用户名: 密码: 验证码:
三峡工程对长江口水动力及污水输运的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在河口、海岸水域中存在着复杂的物理过程,内陆径流与外海潮流交汇于此。这两股作用的强弱决定着河口附近的流场特性,若外海潮波强,则流场表现为明显的往复流动,若径流作用更强,则流场以单向的流动为主。长江口作为我国最大的河口,一年四季径流变化比较明显,随着三峡工程于2009年竣工并开始发挥作用,在三峡工程调蓄流量的影响下长江口上游来水量相比较天然情况下有比较明显的变化,这势必对长江口的水流特性产生显著的影响,而流场特性的改变也会给长江口附近海域排放的污水的稀释和输运带来一定的影响。对水环境情况进行分析和评价,进而对其进行有效的规划和管理,对保证社会经济和自然环境的和谐发展具有十分重要的意义。应用水动力模型,对水体的水动力特性进行分析,是水环境分析、评价和预测的重要基础。
     本论文以2005年11月长江口实测的流速资料为依据,应用ECOMSED模型建立了长江口的三维水动力数学模型,并在此基础上,分析了2010年7月长江流域大洪水期,由于三峡工程调蓄洪水作用,长江口水动力特性的变化以及对上海排放污水的稀释扩散和输运的影响,得出一些规律和认识,具体包括以下几个方面:
     (1)潮位和流速、流向的对比表明,模式不仅很好的反应了长江口潮位的变化特征,而且也表明该模型用于长江口的流场模拟也是成功的,很好的反应了长江口及杭州湾附近的水动力特性,可以进行长江口及杭州湾附近的水动力数值模拟计算。
     (2)三峡工程的存在对长江口的水动力产生了一定的影响,对于2010年7月长江大洪水,由于三峡工程的调蓄洪水作用,使得长江口附近的水流流速在落潮时发生明显的减小;涨潮时,流速有变大的迹象。
     (3)即使是洪水(即大流量来水)对长江口北支的水动力影响也非常小,这与近年来北支萎缩,泥沙严重淤积的实际情况相符合。北支的水动力主要受外海潮波的影响,因此盐水倒灌现象会比较严重。
     (4)由于三峡工程的蓄水,上游来水量相应减小,使得外海潮波对长江口的影响更加明显,这样就加剧了长江口的盐水倒灌现象,盐水入侵的可能性增加,且时间会更长,对长江口沿岸的生活和生产产生一定的影响。
     (5)长江口附近的水动力特性,整体呈现表层流速大,底层流速小的特点。三峡工程蓄水与否对长江口的影响,整体上是对表层水动力特性的影响大于对底层的影响。顺着上游来水往长江口方向,三峡工程蓄水与否对表层、中层、底层的水动力特性的影响逐渐减小,而且对表层、中层、底层之间的影响差距也随着逐渐靠近口门而减小。
     (6)三峡工程的蓄水,使得长江口上游来水量减小,这样就会使长江口附近的上海排出的污水的稀释扩散变得缓慢,且向外海输运的可能性减小,更加容易在近海区域和杭州湾附近滞留,不利于污水的扩散和输移。由此我们可以看出上游来水量对长江口附近的污水的稀释和输运有很大的影响。
     (7)三峡工程的蓄水使得长江口附近流速发生变化,从而会对长江口附近的泥沙输运和水环境带来一定的影响。
     长江口作为我国乃至世界比较典型的河口,其水动力的研究对分析和讨论人为影响下的近海水环境变化意义重大。其水动力的影响因素比较复杂,许多过程至今尚未弄清。因此长江口的水动力过程和水环境研究任重而道远,需要更多的学者进行长期不懈的努力。
Some complicated physical processes exist in the estuary and coastal areas, where the inland runoff and the sea tides meet with each other. The strength compare of those two flows determines the characteristics of current distribution nearby estuary. When the tides from open sea are stronger, current moves in circles; while the inland runoff predominate, the current just flow mainly towards the open sea. The runoff flows into Yangtze River Estuary (YRE), which is the biggest estuary in China, is totally different in every season. After Three Gorges Project (TGP) has been completed and put into service in 2009, the water volume downstream to YRE varied apparently to the times before because of the water regulation of TGP. So the hydro-dynamic characteristics of YRE changed significantly, which, therefore, would have negative impacts on dilution and transportation of waste water discharged into YRE. To analyze and evaluate the aquatic environment and then making effective manage plans is important for social and natural environment harmonically develop. Analyzing hydrodynamic properties of water body by employing hydrodynamic models is an essential fundamental for water resource analysis, evaluation and estimation.
     A 3D hydrodynamic mathematical model for YRE was established by using ECOMSED in this paper. The water level and flow rate compared to the observed data collected in No-vember 2005 show that the model is sound. Then, a simulation is conducted to flood season of July 2010 to study the effect of the flood storage of TGP on the hydrodynamic properties and the dilution and transportation of waste water discharged from Shanghai in YRE. Several rules and acknowledgements were obtained as follows:
     (1) According to the comparison of tidal level and current velocity and direction between simulated and observed data, this mathematical model is not only displaying tidal characteris-tics in YRE, but also showing up the availability of this model working on the simulation of flow field there. It successfully demonstrated the hydrodynamic characteristics around YRE and Hangzhou Bay.
     (2) Three Gorges Project has a certain impact on the hydrodynamic of Yangtze River Estuary. Take the big flood that happened in July 2010 for example, the flood storage of TGP contributed extremely to decrease flow velocity in ebb tide, while increase in flood tide.
     (3) In fact, the floods (large volume of flow) do not have much influence on the hydro-dynamic properties of the north branch of YRE, which is because water in the north branch is running off and sludge is silting up badly. The north branch is affected mainly by open sea tidal wave, which brings out a serious problem of salinity intrusion.
     (4) The flood storage of Three Gorges Reservoir decreases the water volume from up-stream, accelerating the effects on YRE from outside tides, consequently, lifting the possibil-ity of salinity intrusion and giving rise to the period. All those are going to introduce impacts to life and productivity along the river.
     (5) On the whole, the flow velocity on the surface is high, while that in the deep down is low. Therefore, the effect from impoundment of TGP are mainly on the surface layer rather than on the under layer. Going along with the Yangtze River from upstream to estuary, the influence of the flood storage to the hydrodynamic characteristics keep dropping down from surface layer, to middle layer, and to bottom layer. In addition, the difference between layers is decreasing going along to the estuary.
     (6) The flood storage of TGP reduces water volume from upstream, slows down the speed of dilution of the waste water discharged near to Shanghai. At the same time, it dimi-nishes the transport possibility to outside sea, which makes it worse for coastal and Hangzhou Bay areas because the waste water just stay around without getting diluted or spread. Hence, we can figure it out how much the upstream water volume impacts on the effluent dilution.
     (7) The flood storage of TGP changes the current velocity near YRE, which would make effects on the sediment transportation and water environment.
     As a typical estuary in China, even in the world, YRE plays a non-substituted role in re-searches of hydrodynamic impacts on people living in coastal areas. The influencing elements are complex, even some of which are still in studying. So it needs much more efforts and will be a long and tough work to keep it going.
引文
[1]Pritchard D W. What is an Estuary:Physical Standpoint [A]. In:Lauff G H. Estuaries. Washington, D. C.. American Association for the Advancement of Science. Publication 83.1967:3-5.
    [2]Abbott M B. Computational Hydraulics:Element of the Theory of Free Surface Flows [M]. London:Pitman Publishing Limited,1979.
    [3]Stelling G S. On the Construction of Computational Method for Shallow Water Flow Problem [D]. Delft City:Delft University of Technology,1984.
    [4]Stelling G S, Kester A M. On the Approximation of Horizontal Gradients in Sigma Coordinates for Bathymetry With Steep Bottom Slopes [J]. International Journal for Numerical Methods in Fluids,1994,18(10):915-935.
    [5]Leendertse J J. A Three-dimensional Model for Estuaries and Coastal Seas [R]. Santa Monica:The Rand Corporation,1973.
    [6]沈焕庭.中国河口数学模型模拟研究的进展[J].海洋通报,1997,16(2):80-85.
    [7]刘桦,何友声.河口三维流动数学模型研究进展[J].海洋工程,2000,18(2):87-93.
    [8]Shanker N J, Cheong H F, Sankaranarayanan S. Multilevel Finite-difference Model for Three-dimensional Hydrodynamic Circulation [J]. Ocean Engineering,1997,24(9): 785-816.
    [9]Chao X B, Shankar N J, Cheong H F. A Three-dimensional Multi-level Turbulence Model for Tidal Motion [J]. Ocean Engineering,1999,26(11):1023-1038.
    [10]Wang K H. Characterization on Circulation and Salinity Change in Galveston Bay [J]. Journal of Engineering Mechanics,1994,120(3):557-579.
    [11]Borthwick A G, Barber R W. River and Reservoir Flow Modeling Using the Transformed Shallow Water Equations [J]. International Journal for Numerical Methods in Fluids, 1992,14(10):1193-1217.
    [12]Philips N A. A Coordinate System Having Some Special Advantages for Numerical Forecasting [J]. Journal of Meteorology,1957,14(2):184-185.
    [13]Blumberg A F, Mellor G L. Diagnostic and Prognostic Numerical Circulation Studies of the South Atlantic Bight [J]. Journal of Geophysical Research,1983,88(C8): 4579-4592.
    [14]Mellor G L, Blumberg A F. Modeling Vertical and Horizontal Diffusivities With the Sigma Coordinate System [J]. Monthly Weather Review,1985,113(8):1379-1383.
    [15]Sheng Y P. On Modeling Three-dimensional Estuarine and Marine Hydrodynamics [J]. In:Nihoul J C J, Jamart B M. Three-dimensional Model of Marine and Estuarine Dynamics. Netherlands:Elsevier Oceanography Series. Elsevier Science Publishers,1987:35-54.
    [16]Abbott M B. Range of Tidal Flow Modeling [J]. Journal of Hydraulic Engineering,1997,123(4):255-277.
    [17]Davies A M, Jones J E, Xing J. Review of Recent Developments in Tidal Hydrodynamic Modeling, Ⅰ:Special Models [J]. Journal of Hydraulic Engineering,1997,123(4):278-290.
    [18]林秉南,赵雪华,施麟宝.河口建坝对毗邻海湾潮波影响的计算(二维特征理论法)[J].水利学报,1980,(3):16-26
    [19]易家豪,叶雪祥.长江口南港航道三维水流数值模拟[C].第二届河流泥沙国际学术会议论文集,南京,1983.
    [20]赵士清.长江口潮流的一种数值模式[J].海洋与湖沼,1985,16(1):18-27.
    [21]韩国其,汪德爟,许协庆.潮汐河口三维水流数值模拟[J].水利学报,1990,21(6):54-60.
    [22]杨连武,韩康,窦振兴,等.辽东湾顶极浅海潮流数值计算[J].水动力学研究与进展,1994,9(2):170-181.
    [23]曹欣中,唐龙妹,张月秀.宁波、舟山内海域实测海流分析及潮流场的数值模拟[J].东海海洋,1996,14(2):1-9.
    [24]董礼先,苏纪兰.象山港水交换数值研究-Ⅱ.模型应用和水交换研究[J].海洋与湖沼,1999,30(5):465-470.
    [25]吴昉,周大成.椒江河口大潮潮流特性的数值分析[J].浙江水利水电专科学校学报,2001,13(3):13-14,26.
    [26]时钟,李世森.垂向二维潮流数值模型及其在长江口北槽的应用[J].海洋通报,2003,22(3):1-8.
    [27]李孟国,时钟.江苏如东海域西太阳沙人工岛工程潮流数学模型研究[J].中国港湾建设,2006,(3):1-4.
    [28]姜恒志,沈永明,汪守东.瓯江口三维潮流和盐度数值模拟研究[J].水动力学研究与进展,2009,24(1):63-70.
    [29]刘子龙,王船海,李光炽,等.长江口三维水流模拟[J].河海大学学报,1996,24(5):108-110.
    [30]诸裕良,严以新,茅丽华.大江河口三维非线性斜压水流盐度数学模型[J].水利水运科学研究,1998,(2):129-138.
    [31]李禔来,窦希萍,黄晋鹏.长江口边界拟合坐标的三维潮流数学模型[J].水利水运科学研究,2000,(3):1-6.
    [32]于风香,宋志尧,李瑞杰.长江口三维潮流数值计算及动力分析[J],海洋湖沼通报,2003,(3):14-23.
    [33]刘成,李行伟,韦鹤平,等.长江口水动力及污水稀释扩散模拟[J].海洋与湖沼,2003,34(5):474-483.
    [34]曹颖,朱军政.长江口南汇东滩水动力条件变化的数值预测[J].水科学进展,2005,16(4):581-585.
    [35]张素香.长江口三维水动力与水质模拟研究[D].南京:河海大学,2007.
    [36]郁微微,杨洪林,刘曙光,等.深水航道工程对长江口流场的影响[J].水动力学研究与进展,2007,22(6):709-715.
    [37]杨陇慧,朱建荣,朱首贤.长江口杭州湾及邻近海区潮汐潮流场三维数值模拟[J].华东师范大学学报(自然科学版),2001,(3):74-84.
    [38]朱建荣,朱首贤ECOM摸式的改进及在长江河口、杭州湾及邻近海区的应用[J].海洋与湖沼,2003,34(4):372-374.
    [39]陈祖军,韦鹤平,陈美发.长江口水域三维水动力数值模拟研究[J].海洋预报,2004,21(3):37-44.
    [40]谢锐,吴德安,严以新,等EFDC模型在长江口及相邻海域三维水流模拟中的开发应用[J].水动力学研究与进展,2010,25(2):165-174.
    [41]宋兰兰.长江潮流界位置探讨[J].水文,2002,22(5):25-26,34.
    [42]沈焕庭.长江河口最大浑浊带[M].北京:海洋出版社,2001.
    [43]张志忠.长江口细颗粒泥沙基本特性研究[J].泥沙研究,1996,(1):67-73.
    [44]冯卫兵,王义刚.三峡工程对长江口岸滩的影响[J].河海大学学报,1995,23(5):14-19.
    [45]苏纪兰,王康墡,李炎.杭州湾的锋面及其物质输运[J].见:苏纪兰,中国海洋文学集(杭州湾锋面研究).北京:海洋出版社,1992:1-12.
    [46]中国海湾志编纂委员会编.中国海湾志(第5分册)-上海市和浙江省北部海湾[M].北京市:海洋出版社,1992.
    [47]林秉南,周建军.三峡工程泥沙调度[J].中国工程科学,2004,6(4):30-33.
    [48]王超俊,张鸣冬.三峡水库调度运行对长江口咸潮入侵的影响分斩[J].人民长江,1994,25(4):44-48.
    [49]文伏波,杨贤溢,洪庆余,等.三峡工程应按“一级开发,一次建成,分期蓄水,连续移民”的建设方案全面实施[J].科技导报,2001,(2):3-6.
    [50]Blumberg F. Alan, Mellor L. George. A Description of A Three-dimensional Coastal Ocean Circulation Model[M]. In:Heaps N S. Three Dimensional Coastal Models. Washington DC:American Geophysical Union,1987:1-16.
    [51]Smagorinsky J. General Circulation Experiments with the Primitive Equations. I. The Basic Experiment [J]. Monthly Weather Review,1963,91(3):99-164.
    [52]Mellor G L, Yamada T. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers [J]. Journal of the Atmospheric Science,1974,31(7):1791-1806.
    [53]Mellor G L, Yamada T. Development of a Turbulence Closure Model for Geophysical Fluid Problem [J]. Review of Geophysical Space Physics,1982,20(4):851-875.
    [54]Galperin B, Kantha L H, Hassid S, et al. A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows [J]. Journal of the Atmospheric Science,1988,45(1):55-62.
    [55]Gailani J, Ziegler C K, Lick W. The Transport of Sediments in the Fox River [J]. Journal of Great Lakes Research,1991,17(4):479-494.
    [56]Krone R B. Flume Studies of the Transport of Sediment in Estuarial Processes [R]. University of California, Berkeley:Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory,1962.
    [57]Van Rijin L C. Sediment Transport, part Ⅱ:Suspended Load Transport [J]. Journal of Hydraulic Engineering,1984,110(11):1613-1638.
    [58]Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas [M]. Amsterdam, the Netherlands:Aqua Publications,1993.
    [59]Blumberg A F. A Primer for ECOMSED User Manual:Version 1.3 [R]. Mahwah, New Jersey: HydroQual Inc,2002.
    [60]Simons T J. Verification of Numerical Models of Lake Ontario, Part I. Circulation in Spring and Early Summer [J]. Journal of Physical Oceanogr,1974,4(4):507-523.
    [61]Madala R V, Piacsek S A. A Semi-Implicit Numerical Model for Baroclinic Oceans [J]. Journal of Computational Physics,1997,23(2):167-178.
    [62]海洋图集编委会.渤海、黄海、东海海洋图集-水文[M].北京:海洋出版社,1992.
    [63]国家海洋局.中国海洋21世纪议程[M].北京:海洋出版社,1996.
    [64]Ridderinkhof H, Zimmerman J T F. Chaotic Stirring in a Tidal System [J]. Science, 1992,258(5085):1107-1111.
    [65]Allen C M. Numerical Simulation of Contaminant Dispersion in Estuary Flows [J]. Proceedings of the Royal Society of London(A),1982,381(1780):179-194.
    [66]Proctor R, Flather RA, Elliott A J. Modelling Tides and Surface Drift in the Arabian Gulf-application to the Gulf oil spill [J]. Continental Shelf Research,1994,14(5):531-545.
    [67]Elliott A J. Shear Diffusion and the Spread of Oil in the Surface Layers of the North Sea [J]. Deutsche Hydrographische Zeitschrift,1986,39(3):113-137.
    [68]郝琰.长江口附近海域环流及大黄鱼鱼卵、仔鱼输运和扩散的数值模拟[D].青岛:中国科学院海洋研究所,2000.
    [69]Puls W, Sunderm J. Modelling the Distribution of Suspended Matter and of Lead in the North Sea [M]//Mehta A J, et al. Near-shore and Estuarine Cohesive Sediment Transport. Washington D C:American Geophysical Union,1993:520-540.
    [70]管卫兵,王丽娅,潘建明,等.POM模式在河口湾污水质输运过程模拟中的应用[J].海洋学报,2002,24(3):9-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700