用户名: 密码: 验证码:
化工过程流体管网建模及其并行化仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体管网是化工流程的重要组成部分,其运行效率与安全性对管网本身以及与之相连的设备的平稳运行有着重要影响。流体管网模型建立与求解的主要难点在于拓扑结构复杂多样、管路中压力-流量的非线性关系、管路与管路之间的耦合、系统Jacobi矩阵稀疏性较高以及初值估计对收敛速度的影响。论文在系统分析总结前人工作基础上,对化工过程连通性时变流体管网展开了以下研究工作:
     (1)为了满足以独立基本回路集为系统方程组、弦支流量为独立变量的稳态分析方法(简称共树弦流法)的需求,创造性地提出了管网拓扑结构发生各种改变情况下,关联矩阵与基本回路矩阵直接由原矩阵做局部变换得到的快速更新算法。
     (2)针对化工过程特点,利用共树弦流法,构造了一种连通性时变的流体管网模拟策略,并利用酒厂罐区验证了该方法的有效性。
     (3)在Linux集群系统上,进行了化工过程管网系统动态仿真的并行化初步尝试:将多个独立子网的稳态求解过程分配到多个处理器当中同时计算,计算完毕后再将各自的结果统一整理。结果表明,增加计算节点可显著降低计算时间。
Pipeline networks are the major parts of large-scale chemical,petrochemical, petroleum refining and processing plants and various tankfarms. Their safe and efficient operation has a great significance for boththemselves and other pieces of equipment connected by them. The maindifficulties in modeling and solving pipeline networks are thecomplicated topology structure, the nonlinear relationship between flowand pressure in pipelines, the sparse of Jacobi matrix and estimate ofinitial value. Based on the analysis of the previous work, thesis launchedthe following research work of connectivity time-varying pipelinenetworks in chemical process:
     (1) In order to meet the demand of steady-state analysis method whichmake the independence basic circuit sets as system equations and chordflow as independent variable (Chord flow method), several proceduresare proposed to construct the incidence matrix and fundamental circuitmatrix of a graph directly from those of its parent graph or graphs whenthe topological of the pipeline network changes.
     (2) According to the characteristics of chemical process, the proposed model and topological analysis procedures are used to establish adynamic solver for a tank farm together with the chord flow method.Finally, the dynamic solver is applied to a tank farm of liquor forverifying the model and procedures.
     (3) In the Linux cluster system, the preliminary attempt of parallelismdynamic simulation of pipeline network of chemical process has beentaken: the process of several independent subnet steady solving aredistributed into multiple processors, the calculation results of eachprocessors are arrangement unified. The results show that the increasingof computing node can reduce the calculation time significantly.
引文
[1] Walski, T., Chase, D., Savic, D., Grayman, W., Beckwith, S., and Koelle, E. Advancedwater distribution modeling and management[M]. Haestad Press, Waterbury, Conn,2003.
    [2] Alvarez, R., Gorev, N. B., Kodzhespirova, I. F., Kovalenko, Y., Negrete, S., Ramos, A.,&Rivera, J. J. Pseudotransient continuation method in extended period simulation of waterdistribution systems[J]. Journal of Hydraulic Engineering,2008,134(10):1473-1479.
    [3] Perelman, L., and Ostfeld, A.. Topological clustering for water distribution systemsanalysis[J]. Environmental Modelling and Software,2011,26(7):969-972.
    [4] Jochen W. Deuerlein. Decomposition Model of a General Water Supply Network Graph[J].Journal of Hydraulic Engineering,2008,134(6):822-832.
    [5] David H. Axworthy and Bryan W. Karney. Valve Closure in Graph-Theoretical Models forSlow Transient Network Analysis[J]. Journal of Hydraulic Engineering,2000,126(4):304-309.
    [6] Wood. D.J., Funk. J.E., and Boulos, P.F. Pipe network transients—distributed and lumpedparameter modeling[J]. Proc.6th Int. Conf. on Pressure Surges. BHRA.1990,131-142.
    [7] Abreu, J., Cabrera, E., Garcia-Serra., J., and Izquierdo, J. Boundary between elastic andinelastic models in hydraulic transients analysis with entrapped air pockets[J]. In Cabrera.E. and Fanelli. M.A., eds., Hydrndic transients with water column separation. Int. Assoc.for Hydraulic Research. Valencia. Spain.1991,159-181.
    [8] Betamio de Almeida, A., and Koelle, E.. Fluid transients in pipe networks[M].Computational Mechanics Publications. Southampton, U.K.,1992.
    [9] Rogalla, B., and Woiters, A. Slow transients in closed flow-part I numerical methods[J]. InChaudhry, M.H., and Mays, L.W., eds., Computer modeling of free-surface andpressurized flows. Kulwer Academic Publishers. The Netherlands,1994,613-642.
    [10] Cross, H.. Analysis of flow in networks of conduits or conductors[D]. Bulletin286, TheUniversity of Illinois Eng. Experiment Station, Urbana, Illinois,1936.
    [11] Epp, R.&Folwer, A. G.. Efficient code for steady flows in networks[J]. J.Hydraulics Div.,ASCE,1970,96, HY1:43-56.
    [12] Martin, D. W.&Peters, G.. The application of Newton Raphson’s method of networkanalysis by digital computers[J]. J. Inst. Water Engrs.,1963,17:115-29.
    [13] Shamir, U.&Howard, C. D. D.. Water distribution systems analysis[J]. J. Hydraulics Div.,ASCE,1968,94, HY1:219-34.
    [14] Lemieux, P. F.. Efficient algorithm for distribution networks[J]. J. Hydraulics Div., ASCE,1972,98, HY11:1911-20.
    [15] Donachie, R. P.. Digital program of water analysis[J]. J. Hydraulics Div., ASCE,1974,100, HY3:393-403.
    [16] Rao, H. S., Markel, L. C.&Bree, D. W. Jr,. Extended period simulation of watersystems-part A[J]. J. Hydraulics Div., ASCE,1977,103, HY2:97-108.
    [17] Rao, H. S.&Bree, D. W. Jr,. Extended period simulation of water systems-part B[J]. J.Hydraulics Div., ASCE,1977,103, HY3:281-94.
    [18] Wood, D. J.. Computer Analysis of Flow in Pipe Networks including ExtendedSimulations[M]. Office of Continuing Education and Extension, College of Engineering,The University of Kentucky, Lexington, KY,1980.
    [19] Rahal, H.. Water distribution network steady state simulation AQUANET model:Algorithm description[J].5th Int. Conf., Hydrosoft94: Hydraulic Engineering Software,Computational Mechanics Publications,1994, l(1):395-402.
    [20] Chandrashekar, M.&Stewart, K.. H.. Sparsity oriented analysis of large pipe networks[J].J. Hydraulics Div.,1974,101, HY4:341-53.
    [21] Nielsen, H. B.. Methods for analyzing pipe networks[J]. J. Hydraulic Engng, ASCE,1989,115(2):139-56.
    [22] Rahal, H.. A co-tree flows formulation for steady state in water distribution networks[J].Advances in Engineering Software,1995,22(3):169-178.
    [23] Savic DA, Kapelan Z, Jonkergouw P. Quo vadis water distribution model calibration[J].Urban Water,2009,6(1):3-22.
    [24] Walski TM. Techniques for calibrating network models[J]. J. Water Resour Plan Manage,1983,109(4):360-372.
    [25] Ormsbee LE, Wood DJ. Explicit pipe network calibration[J]. J. Water Resour PlanManage,1983,112(2):166-182.
    [26] Bhave PR. Calibrating water distribution networks models[J]. J. Environ Eng,1988,114(1):120-136.
    [27] Boulos PF, Wood DJ. Explicit calculation of pipe network parameters[J]. J. Hydraul Eng,1990,116(11):1329-1344.
    [28] Reddy PVN, SridharanK, Rao PV. WLS method for parameter in water distributionnetworks[J]. J. Water Resour Plan Manage,1990,122(3):157-164.
    [29] Lansey KE, Basnet C. Parameter estimation for water distribution networks[J]. J. WaterResour Plan Manage,1991,117(1):126-144.
    [30] Datta RSN, Sridharan K. Parameter estimation in water distribution systems by leastsquares[J]. J. Water Resour Plan Manage,1994,120(4):405-422.
    [31] Lansey KE, El-Shorbagy W, Ahmed I, Araujo J, Haan CT. Calibration assessment and datacollection for water networks[J]. J. Hydraul Eng,2001,127(4):270-279.
    [32] Greco M, Giudice GD. New approach to water distribution network calibration[J]. J.Hydraul Eng,1999,125(8):849-854.
    [33] Nash GN, Karney BW. Efficient inverse transient analysis in series pipe systems[J]. J.Hydraul Eng,1999,125(7):761-764.
    [34] Tang K, Karney B, PendleburyM, Zhang F. Inverse transient calibration of waterdistribution systems using genetic algorithms[R]. In: Savic DA, Walters GA (eds) Waterindustry systems: modeling and optimization applications—I. Research Studies Press,Baldock,1999.
    [35] Bargiela A. An algorithm for observability determination in water-system stateestimation[J]. IEE Proc Part D,1985,132:245-249.
    [36] Shanmugam Mohan Kumar, Shankar Narasimhan. Parameter Estimation in WaterDistribution Networks[J]. Water Resour Manage,2010,24:1251-1272.
    [37] Braunschweig, B. L., Pantelides, C. C., Britt, H. I.,&Sama, S. Process modelling: ThePromise of open software architectures[J]. Chemical Engineering Progress,2000,96(9):65-76.
    [38] Braunschweig, B. L., Pantelides, C. C., Britt, H. I.,&Sama, S. Open softwarearchitectures for process modeling: Current status and future perspectives[J]. InProceedings of the conference on foundations of computer-aided process design, AIChEsymposium series,2000,96(323):220-235.
    [39] Britt, H., Chen, C. C., Mahalec, V.,&McBrien, A. Modeling and simulation in2004: Anindustrial perspective[J]. In Proceedings of the second International Conference onFoundations of Computer-Aided Process Design (FOCAPD). AIChE Symposium Series,55-68.
    [40] Gani, R.,&O, Connell, J. P. Properties and CAPE: From present uses to futurechallenges[J]. Computers and Chemical Engineering,2010,25:3-14.
    [41] Jarke, M.,&Marquardt, W. Design and evaluation of computer-aided process modelingtools[J]. In Proceedings of the first international conference on intelligent systems inprocess engineering, AIChE symposium series,1996,92(312):97-109.
    [42] Pantelides, C. C.,&Barton, P. I. Equation-oriented dynamic simulation—current statusand future perspectives[J]. Computers and Chemical Engineering,1996,17:263-285.
    [43] Pantelides, C. C.,&Urban, Z. E. Process modeling technology: a critical review of recentdevelopments[J]. In Proceedings of the second international conference on foundations ofcomputer-aided process design (FOCAPD). AIChE symposium series,2004,69-82.
    [44] Schopfer, G., Yang, A., von Wedel, L.,&Marquardt, W. CHEOPS: A tool-integrationplatform for chemical process modelling and simulation[J]. International Journal onSoftware Tools for Technology Transfer (STTT),2004,6(3):186-202.
    [45] Shacham, M., Macchietto, S., Stutzman, L. F. REVIEW—equation-oriented approach toprocess flowsheeting[J]. Computers and Chemical Engineering,1982,6:79-95.
    [46] Stephanopoulos, G. Artificial intelligence in process—current state and future trends[J].Computers and Chemical Engineering,1987,11:1259-1270.
    [47] Boston, J. F., Britt, H. I.,&Tayyabkhan, M. T. Software: tackling tougher tasks[J].Chemical Engineering Progress,1993,38-49.
    [48] Drengstig, T., Wasbo, S. O.,&Foss, B. A. A formal graphical based process modeling andmethodology[J]. Computers and Chemical Engineering,1997,21:835-840.
    [49] Hangos, K. M.,&Cameron, I. T. The formal representation of process systems assumptionand their implications[J]. Computers and Chemical Engineering,1997,21:823-828.
    [50] Koller, J., List, T.,&Jarke, M. Designing a component store for chemical engineeringsoftware solutions[J]. In Proceedings of the international conference on system sciences,2001,1-9.
    [51] Kulikov, V., Briesen, H., Grosch, R., Yang, A., von Wedel, L.,&Marquardt, W. Modulardynamic simulation for integrated particulate processes by means of tool integration[J].Chemical Engineering Science,2005,60:2069-2083.
    [52] Linninger, A. A., Chowdhry, S., Bahl, V., Krendl, H.,&Pinger, H. A systems approach tomathematical modelling of industrial processes[J]. Computers and Chemical Engineering,2000,24:591-598.
    [53] Lohmann, B.,&Marquardt, W. On the systematization of the process of modeldevelopment[J]. Computers and Chemical Engineering,1996,20:213-218.
    [54] Martinson, W. S.,&Barton, P. I. Distributed models in plantwide dynamic simulators[J].AIChE Journal,2001,47(6):1372-1386.
    [55] Petrides, D. P., Koulouris, A.,&Lagonikos, P. T. The role of process simulation inpharmaceutical process development and product commercialization[J]. PharmaceuticalEngineering,2002,22(1):1-8.
    [56] Ponton, J. W.,&Gawthrop, P. J. Systematic construction of dynamic models for phaseequilibrium processes[J]. Computers and Chemical Engineering,1991,15:803-808.
    [57] Sinha, R., Paredis, C. J. J., Liang, V. C.,&Khosla, P. K. Modeling and simulation methodsfor design of engineering systems[J]. Journal of Computing and Information Science inEngineering,2001,123:84-91.
    [58] Tolsma, J. E., Clabaugh, J. A.,&Barton, P. I. Symbolic incorporation of externalprocedures into process modeling environments[J]. Industrial and Engineering ChemistryResearch,2002,41(16):3867-3876.
    [59] Ivanov, K. P.&Bournaski, E. G. Combined distributed and lumped parameters model fortransient flow analysis in complex pipe networks[J]. Computer Methods in AppliedMechanics and Engineering,1996,130:47-56.
    [60] Kesavan and Chandrashaker. Graph theoretic models of pipe network analysis[J]. ASCE JHydraul,1972,98:345-364.
    [61] Kesavan and Chandrashaker. Graph theoretic models of pipe network analysis[J]. ASCE JHydraul,1972,98:345-364.
    [62]屈俭.液体罐区动态建模与仿真平台的建立及其应用[D].北京:北京化工大学,2009.
    [63]汪守东,沈永明,姜恒志.城市给水管网恒定流和瞬变流数学模型研究[J].中国工程科学,2007,12:26-29.
    [64]屈俭.多组分液体罐区的动态建模与仿真[J].系统仿真学报,2010,22(3):752-756.
    [65]蒋怀德,喻良,常立冬.城市供水管网连通性分析研究[J].河南科学,2007,25(2):300-302.
    [66]任福深,常玉连,陈素丽,从日庆,堇风.油田供水管网系统仿真数学模型及其计算方法[J].大庆石油学院学报,2004,28(4):61-64.
    [67]石继,张丰周,刘志勇.用图论法中的弦流量式进行环状管网水力平衡计算[J].节水灌溉,1998,5:6-9.
    [68]田树军,张宏.液压管路动态特性的simulink仿真研究[J].系统仿真学报,2006,18(5):1136-1140.
    [69]李小燕,匡波,徐济鋆,张炎.网络方法在管路流体动态仿真计算中的应用[J].核动力工程,2000,21(3):264-269.
    [70]石继,张丰周,魏永曜.图论法用于供水管网水利计算的研究[J].水利学报,1999,2:49-56.
    [71]曹慧哲,贺志宏,何钟怡.基于图论的环状管网慢变流的计算研究[J].哈尔滨工业大学学报,2007,39(10):1559-1563.
    [72]陈钢军.环状管网水力计算的图论方法[J].华侨大学学报,1994,15(4):418-422.
    [73]姜瑛.管网系统动态仿真数学模型的建立及求解[J].石油天然气学报,2010,32(2):390-392.
    [74] McCabe, W.L., Smith, J.C.,&Harriott, P. Unit Operations of ChemicalEngineering[M].7th Ed., McGraw-Hill, New York,2004.
    [75] Churchill, S. W.(1977).―Friction factor equation spans all fluid-flow regimes.‖ChemicalEngineering,84(24),91-92.
    [76] Dijkstra, E. W. A note on two problems in connexion with graphs[J]. NumerischeMathematik,1959,1:269-271.
    [77] Harris, J. W.&Stocker, H.(1998).―Handbook of Mathematics and ComputationalScience.‖NewYork: Springer-Verlag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700