis combining with traps geologic evaluation, which are consisted by ancient structural analysis to determine trap favorable development areas, sequence stratigraphics study to determine the vertical favorable areas, sedimentary facies to find reservoir development law, seismic technology to identify and determine traps and comprehensive evaluation and target optimization.
     Compared with conventional lithological trap identification methods, the method of "four determination and one optimization" is to analyze ancient structure which is essential for lithologic reservoirs exploration. The results obtained in the practical application were very good.
     During palaeo-structure study, the strata dip correction had first been proposed to recover the true strata thickness. At the same time the strata erosion thickness recovery method was first used to make maps of palaeo-structure in Southwest Chaidamu Basin. At present the sets of palaeo-structure maps had become essential basic maps and played an important role in ithostratigraphic reservoirs study.
     2 four identificaiton models had been estabished first and the corresponding techniques and methods had been developed.
     During the project implementation, on the basis of study of geologic features of lithologic stratigraphic traps, four identification models had been established according to sedimentary enviornment, traps types, main controlling factors and geophysical features. Each model had been used to identify and analyze the litho stratigraphic traps and the specific technique had been built for lithologic traps identificaiton. Four technical series had been developed, which are seismic reservoir prediction based on multiwavelet seismic trace decomposition, prediction of high quality reservoirs with great thickness and good physical property, fan bodies identification and shape configuring combining ancient structural analysis with seismic facies analysis, stratigraphic overlap line coherence strengthening and peak(trough) number technique and quantitative analysis of glutenite thickness. Among these techniques, the fan bodies identification and shape configuring combining ancient structural analysis with seismic facies analysis and stratigraphic overlap line coherence strengthening and peak(trough) number technique were first developed and used. The seismic reservoir prediction based on multiwavelet seismic trace decomposition, prediction of high quality reservoirs with great thickness and good physical property were also first used and proposed.
     3 The significant exploration results had been otained through the techniques application. The drilling results were great.
     In the project study and application, the rich geologic results and better exploration effects had been obtained. In 2009 an oilfield with predicted reserves of hundred million ton, which had been found in Kunbei area in Chaidamu Basin should be contributed to lithologic and stratigraphic oil and gas reservoir studies, its reserve was accountedfor 43% of total reserves.
     The theory and methods of "four determinations and one optimization" proposed in the project had not only been applied best to the area, but also to the west of the Basin and the margin of north Basin, which had showed a good promotional value.
     In the project study and application, the rich geologic results and better exploration effects had been obtained. There were 137 lithostratigraphic traps having been found in Southwest Chaidamu Basin 3D area with traps area of 946.4km2. The proposed well were 72, among which 53 wells were adopted, and 23 wells had drilled industrial oil. The wells aimed had increased from 2-3 planed in 2006 to 27 planed in 2009, which was occupied from 13.3% to 70%.
     At same time when the project studied, the new discovered trap area was 103.9km2, the predicted hydrocarbon reserves was 5446.45×104t, the new controlled area bearing-hydrocarbon was 75.8km2, the new controlled reserves was 4132×104t, the new proven oil-bearing area of 37.99km2 and proven reserves was 2606.85×104t.
     This research project achieved the expected goals.
引文
[1]李明,侯连华,邹才能,等.岩性地层油气藏地球物理勘探技术与应用.石油工业出版社,2005
    [2]党玉琪,尹成明,赵东升,等.柴达木盆地西部地区古近纪与新近纪沉积相.古地理学报,2004,6(1):297~306
    [3]Ayers W B.Jr Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins. AAPG Bulletin,2002,86.1853~1890
    [4]邹才能,池英柳,等.陆相层序地层学分析技术,石油工业出版社,2004.1~8
    [5]张运东.国外隐蔽油气藏和低渗透储层识别预测技术现状及发展趋势.中国石油天然气集团公司石油经济和信息研究中心,2001.3-55
    [6]曾荣.非构造油气藏分类评述.复式油气藏,1998,2:50
    [7]贾承造,池英柳,等.中国岩性地层油气藏资源潜力与勘探技术.见:李丕龙,庞雄奇主编.《隐蔽圈闭油气藏形成机理与勘探实践》,石油工业出版社,2004.1~11
    [8]庞雄奇,陈冬霞,姜振学.隐蔽圈闭油气藏成因机理研究进展与问题.见:李丕龙,庞雄奇主编.《隐蔽圈闭油气藏形成机理与勘探实践》,石油工业出版社,2004.26~38
    [9]杜金虎,易士威,等.隐蔽油气藏分布规律与勘探配套技术----以二连盆地和冀中凹陷为例.见:李丕龙,庞雄奇主编.《隐蔽圈闭油气藏形成机理与勘探实践》,石油工业出版社,2004.401~402
    [10]Taner, M. T., Koehler, F. and Sheriff, R. E., Complex seismic trace analysis. Geophysics, 1979,44(6):1041~1063
    [11]Barnes, A. E.. The calculation of instantaneous frequency and instantaneous bandwidth (short note). Geophysics,1992,57(11):1520~1524
    [12]Barnes, A.E. Instantaneous bandwidth and dominant frequency with applications to seismic reflection data. Geophysics,1993,58(3):419~428
    [13]Barnes, A. E., Theory of two-dimensional complex seismic trace analysis,64th Ann. Internat. Mtg: Soc. of Expl. Geophys,1994,1580~1583
    [14]Bahorich, M. S., and S. R. Bridges. Seismic sequence attribute map (SSAM). SEG 62nd Annual International Meeting, New Orleans,1992
    [15]Chen, Q. and Sidney, S., Advances in seismic attribute technology, 67th Ann. Internat. Mtg: Soc. of Expl. Geophys,1997,730~733
    [16]Bahorich, M. and Farmer, S.,3-D Seismic Discontinuity for Faults and Stratigraphic Features:The Coherence Cube. The Leading Edge,1995,14(10):1053~1058
    [17]Cambois, G., AVO inversion and elastic impedance.2000,70th Ann. Internat. Mtg:Soc. of Expl. Geophys
    [18]Dahl, T., and Ursin, B., "Parameter estimation in a One-dimensional Anelastic Medium",Journal of Geophysical Research,,1991,96:217~233
    [19]Dalley, R.M. and others. Dip and azimuth displays for 3D seismic interpretation. First Break,1989,7(3):86~95
    [20]Doyen, P. M., Porosity from seismic data-A geostatistical approach:Geophysics,1988, 53(10):1263~1275
    [21]易远元.地震属性分析技术综述.科技资讯,2006,10:211~212
    [22]杨勤勇.油气地球物理技术发展新动向.勘探地球物理进展,2007,02:77~84
    [23]An, P.,2006, Application of multi-wavelet seismic trace decomposition and reconstruction to seismic data interpretation and reservoir characterization:Presented at the 76th Annual International Meeting, SEG.
    [24]陈海清,范金源,贺保卫等.地震资料解释新技术在柴达木岩性勘探中的应用.石油地球物理勘探,2008,S1:78~85.
    [25]徐丽英,徐鸣杰,陈振岩.利用谱分解技术进行薄储层预测.石油地球物理勘探,2006,41(3):299~302
    [26]Burnett, M. D., Castagna, J. P., Mendez-Hernandez, E., Rodriguez, G. Z., Garcia, L. F., Martinez-Vasquez, J. T., Tellez-Aviles, M. and Vila-Villasenor, R., Application of spectral decomposition to gas basins in Mexico. The Leading Edge,2003,22(11):1130~1134.
    [27]Partyka, G., Gridley, J. and Lopez, J., Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge,1999,18(3):353~360.
    [28]袁志云,孔令洪,王成林.频谱分解技术在储层预测中的应用.石油地球物理勘探,2006,S1:11~15.
    [29]徐丽英,韩宏伟.分频解释技术在辽河坳陷东部斜坡带储层预测中的应用.第三届全国沉积学大会论文摘要汇编.2004,194~195
    [30]张亚中,赵裕辉,鲁新便,等.频谱分解技术在塔里木盆地北部TH地区碳酸盐岩缝洞型储层预测中的应用.石油地球物理勘探,2006,S1:16~24.
    [31]张奎凤,蓝晖.短时窗地震信号谱分析方法.石油物探,1995,02:94~98
    [32]刘兵,刘怀山,姜绍辉.虚拟现实技术在石油勘探开发中的应用.西北地质,2004,04:107~112
    [33]张进铎.地震解释技术现状及发展趋势.地球物理学进展,2006,02:578~587
    [34]孙文德.虚拟现实技术的应用前景.科学中国人,1997,10:35~37
    [35]于志龙,冯建国,黄国雄,等.虚拟现实技术在南堡凹陷综合地震解释中的应用.石油地球物理勘探,2008,S1:54~58
    [36]马仁安,杨静宇,王洪元.可视化技术及在三维地震解释中的应用.计算机工程,2003,5:139~141
    [37]王宏琳,赵振文,林庆忠.油气勘探一体化软件体系结构.勘探地球物理进展,2003,03:161~164
    [38]汤良杰,金之均,戴俊生,等.柴达木盆地及相邻造山带区域断裂系统.见:张一伟,等主编.柴达木盆地油气勘探论文集.中国石油出版社,2004.85~91
    [39]翟光明.中国石油天然气总公司院士文集.翟光明集,1997.22~39.
    [40]黄汉纯.柴达木盆地地质与油气预测--立体地质三维应力聚油模式.1996.38~53
    [41]黄汉纯.阿尔金构造带及其对塔里木和柴达木盆地的影响.中国地质科学院院报,北京:地质出版社,1987.17~32
    [42]孙樯.构造应力与油气藏生成及分布.石油与天然气地质.2000,21(2):99~103
    [43]戴俊生.柴达木盆地构造样式控油作用分析.石油实验地质,2000,22(2):121~124
    [44]刘池阳.柴达木盆地西部地区构造特征及其演化.内部刊物,1991,10:23~32
    [45]马宗晋.青藏高原三维变形运动学的时段划分和新构造区.地质学报,1998,72(3):209~227
    [46]刘震,党玉琪,等.柴达木盆地西部第三系油藏晚期成藏特征.见:张一伟等主编.柴达木盆地油气勘探论文集,中国石油出版社,2004.17~31
    [47]朱筱敏,康安等.柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系.见:张一伟等主编.柴达木盆地油气勘探论文集.中国石油出版社,2004.102~109
    [48]卢红霞,陈振林,李天义.构造坡折带隐蔽圈闭发育模式浅析.海洋石油,2009,01:42~46
    [49]林畅松,潘元林,肖建新,等. “构造坡折带”--断陷盆地层序分析和油气预测的重要概念.地球科学-中国地质大学学报,2000,03:260~266
    [50]齐藤隆,王云蕾.沉积盆地的分类和石油分布.海洋石油,1991,05:32~38
    [51]王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型、展布及其勘探意义.石油与天然气地质,2003,03:199~203
    [52]张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏.石油勘探与开发,2003,03:5~7
    [53]李思田,潘元林,陆永潮,等.断陷湖盆隐蔽油藏预测及勘探的关键技术--高精度地震探测基础上的层序地层学研究.地球科学-中国地质大学学报,2002,5:592~598
    [54]林畅松,刘景彦,张英志,等.构造活动盆地的层序地层与构造地层分析--以中国中、新生代构造活动湖盆分析为例.地学前缘,2005,04:365~374
    [55]游李伟,彭军,陈果,等.坡折带理论在油气勘探中的应用.新疆石油地质,2005,03:322~325
    [56]纪友亮.层序地层学.上海:同济大学出版社,2006
    [57]顾家裕,范土芝.层序地层学回顾与展望.海相油气地质,2001,04:15~25
    [58]顾家裕,张兴阳.陆相层序地层学进展与在油气勘探开发中的应用.全国第四届油气层序地层学大会,2006,25:484~490
    [59]顾家裕.陆相盆地层序地层学格架概念及模式.石油勘探与开发,1995,22(4)6~10
    [60]赵文智.石油地质理论与方法进展.石油工业出版社,2006.54~67
    [61]邹才能,池柳英,吕焕通,等.陆相层需地层学分析技术.石油工业出版社,2004.12~22
    [62]周海民,董月霞,等.陆相断陷盆地层需地层学工作方法图集.石油工业出版社,2006.2~9
    [63]Van Wagoner et al,1988, An overview of the fundmental of sequence stratigraphy and key definitions, Sea-level Changes:An Integrated Approach,42, SEPM (Society for Sedimentary Geology) Special Publication,39~45.
    [64]徐怀大,层序地层学原理.北京:石油工业出版社,1993.31~42
    [65]李永军,谢学奎.柴达木盆地干柴沟地区第三系层序地层分析及其油气勘探意义.西安工程学院学报,2000,22:11~18
    [66]郭少斌.陆相盆地层序及体系域模式—以松辽盆地西部斜坡为例.地质科技情报,1998,17(4):37~42
    [67]吴茵业,党玉琪,等.中国含油气盆地地层序解释技术----以柴达木盆地七个泉地区为例.见:匡立春,顾家裕,等.油气层序地层学新进展.石油工业出版社,2006:13~23
    [68]朱筱敏,康安,胡宗全,等.柴达木盆地第四系层序地层特征与油气评价.石油勘探与开发,2002,29(1):56~60
    [69]艾桂根.柴达木盆地西北部第三系层序地层特征及可地浸砂岩型铀矿找矿方向.铀矿地质,2001,17(4):209~215
    [70]马达德,寿建峰,胡勇,等.柴达木盆地柴西南区碎屑岩储层形成的主控因素分析.沉积学报,2005,04:589~595
    [71]马达德,王少依,寿建峰,等.柴达木盆地西南区古近系及新近系砂岩储层.古地理学报,2005,04:519~528
    [72]杨剑萍,张琳璞,石勇.柴达木盆地西南缘乌南地区新近系下油砂山组沉积特征研究.新疆地质,2008,2:167~171
    [73]吴因业,靳久强,李永铁,等.柴达木盆地西部古近系湖侵体系域及相关储集体.古地理学报,2003,2:232~243
    [74]党玉琪,尹成明,赵东升.柴达木盆地西部地区古近纪与新近纪沉积相.古地理学报,2004,3:297~306
    [75]张敏,尹成明,寿建峰,等.柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相.古地理学报,2004,04:391~400
    [76]杨波,陈海清,王光华.柴达木盆地柴西南区岩性圈闭形成及有利勘探区带划分.石油地球物理勘探,2006,S1:42~46
    [77]刘云田,杨少勇.柴达木盆地西南地区沉积物源及储集层物性研究.新疆石油地质,2005,04:360~362
    [78]邵文斌,寿建峰.柴达木盆地尕斯断陷古近系-新近系的沉积演化规律与储集体分布.石油大学学报(自然科学版),2003,06:12~16
    [79]江波,司丹,王兰生,等.柴西南地区油气成藏特征及有利储层预测.天然气工业,2004,09:8~10
    [80]戴林,纪友亮,刘成鑫.阿尔金斜坡地区上、下油砂山组沉积相分析.新疆石油地质,2005,02:172~174
    [81]Freire, S. L. M., and T. J. Ulrych,1988, Application of singular value decomposition to vertical seismic profiling:Geophysics,53, no.6,778-785
    [82]Ricker, N.,1953, The Form and Laws of Propagation of Seismic Wavelets, Geophysics, Vol.18, p 10-40
    [83]Sheriff, R.E.,1999, Encyclopedic Dictionary of Exploration Geophysics, Third edition, Society of Exploration Geophysicists,52~53
    [84]Ping An, Comparison of wavelet selection and band-pass filtering for noise removal for seismic data Processing, GeoCyber Solutions, Inc
    [85]Ping An, Case studies on stratigraphic interpretation and sand mapping using volume-based seismic waveform decomposition, GeoCyber Solutions, Inc
    [86]Chen Quincy, Steve S, Seismic attribute technology for reservoirforecasting and monitoring. The Leading Edge,1997,16 (5):445
    [87]Brown A R. Seismic attributes and their classification. Theleading edge,1996,15(10)
    [88]郭华军,刘庆成.地震属性技术的历史、现状及发展趋势.物探与化探,2008,01:19~22
    [89]刘宪斌,林金逞,韩春明,穆剑.地震储层研究的现状及展望.地球学报,2002,01:73~78
    [90]Hatton, L., M. H. Worthington, and J. Makin. Seismic data processing:Theory and practice. Oxford, Blackwell Scientific Publications,1986
    [91]Henry,S. Understanding seismic amplitudes. AAPG Explorer, July 2004
    [92]Henry,S. More amplitude Understanding. AAPG Explorer,August 2004
    [93]Hitchings V.H and Potters H. Production and geologic implications of the Natih 9-C,3D seismic survey.The Leading Edge,2000,19(10):1117~1124
    [94]Hilterman,F.,J.,Seismic Amplitude Interpretation.SEG, Distinguished instructor Short Course,2001
    [95]Gao D., Volume texture extraction for 3D seismic visualization and interpretation.Geophysics, 2003,68(4):1294~1302
    [96]高君,云美厚,王晓红.针对薄互层储集特点的地震属性优化技术及应用效果.大庆石油地质与开发,2006,03:91~93
    [97]华学理,袁庆友,李延芝,等.储层岩性及物性定量解释方法探讨.断块油气田,2001,06:8~10
    [98]印兴耀,周静毅.地震属性优化方法综述.石油地球物理勘探,2005,40(4):482~489
    [99]于建国,姜秀清.地震属性优化在储层预测中的应用.石油与天然气地质,2005,24(3):291~294
    [100]张学芳,董月昌,等.曲线重构技术在测井约束反演中的应用.石油勘探与开发,2005,32(3):70~72
    [101]刘磊,邢正国,孙国,等.应用测井约束地震反演技术描述桩106断块储集层.石油勘探与开发,1999,26(5):80~82
    [102]姚逢昌,甘利灯.地震反演的应用与限制.石油勘探与开发,2000,27(2):53~56
    [103]刘书会,张繁昌,印兴耀,等.砂砾岩储集层的地震反演方法.石油勘探与开发,2003,30(3):124~125,128
    [104]王晖.综合应用地震、地质和测井资料预测储层分布.中国海上油气(地质),2001,15(2):135~139
    [105]周惠文,曹正林,杜斌山.含气特征曲线重构技术在致密含气砂岩储层预测中的应用.天然气地球科学,2006,05:723~726
    [106]沈向存,杨江峰.声波曲线重构技术在地震反演中的应用.中国西部油气地质,2006,04:436~439
    [107]郑四连,刘百红,张秀容,等.伽马拟声波曲线构建技术在储层预测中的应用.石油物探,2006,03:256~261
    [108]杨建春,刘赐团.拟声波曲线构建技术的新进展.内蒙古石油化工,2004,S1:129
    [109]刘淑华,张宗和.储层特征曲线重构反演技术—以冀东油田南堡凹陷为例.勘探地球物理进展,2008,1:53~58
    [110]刘淑华,张宗和,刘建武,等.声波曲线重构反演技术在储层预测中的应用.天然气工业,2007,S1:394~396
    [111]张静,王彦春,陈启林,等.储层特征曲线重构技术在储层预测中的应用研究.天然气地球科学,2008,03:396~401
    [112]姜忠新,邰子伟.储层特征曲线重构方法研究.胜利油田职工大学学报,2007,05:46~48
    [113]石磊,王昌景.利用拟声波曲线进行高分辨率地震反演.西南石油学院学报,2004,05:18~20
    [114]侯连华, 李明, 刘晓.储层特征曲线重构方法研究.中国地球物理学会第二十届年会论文集,2004.127
    [115]李积永,林军,郭宁,杜小丽.曲线重构反演技术在乌南油田的应用.青海石油,2007,01:18~21
    [116]陈福煊,赵军.用两个“虚拟”标准层对测井曲线进行标准化.测井技术,1996,05:345~350
    [117]高红艳.针对探井三孔隙度测井曲线的标准化方法.西部探矿工程,2006,12:112~114.
    [118]王志章,熊琦华.油藏描述中的测井资料数据标准化方法和程序.测井技术,1994,06:402~407
    [119]谭茂金,范宜仁,张晋言.测井数据标准化方法研究及软件设计.物探化探计算技术,2006,03:219~223
    [120]刘爱锋.测井资料归一化方法探讨.中国石油大学胜利学院学报,2008,2:14~16
    [121]H.H.Haldorsen, E.Damsleth,朱海龙.油藏描述的若干问题.勘探地球物理进展,1994,01:1~12
    [122]王秀东,汤振清.测井资料在地震反演中的应用.山东煤炭学会2004年度优秀学术论文集,2004:289~292
    [123]黄国骞,米宁.合成地震记录中声波测井和密度测井校正的简化模型.中国地球物理第二十一届年会论文集,2005:167
    [124]魏嘉,项亮.利用测井资料进行岩性层和储集层的划分.中国地球物理2003--中国地球物理学会第十九届年会论文集,2003.83
    [125]黄国骞, 顾红英.测井曲线标准化方法及改进.中国地球物理2003--中国地球物理学会第十九届年会论文集,2003.85
    [126]孙晶梅.地震反演与地震理论.油气地球物理技术新进展—第74届SEG年会论文概要,2005.137~147
    [127]Kane, J., Herrmann, F., Rodi, W. and Toksoz, M., Geostatistical seismic inversion using well log constraints,1999,69th Ann. Internat. Mtg: Soc.of Expl. Geophys
    [128]Lavergne, M., and C. Willm, Inversion of seismograms and pseudo velocity logs.Geophysical Prospecting,1977,25(2):231~250
    [129]Lo,T.W., Bashore, W. and Fisher, Seismic constrained facies modeling using stochastic seismic inversion and indicator simulation, a North Sea example,1999,69th Ann. Internat. Mtg:Soc. of Expl. Geophys
    [130]McMahon, I. T., Mills, G. F. and Ong, C. Y., Post-stack seismic inversion, recursive or modeling?.1982,52nd Ann. Internat. Mtg:Soc. of Expl. Geophys
    [131]Russell, B. H., Introduction to seismic inversion methods:Soc. of Expl. Geophys.,90. (Course notes from SEG Continuing Education course),1988
    [132]Versteeg, R. J. and Symes, W. W., Geologic constraints on seismic inversion.1994,64th Ann. Internat. Mtg:Soc. of Expl. Geophys.:1020~1023
    [133]魏立花,郭精义,等.测井约束岩性反演关键技术分析.油气地质与采收率,2006,17(5):731~735
    [134]杨立强.测井约束地震反演综述.地球物理学进展,2003,18(3):530~534
    [135]王权峰,王元君,等.多井约束地震反演技术在储集层预测中的应用.新疆石油地质,2008,29(3):367~369
    [136]王志章,熊琦华,宋杰英.测井资料标准化及应用效果.测井技术,1993,06:453~459
    [137]陈海清,杨波,王光华,等.柴达木盆地七个泉地区Q32井水下扇分析.石油地球物理勘探,2007,04:429~434
    [138]赵改善.虚拟现实技术在石油勘探开发中的应用展望.中国地球物理学会年刊2002—中国地球物理学会第十八届年会论文集,2002:347~348
    [139]冉建斌,何峰.虚拟现实系统及三维地震数据解释.石油地球物理勘探,2006,01:36~42
    [140]王志刚,王立辉.虚拟现实技术与勘探开发.石油地球物理勘探,2003,S1:119~121
    [141]高美娟,田景文.虚拟现实技术及其在地震勘探中应用探讨.2000年中国地球物理学会年刊—中国地球物理学会第十六届年会论文集,2000.15
    [142]尤洪军.虚拟现实技术及其在石油勘探开发中的应用.资源开发与市场,2007,09:785~787
    [143]朱庆荣,张越迁,于兴河,等.分频解释技术在表征储层中的运用.矿物岩石,2003,03:104~108
    [144]张延庆,魏小东,王亚楠等.谱分解技术在QL油田小断层识别与解释中的应用.石油地球物理勘探,2006,05:584~586
    [145]胡水清,韩大匡,刘文岭,等.频谱分解技术在岩相建模中的应用.大庆石油学院学报,2008,03:1~4
    [146]曾臻.谱分解技术在薄储层中应用.内蒙古石油化工,2007,12:334~335
    [147]蔡瑞.谱分解技术在储层预测中的应用.CT理论与应用研究,2003,12(2):22~25
    [148]陈海清,杨波,寿建峰,等.沉积物源的综合识别与岩性圈闭的确定——以柴达木盆地七个泉地区为例.石油地球物理勘探,2007,03:283~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700