用户名: 密码: 验证码:
射频反应磁控溅射制备氮化铜纳米薄膜及其场发射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu_3N薄膜是近几年来研究的热点材料之一,在室温下相当稳定并且热分解温度较低,分解后生成的铜膜与分解前的氮化铜膜在红外及可见光区的反射率差别非常大,有望成为光存储器件中光存储介质的备选材料,与现有的一次性光存储碲基无机相变材料相比,它还具有无毒、廉价的优点。此外,Cu_3N薄膜还可用作在Si片上沉积金属Cu线的缓冲层、低磁阻隧道结的障碍层、自组装材料的模板等。到目前为止,Cu_3N薄膜的物理及化学性质仍然不是很清楚,大多数研究工作仍处于制备层次上,不同的制备工艺对Cu_3N薄膜性能的影响很大。国际上报道的有关Cu_3N薄膜的物理及化学性质并不一致。而国内有关Cu_3N薄膜的研究报道也很少,因此开展这方面的研究工作是非常必要的。
     到现在为止,很多方法都用来制备氮化铜薄膜,包括离子束辅助沉积、射频磁控反应溅射和溅射沉积等。目前使用最多的是具有高效性和简便性的射频磁控反应溅射方法。本论文利用射频磁控反应溅射方法制备了纳米Cu_3N薄膜,并对其结构和性质进行了研究,主要内容包括:
     1.研究了溅射气体中的氢气对薄膜生长行为的影响。不同H_2/N_2比例制备的氮化铜薄膜中都发生了氮化铜的优先生长。在0%H_2/N_2比例样品中观察到了氮化铜强的(100)特征峰,在2%-10%H_2/N_2比例的样品中,虽然膜中Cu/N相对比例明显随着H_2/N_2比例改变,但是即使在10%H_2/N_2比例情况下,膜的结构也仅仅显示了很小的改变。这表明薄膜沿择(100)晶向的择优生长取向不会随H_2/N_2比例的升高而发生明显的改变,溅射气体中的氢气对生长行为的影响是相当小的。
     2.研究了反应气体中H_2/N_2的比例对薄膜的晶格常数、电阻率、光学带隙等物理性质的影响。XRD分析表明,晶粒尺度在纳米量级,由于氢气的限制成核作用,晶粒大小随H_2/N_2比例增大而增大;氮化铜薄膜中氮含量随着H_2/N_2比例增大而减小,晶格常数随之减小;样品光学带隙随着H_2/N_2比例提高单调减小,证明H掺杂可以在一定范围内有效地调整Cu_3N薄膜的光学带隙;通过空气环境中的热重分析表明,随着H_2/N_2比例提高,薄膜中氮含量减小,导致氮化铜薄膜更倾向于在低温下热氧化,表现出差的稳定性,同时在分解过程中也表现出更大的样品增重;随着H_2/N_2比例提高,Cu_3N薄膜电阻率减小,这是由于随着氢气比例增加,薄膜中未发生Cu原子填隙到Cu_3N晶格的体心空位的现象,过量的Cu原子以无定形态形式沉积于晶界作为施主提供电子作为载流子从而降低了电阻系数,Cu_3N薄膜电阻率的可控性为其在微电子方面的应用拓宽了范围,有很好的应用前景。
     3.利用二极管结构场发射测试装置,对Cu/N比例为3.3:1的Cu_3N薄膜进行场发射测试,薄膜场发射电流很不稳定,且发射开启电场较高,发射电流较小。通过增加源气体中H_2含量,薄膜中铜含量增加至80.8 at.%,对该氮化铜薄膜进行场发射测试,发现场发射比较稳定,发射电流可以达到实际应用要求,但开启电场仍然较高。分析认为薄膜中铜含量的增加有助于提高氮化铜薄膜场发射性质。
     4.利用肖特基发射、SCLC效应、SCLC+PF效应的理论公式依次对氮化铜薄膜场发射数据进行拟合,其拟合相关系数都比较高,证明这些效应在氮化铜薄膜的场发射过程中都起到了一定的作用,我们所观察到的场发射Ⅰ-Ⅴ关系其实是各种传导机制与FN表面发射机制共同作用的结果。
In recent years, copper nitride (Cu_3N) thin films have attracted considerable attentionfor its distinct structure and low thermal-decomposition temperature. Based on itsunique properties, Cu_3N has potential applications in many fields such as opticalstorage, micro-electronic device and so on. Its low decomposition temperature andnature of non-toxic could be used in write-once-read-many optical storage instead oftellurium.
     Until now, Cu_3N thin films have been prepared with different methods, includingion-assisted vapor deposition, reactive rf magnetron sputtering, and direct currentsputtering. The method of reactive rf magnetron sputtering with the character ofhighly active and convenient is used most. Focused on the reactive magnetronsputtering preparation and properties of Cu_3N thin films, the main research contents ofthis thesis are shown as follows:
     1.From XRD patterns, no Cu peaks are found in all the as-deposited films and this indicate that the preferential growth of copper nitride occurs in all films. Also in XRD pattern, a strongest (100) and lower (200), (211) and (220) peaks of the Cu_3N are observed in the film deposited at 0% H_2/N_2 ratios. In the films deposited at 2%~10% H_2/N_2 ratios, the peak of (100) is also the strongest one and a small peak of (111) appears. Although the Cu/N ratios of the films change obviously with the H_2/N_2 ratios, the structure of the films only show very small difference even in the films prepared at 10% H_2/N_2 ratios. This result means that the growth behavior influence by the effect of H_2 on is rather small.
     2. The effects of H_2/N_2 ratio on the lattice parameter,resistence and optical band gap of Cu_3N films were investigated. The grain size estimated from XRD results is on the order of nanometers. The grain size increases monotonously with increasing H_2/N_2 ratios. The H restricts the nucleation, resulting in the formation of the larger grains. The N content in the Cu_3N films decreases with the increasing H_2/N_2 ratio. The transition of lattice constant is in consistence with the nitrogen content in the films. The optical band gap narrows as the H_2/N_2 ratio increases. this means that the gap of the Cu_3N film could be modulated by H doping. By analysis using TGA in the air, the result shows that the substoichiometrical Cu_3N film with low N content is tended to thermal oxidation at low temperature, and presents poor stability and loses large weight. The resistance of the Cu_3N film decrease when increasing H_2/N_2 ratio. The reason is that Cu atoms transfer to interstitial body-centered position of Cu_3N lattice, and these Cu atoms act as donors. As a conclusion, the Cu_3N films have potential application in microelectronics for its controllable resistance.
     3. The field emission properties of Cu_3N films with the Cu/N ratio of 3.3:1 are measured with a diode configuration.The field emission shows poor stability, high turn-on electric field and low field emission current. By increasing the H_2 content in the source gas, the Cu content in the film is increased to 80.8 at.%. the field emission properties were improved by showing stability and high emission current, but the turn-on electric field is still high. We consider the increase of Cu content in the film favored the field emission of Cu_3N films.
     4. The field emission curve of Cu_3N films was analysed using FN,Schottky, SCLC and SCLC+PF models. By mathematical analysis, the correlation coefficients are all very high, proving these models affect the field emission from the Cu_3N films simultaneously, and the I-V relation is the result of these conduction mechanism and FN emission mechanism.
引文
[1]李学丹,万英超,姜祥祺等,真空沉积技术,浙江大学出版社,1994.
    [2]李学丹,材料科学与工程,1985 (2):24.
    [3]田民波,薄膜技术与薄膜材料,清华大学出版社,2006.
    [4]D.S.Rickerby & A.Matthews.(eds).Advanced surface coating: A handbook of surface engneering.Glasgow,UK,Blackie,1991a,364P.
    [5]王福贞,马文存著,气相沉积应用技术,机械工业出版社,2006.
    [6]杨烈宇,关文铎,顾卓明,材料表面薄膜技术,人民交通出版社,1991.
    [7]闻立时,先进表面工程技术发展前沿[J],真空,4 (2004): 1-6.
    [8]陈学定,韩文政,表面涂层技术[M],北京:机械工业出版社,1994.
    [9]宋绪宁,李宁,超硬多层薄膜的研究现状及展望[J],表面技术,3 (2001) 10-12
    [10]吴大维,硬质薄膜材料的最新发展及应用[J],真空,6 (2003) 1-2.
    [11]薛增泉,纳米信息存储薄膜研究进展[J],薄膜科学与技术,3 (1995) 194-199
    [12]蔡炳初等,磁记录技术的新进展,薄膜科学与技术,3 (1995) 201-205.
    [13]沈德芳,磁光存储技术的现状和未来[J],薄膜科学与技术,3 (1991) 35-143
    [14]李艳琴等,超薄磁盘保护膜的制备技术[J],5 (2005) 17-21.
    [15]唐伟忠,薄膜材料制备原理、技术及应用(第二版),冶金工业出版社,2003
    [16]巩雄,张桂兰,关柏鸥等,光存储稀土材料的研究进展,稀土,1996.17(2):45-48.
    [17]Van Dover T B et al,Intrinsic anisotropy of Tb-Fe tilms prepared by magnetron Co sputtering.J.Appl.Phys.1985.57(8):3897-3899.
    [18]王荫君等,光盘存储材料非晶Gd-Tb-Fe膜的性能.物理学报.1987,36(6):705-711.
    [19]Gambino R J et al,.Magneto-optic properties of Nd-Fe-Co amorphous alloy.J.Appl.Phys.1985,57(8):3906-3908.
    [20]Bartuolomeas Briam J.The influencc of bias power levels on mark length variuhility in rare earth-transition metal optical data storage media.J.Appl.Phys 1990,68(7):3769-3771.
    [21]Tanaka F et al.Magneto-optical recording characteristics of TbFeCo media by magnetic field modulation method.Jpn.J.Appl.Phys.1987,26(2):231-235.
    [22]K.Sato,H.Ikekame,et al.Magnetooptical spectra in co-based multilayers.Jpn.J Appl.Phys.1993,32(3):553-555.
    [23]Takahashi K.,et al,Mechanism of photostimulated luminescence in BaFX:Eu~(2+)(x-CI,Br) phosphors.J.Lumin.1984,31/32(2):266-268.
    [24]Seggcrn H V et al,Physical model of photostimulated luminescence of x-ray irradiated BaFBr:Eu~(2+).J.Appl.Phys.1989,64(3):1405-1412.
    [25]Nanto H.,et al.Laser-stimulable transparent KCI:Eu crystals for erasable and rewritable optical memory utilizing photostimulated luminescence.J.Appl.Phys 1993,74(2):1445-1447.
    [26]Nanto H.,et al,Eu-doped KCI phosphor crystals as a storage material for twu-dimensinal ultraviolet-ray or x-ray imaging sensors.J.Appl.Phys.1994,75(11 ):7493-7497.
    [27]Moerner W E.Persistent spectral holebuming: science and application.Berlin:Springer,1988.
    [28]M.N.Deeter,D.Sand.Effects of incident angle on read-out in magneto-optic storge media.Appl.Opt.1988,27:713-716.
    [29]Renn A,Locker R.,Merxner A,et al,Spectral hole buming:high-resolution optical spectroscopy and image-storage.J.Lumin.1987,38(1):37-39.
    [30]Winnacher A.,Shelby R.M.,Macfarlane R M.,Photon-gated hole burning: a new mechanism using two-step photoionization.Opt.Lett.1985,10(7):350-352.
    [31]Lec W.H.Gehrtz M.,Marinero E.E.,et al.Two color photon-gated spectral hole-burning in an organic material.Chem.Phys.Lett.1985,118(6):611-616.
    [32]干福熹.数字光盘存储技术.北京:科学出版社,1998:309-316.
    [33]Wei C.J.et al,Two-photon hole burning and fluorescence-line-narrowin}} studies on BaFCl_(0.5) Br_(0.5):Sm~(2+) at 77K.J.Lumin.1989,43(3):161-166.
    [34]张家骅等.室温下的永久性光谱烧孔.发光学报.1991,12(2):181-182.
    [35]张永胜华东师范大学研究生学位论文2006.
    [36]杨帆浙江大学研究生学位论文2006.
    [37]熊华波电子科技大学研究生学位论文2005.
    [38]刘恩科朱秉升罗晋生等编著半导体物理学陕西:西安交通大学出版社,1998.
    [39]鲍林编著化学键的本质卢喜锡译北京:科学出版社,1981.
    [40]来自因特网:http://info.datang.net/D/D 1136.HTM.
    [41]刘学悫编著阴极电子学北京:科学出版社1980.
    [42]郁可华东师范大学研究生学位论文2004.
    [43]R.H.Fowler,L.W.Nordheim.Proc.R.Soc.(London) Ser.A.119 (1928) 173.
    [44]刘元震王仲春董亚强编著电子发射与光电阴极北京:北京理工大学出版社1995.
    [45]薛增泉吴全德编著电子发射与电子能谱北京:北京大学出版社1993.
    [46]承欢江剑平编著阴极电子学西安:西北电讯工程学院出版社1986.
    [47]P.Gonon,A.Deneuville,F.Fontaine,et al.J.Appl.Phys.78 (1995) 6633.
    [48]叶凡兰州大学研究生学位论文2007.
    [49]P.H.Culter,N.M.Miskovsky,P.B.Lerner,et al.Appl.Surf.Sci.146 (1999) 126.
    [50]L.W.Nordheim,Proc.Roy.Soc.A,121(1928)626
    [51]A.Einstein,Ann.Phys.,17(1905)132
    [52]P.Gonon,A.Deneuville,F.Fontaine,E.Gheeraert,J.Appl.Phys.78 (1995) 6633.
    [53]P.Lerner,N.M.Miskovsky,P.H.Culter,J.Vac.Sci.Technol.B 16 (1998) 900
    [54]J.Antula,J.Appl.Phys.43(1972)4663.
    [55]Y.Muto,T.Sugino,J.Shirafuji,K.Kobashi,Appl.Phys.Lett.59 (1991) 843.
    [56]Bohr-ran Huang,D.K.Reinhard,Appl.Phys.Lett.59 (1991) 1494.
    [57]R.M.Hill,Philos.Mag.23 (1971) 59.
    [58]WernerKen.IEEE Spectrum 5 (1995) 62.
    [59]Brodie Ivor.Proceedings of the IEEE 82 (1994) 1006.
    [60]Yamaguchi EA.Journal of the SID 5/4 (1997) 345.
    [61] S. H. Kwon, S. H. Cho, J. S. Yoo et al., Journal of the Electrochemical Society 147(2000)3120.
    [62] H. F. Gray, G. J. Campisi, R. F. Greene, Technical Digest of IEDM, Washington, 1986.
    [63] M. J. Colgan, M. J. Brett, Thin Solid Films 389 (2000) 1.
    [64] F. Y. Meng, W. K. Wong, N. G. Shang et al., Vacuum 66 (2002) 71.
    [65] E. I. Givargizor, J Vac Sci Technol. B 13 (1995) 414.
    [66] S. Gupta, B. R. Weiner, G. Morell, Diamond and Related Materials 11 (2002) 799.
    [67] H. Wang, M. R. Shen, Z. Y. Ning et al, Thin Solid Films 293 (1997) 87.
    [68] C. B. Cao, H. S. Zhu, H. Wang, Thin Solid Films 368 (2000) 203.
    [69] K. Cao, D. Guo, Y. Huang, H. S. Zhu, Appl. Phys. A. 71 (2000) 227.
    [70] D. Guo, K. Cai, L. T. Li, Y. Huang, Z. L. Gui, Appl. Phy. A. 74 (2002) 69.
    [71] Q. Fu, J. T. Jiu, K. Cai, H. Wang, C. B. Cao, H. S. Zhu, Phy. Rev. B. 59 (1999)1693.
    [72] F. J. Himpsel, J. A. Knapp, J. A. V. Vechten, et al., Phys. Rev. B 20 (1979) 624.
    [73] J. V. D. Weide, R. J. Nemanich, Phys. Rev. B 49 (1994) 13629.
    [74] C. Bandis, B. B. Pate, Phys. Rev. B 52 (1995) 12056.
    [75] S. Iijima, Nature 354 (1991) 56.
    [76] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer, Heidelberg, 2000.
    [77] M. Meyyappan, Carbon Nanotubes, Science and Applications, CRC Press, Florida, 2004.
    [78] M. Terrones, N. Grobert, J. Olivares et al., Nature 388 (1997) 52.
    [79] Z. F. Ren, Z. P. Huang, W. Xu et al., Science 282 (1998) 1105.
    [80] S. S. Fan, M. G. Chapline, N. R. Franklin et al., Science 283 (1999) 512.
    [81] J. I. Sohn, S. Lee, Y. H. Song et al., Appl. Phys. Lett. 78 (2001) 901.
    [82] R. H. Baughman, A. A. Zakhidov, W. A. D. Heer, Science 297 (2002) 787.
    [83] S. H. Jo, Y. Tu, Z. P. Huang et al., Appl. Phys. Lett. 82 (2003) 3520.
    [84] S. Kita, Y. Sakai, T. Fukushima et al., Appl. Phys. Lett. 85 (2004) 4478.
    [85]M.Tanemura,J.Tanaka,K.Itoh et al.,Appl.Phys.Lett.87 (2005) 193102.
    [86]H.S.Ahn,K.R.Lee,D.Y.Kim et al.,Appl.Phys.Lett.88 (2006) 093122.
    [87]陈光华邵乐喜贺德衍刘小平,物理29 (2000) 278.
    [88]W.P.Dyke,J.K.Trolan,W.W.Dolan et al.,J.Appl.Phys.24 (1953) 570.
    [89]C.A.Spindt,I.Brodie,L.Humphrey et al.,J.Appl.Phys.47 (1976) 5248.
    [90]D.G.Georgiev,R.J.Baird,I.Avrutsky et al.,Appl.Phys.Lett.84 (2004) 4881
    [91]M.Yamashita,M.Takai,Appl.Phys.Lett.66 (1995) 422.
    [92]C.K.A.Frederick,K.W.Wong,Y.H.Tang et al.,Appl.Phys.Lett.75 (1999)1700.
    [93]M.W.Geis,N.N.Efremov,J.D.Woodhouse et al.,IEEE Electr.Device L.12 (1991) 456.
    [94]D.Hong,D.M.Aslam,IEEE Transaction on ED 46 (1999) 787.
    [95]A.R.Krauss,O.Auciello,M.Q.Ding et al.,J.Appl.Phys.89 (2001)2958.
    [96]H.K.Kang,T.H.Kim,J.Vac.Sci.Technol.B 17 (1999) 246.
    [97]Q.Wan,K.Yu,T.H.Wang,C.L.Lin,Appl.Phys.Lett.83 (2003) 2253.
    [98]C.J.Lee,T.J.Lee,S.C.Lyu et al.,Appl.Phys.Left.81 (2002) 3648.
    [99]M.J.Powers,M.C.Porter,et al.,Appl.Phys.Lett.67 (1995) 3912.
    [100]C.C.Tang,S.S.Fan,P.Li et al.,Mater.Lett.51 (2001) 315.
    [101]X.W.Liu,L.H.Chan,W.J.Hsieh et al.,Carbon 41 (2003) 1143.
    [102]G.M.Zhang,Q.F.Zhang,Y.Pei et al.,Vacuum 77 (2004) 53.
    [103]Y.B.Tang,H.T.Cong,Z.G.Chen et al.,Appl.Phys.Lett.86 (2005) 233104
    [104]P.H.Culter,N.M.Miskovsky,P.B.Lerner,et al.Appl.Surf.Sci.146 (1999) 126.
    [105]张传萍吉林大学研究生学位论文2004.
    [106]朱长纯史永胜真空电子技术5 (2002) 15~17.
    [107]邓江林祖伦张仪德现代显示4(2005)8.
    [1]范晓彦兰州大学研究生学位论文2008.
    [2]M.Hansen,K.Anderko,Constitution of Binary Alloys,McGraw-Hill,New York,1958.
    [3]S.Terada,H.Tanaka,K.Kubota,J.Cryst.Growth 94 (1989) 567-568.
    [4]M.Asano,K.Umeda,A.Tasaki,Jpn.J.Appl.Phys.29(10) (1990) 1985-1986.
    [5]T.Maruyama,T.Morishita,Appl.Phys.Lett.69(7) (1996) 890-891.
    [6]R.Cremer,M.Witthaut,D.Neusch(u|¨)tz,et al.Mikrochim.Acta 133 (2000) 299-302.
    [7]T.Maruyama,T.Morishita,J.Appl.Phys.78 (1995) 4104.
    [8]D.Y.Wang,N.Nakamine,Y.Hayashi,J.Vac.Sci.Techol.A 16 (1998) 2084.
    [9]Z.Q.Liu,W.J.Wang,T.M.Wang,et al.Thin Solid Films 325 (1998) 55.
    [10]T.Nosaka,et al.Thin Solid Films 348 (1999) 8-13.
    [11]T.Nosaka,et al.Appl.Surf.Sci.169-170 (2001) 358-361.
    [12]S.Ghosh,et al.Surf.Coat.Technol.142-144 (2001) 1034-1039.
    [13]K.J.Kim,et al.J.Cryst.Growth 222 (2001)767-772.
    [14]J.F.Pierson,Vacuum 66 (2002) 59-64.
    [15]G.H.Yue,P.X.Yan,J.Z.Liu,et al,J.Appl.Phys.98 (2005) 103506.
    [16]A.L.Ji,R.Huang,Y.Du,et al,J.Cryst.Growth,295 (2006) 79-83.
    [17]J.Wang,J.T.Chen,X.M.Yuan,et al,J.Cryst.Growth 286 (2006) 407-412.
    [18]肖剑荣,徐慧,刘小良等,中国有色金属学报,17(3) (2007) 368-372。
    [19]L.Maya,J.Vac.Sci.Technol.A 11 (1993) 604.
    [20]吴志国,张伟伟,闫鹏勋等,物理学报,54 (4) (2005) 1687.
    [21]D.M.Borsa,S.Grachev,C.Presura,et al,Appl.Phys.Lett.80 (2002) 1823.
    [22]D.M.Borsa,D.O.Boerma,Surf.Sci.548 (2004) 95-105.
    [23]L.Soukup,et al.Surf.Coat.Technol.116-119 (1999) 321-326.
    [24]F.Fendrych,et al.Diam.Relat.Mat.8(1999) 1715-1719.
    [25]G.Soto,et al.Mater.Lett.57 (2003) 4130-4133.
    [26] U. Zachwieja, H. Jacobs, J. Less-Common Met. 170 (1991) 185.
    [27] Y. Hayashi, et al. J. Alloys Comp. 330-332 (2002) 348-351.
    [28] J. Wang, J. T. Chen, B. B. Miao, et al, J. Appl. Phys. 100 (2006) 1035091-6.
    [29] U. Hahn, W. Weber, Phys. Rev. B 53 (1996) 12684.
    [30] M. G. M. Armenta, A. M. Ruiz, Noboru Takeuchi, Solid State Sciences 6 (2004) 9-14.
    [31] M. G.e M. Armenta, W. L. Perezl,N. Takeuchi, Solid StateSciences 9 (2007) 166-172.
    [32] L. Maya, Mater. Res. Soc. Symp. Proc. 282 (1993) 203.
    [33] Y. Du, A. L. Ji, L. B. Ma, et al, J. Cryst. Growth 280 (2005) 490-494.
    [34] G. H. Yue, J. Z. Liu, M. Li, et al, phys. stat. sol. (a) 202(10) (2005) 1987-1993.
    [35] X. M. Yuan, P. X. Yan, J. Z. Liu, Mater. Lett. 60 (2006) 1809-1812.
    [36] C. Gallardo-Vega, W. de la Cruz, Appl. Surf. Sci. 252 (2006) 8001-8004.
    [37] K. V. S. Reddy, A. S. Reddy, P. S. Reddy, et al, J. Mater. Sci.: Mater. Electron, 18(2007) 1003-1008.
    [38] N. Terao, C. R. Acad, Sci. Paris Ser. B 277 (1973) 595.
    [39] R. W. G. Wyckoff. Crystal Structures, 2nd ed. Wiley, New York, 1963, Vols. 1 and 2.
    [40] U. Zachwieja, H. Jacobs, Eur. J. Solid State Inorg. Chem. 28 (1991) 1055.
    [41] A. Santoro, S. Miraglia, S. A. Sunshine, et al. Mater. Res. Bull. 22 (1987) 1007.
    [42] J. Blucher, K. Bang, B. C. Glessen, Mater. Sci. Eng. A 117 (1989) L1-L3.
    [43] 李兴鳌, 刘祖黎, 左安友,等 ,材料导报, 20(12) (2006) 141-413.
    [44] X. A. Li, Z. l. Liu, A. Y. Zuo, et al, Journal of Wuhan University of Technology-Mater. Sci. Ed. 22(3) (2007) 446-449.
    [45] M. G. M. Armenta, A. M. Ruiz, N. Takeuchi. Solid State Sci. 6 (2004) 9.
    [46] M. G. M. Armenta, W. L. Perez, N. Takeuchi, Solid State Sci. 9 (2007) 166-172.
    [47] W. Yu, J. G. Zhao, C. Q. Jin, Phys. Rev. B 72 (2005) 214116.
    [48] J. G. Zhao, L. X. Yang, Y. Yu, et al, phys. stat. sol. (b) 243(3) (2006) 573-578.
    [49] L. X. Yang, J. G. Zhao, Y. Yu, et al, Chin. Phys. Lett. 23(2) (2006) 426.
    [50] Z. Cancarevic, J. C. Schon, M. Jansen, Z. Anorg. Allg. Chem. 631 (2005) 1167-1171.
    [51] D. M. Borsa, S. Grachev, J. W. J. Kerssemakers, et al, Appl. Phys. Lett. 2001, 79:994.
    [52] D. M. Borsa, D. O. Boerma. Surf. Sci. 2004, 548: 95.
    [53] G. Soto, J.A. Diaz, W. de la Cruz. Mater. Lett. 2003, 57: 4130.
    [54] A. Nilson, O. BJormeholm, H. Tillborg, et al, Surf. Sci. 287-288(1993)758.
    [55] Z. Q. Liu, W. J. Wang, T. M. Wang, et al. Thin Solid Films, 1998, 325: 55.
    [1]田民波,薄膜技术与薄膜材料,清华大学出版社,北京,2006.
    [2]王福贞,马文存,气相沉积应用技术,机械工业出版社,北京,2006.
    [3]唐伟忠,薄膜材料制备原理、技术及应用,冶金工业出版社,北京,2003.
    [4]郑伟涛等,薄膜材料与薄膜技术,化学工业出版社,北京,2004.
    [5]R.F.Bunshah,Handbook of hard coatings,Published in the United States of America by Noyes Publications/William Andrew Publishing,LLC Norwich,New York,U.S.A.2001.
    [6]D.M.Mattox,Handbook of Physical Vapor Deposition (PVD) Processing,William Andrew Publishing/Noyes 1998.
    [7]赵文轸,材料表面工程导论,西安交通大学出版社,1998.
    [8]黎明锴,中频磁控溅射制备AlN薄膜及其离子注入研究,武汉大学博士学位论文,2004.
    [9]B.Window,J.Vac.Sci.Technol.A 3 (1985) 2368-2372.
    [10]W.D.Sproul,Surf.Coat.Technol.49 (1991)284-289.
    [11]W.D.Munz,Surf.Coat.Technol.,48 (1991)161-167.
    [12]R.D.Arnell,P.J.Kelly,Surf.Coat.Technol.112 (1999) 170-176.
    [13]B.Window,Surf.Coat.Technol.71 (1995) 93-97.
    [14]何崇智,郗秀荣,孟庆恩等编著,X射线衍射实验技术,上海,上海科学技术出版社,1988.
    [15]杨于兴,X射线衍射分析(修订版),上海,上海交通大学出版社,1989.
    [16]胡恒亮,穆祥祺,X射线衍射技术,北京,纺织工业出版社,1988.
    [17]林沝,吴平平,周文敏等编著,实用付里叶变换红外光谱学,北京,中国环境科学出版社,1991.
    [18]张叔良,易大年,红外光谱分析与新技术,北京,中国医药科技出版社,1993.
    [19]王国文,原子与分子光谱导论,北京,北京大学出版社,1985.
    [20]郑顺旋编著,激光喇曼光谱学,上海,上海科学技术出版社,1985.
    [21]刘世宏,王当憨,潘承璜编著,X射线光电子能谱分析,北京,科学出版社,
    1988.
    [22]薛增全,吴全德,电子发射与电子能谱,北京,北京大学出版社,1993.
    [23]优质大尺寸Nd: YAG激光晶体的生长与物性研究,硕士论文,长春理工大学,刘景和.
    [24]李永良,日立S-4800冷场发射扫描电镜的BSE功能,中国现代教育装备, 2007年第10期.
    [25]周名成,俞汝勤编,紫外与可见分光光度分析法,北京,化学工业出版社,1986.
    [26]陈国珍,黄贤智等编,紫外可见光分光光度法,北京,原子能出版社1987.
    [1]K.J.Kim,J.H.Kim,J.H.Kang,J.Cryst.Growth 222 (2001) 767.
    [2]L.Combadiere,J.Machet,Surf.Coat.Technol.88 (1996) 17.
    [3]T.Nosakaa,M.Yoshitake,A.Okamoto,et al,Thin Solid Films 348 (1999) 8.
    [4]G.A.Zhang,P.X.Yan,.Z.G.Wua,et al,Applied Surface Science 254 (2008) 5012-5015
    [5]吴刚,材料结构表征及应用,化学工业出版社,2002年1月第1版,P209-278.
    [6]T.Maruyama,T.Morishita,Copper nitride thin films prepared by Rario-frequency reactive spuettring.J.Appt.phys.78(6),(1995),4104-4107.
    [7]J.Wang,J.T.Chen,X.M.Yuan,et al,J.Cryst.Growth 286 (2006) 407.
    [8]X.M.Yuan,J.Z.Liu,Mater.Lett.60 (2006) 1809.
    [9」Z.Q.Liu,W.J.Wang,T.M.Wang,et al.,Themal stbbility of copper nitride films prepared By rf magnetron sputtering.Thin Solid Films 325(1-2) (1998) 55.
    [10]张喜田、肖芝燕、张伟力等,高质量纳米ZnO薄膜的光致发光特性研究,物理学报,52(3)(2003),740.
    [11]吴志国、张伟伟、白利峰、王君、阎鹏勋,纳米Cu_3N薄膜的制备与性能,物理学报,54(4)(2005),1687.
    [12]滕凤恩、王煌明、姜小龙,X射线结构分析与材料性能表征,北京:科学出版社,1997,P 117.
    [13]J.Wang,J.T.Chen,X.M.Yuan,et al,J.Cryst.Growth 286 (2006)407.
    [14]M.Asano,K.Umeda,A.Tasalci.Jpn.J.Appl.Phys.19 (1990) 1985.
    [15]L.Soukup,M.Sicha,F.Fendrych,et al.Surf.Coat.Technol.1999,116-119,321.
    [16]M.Asano,K.Umeda,A.Tasalci.Jpn.J.Appl.Phys.,1990,29:1985.
    [17]U.Hahn,W.Weber,Phys.Rev.B 1996,53: 12684.
    [18]L.Maya.,J.Vac.Sci.Technol.1993,A 11:604.
    [19]T.Maruyama,T.Morishita.Appl.Phys.Lett.1996,69:890.
    [20]T.Nosaka,M.Yoshitake,A.Okamoto,et al,Appl.Surf.Sci.2001,169-170: 358
    [21]M.G.M.Armenta,A.M.Ruiz,N.Takeuchi,Solid StateSci.6 (2004) 9-14.
    [22]U.Hahn,W.Weber,Phys.Rev.B 53 (1996) 12684.
    [23]J.Tauc,R.Grigorovici,A.Vancu,Phys.State.Sol.,15 (1996) 627.
    [24]王君兰州大学研究生学位论文2006
    [25]E.Burstein,Phys.Rev.93 (1954) 632.
    [26]F.Vaz,J.Ferreira,E.Ribeiro,et al.Surf.Coat.Technol.191 (2005) 317.
    [27]K.J.Kim,J.H.Kim,J.H.Kang,J.Cryst.Growth 222 (2001) 767.
    [1]刘敏,雷威,张晓兵等,真空微电子学的研究和进展,电子器件2003,26,
    428-433.
    [2]C.A.Spindt,C.E.Holland,A.Rosengreen,et al,IEEE transaction of electron devices 1991,382335.
    [3]K.Derbyshire,Solid State Technology,1994,11,55.
    [4]茅东升,无氢非晶金刚石薄膜的制备及其电子场发射性能研究,中国科学院上海冶金研究所,博士学位研究生学位论文,2000.
    [5]H.Gray,G.J.Campisi,R.F.Greene,et al,IEDM.Dig.Tech.Papers,1986,766.
    [6]S.Kim,B.K.Ju,Y.H.Lee,et.al,J.Vac.Sci.Technol.B 1997,15,499.
    [7]A.F.Myers,S.M.Camphausen,J.J.Cuomo,et al,J.Vac.Sci.Technol.B 1996,14,2024.
    [8]C.Wang,A.Garcia,D.C.Ingram,et al,Electron Lett.1991,27,1459.
    [9]M.W.Geis,J.A.Gregory,B.B.Pate,IEEE Trans.Electron Devices 1991,38,619.
    [10]K.Okano,K.Hoshina,S.Koizumi,et al,IEEE Electron.Devices Lett.1995,16,239.
    [11]K.Okano,K.Hoshina,S.Koizumi,et al,Appl.Phys.Lett.1994,64,2742.
    [12]M.W.Geis,J.C.Twichell,T.M.Lyszczarz,J.Vac.Sci.Technol.1996,14,2060.
    [13]R.D.Forrest,A.P.Burden,S.R.P.Silva,et al,Appl.Phys.Lett.1998,73,3784-3786.
    [14]S.Gupta,B.L.Weiss,B.R.Weiner,et al,J Appl.Phys.2001,89,5671-5675
    [15]C.Wang,A.Garcia,D.C.Ingram,et al,Electron Lett.1991,27,1459.
    [16]Y.Umehara,S.Murai,Yasuo Koide,et al,Diam.Relat.Mat.2002,11,1429-1435.
    [17]C.Bandls,B.B.Pate,Appl.Phys.Lett.1996,69,336.
    [18]W.Zhu,G.P.Kochanski,S.Jin,et al,J.Appl.Phys.1995,78,2707.
    [19] T. Maruyama, T. Morishita, Appl. Phys. Lett., 69(7) (1996) 890-891.
    [20] Z.Q. Liu, W.J. Wang, T.M. Wang, et al. Thin Solid Films,325 (1998) 55
    [21] T. Nosaka, et al. Thin Solid Films 348 (1999) 8-13
    [22] M. Asano, K. Umeda, A. Tasaki, Jpn. J. Appl. Phys., 29(10) (1990) 1985-1986.
    [23] D. M. Borsa, S. Grachev, C. Presura, et al, Appl. Phys. Lett., 80 (2002) 1823.
    [24] D. M. Borsa, D. O. Boerma, Surf. Sci. 548 (2004) 95-105.
    [25] L. Soukup, et al. Surf. Coat. Technol. 116-119 (1999) 321-326.
    [26] F. Fendrych, et al. Diamond and Related Materials, 8 (1999) 1715-1719.
    [27] G. Soto, et al. Materials Letters, 57 (2003) 4130-4133.
    [28] Y. Du, A.L. Ji, L.B. Ma, et al, J. Cryst. Growth, 280 (2005) 490-494.
    [29] G. H. Yue, J. Z. Liu, M. Li, et al, phys. stat. sol. (a) 202(10) (2005) 1987-1993.
    [30] X. M. Yuan, P. X. Yan, J. Z. Liu, Mater. Lett. 60 (2006) 1809-1812.
    [31] Y. Hayashi, et al. J. Alloys Comp. 330-332 (2002) 348-351.
    [32] J. Wang, J. T. Chen, B. B. Miao, et al, J. Appl. Phys. 100 (2006) 1035091-6.
    [33] Paul W. May, Stefan Hohn, Wang N. Wang, Appl. Phys. Lett. 72 1998 2182-2184.
    [34] S. C. Lim, R. E. Stallcup Ⅱ, I.A. Akwani, et al, Appl. Phys. Lett. 75 (1999) 1179. [35] S. C. Lim, et al. Adv. Mater. (Weinheim, Ger.) 13 (2001) 1563. [36] B.H. Kim, M.S. Kim, K.T. Park, et al, Appl. Phys.Lett. 83 (2003) 539. [37] C. Bandls, B. B. Pate, Appl. Phys. Lett. 69 (1996) 336. [38] J. F. Pierson, Vacuum 66 (2002) 59. [39] R. S. Li, et al, Appl. Surf. Sci. 255 (2008) 2787. [40] B. H. Kim, et al, Appl. Phys. Lett. 83 (2003) 539. [41] S. C. Lim, et al, Appl. Phys. Lett. 75 (1999) 1179. [42] R. Wachter, et al, Diamond Relat. Mater. 7 (1998) 687. [43] O.Ternyak, R. Akhvlediani, A. Hoffman,J. Appl. Phys. 98 (2005) 123522. [44] J. J. O'Dwyer,The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Clarendon,Oxford,1973) .
    [45] M. A. Lampert, P. Mark, Current Injection in Solids(Academic,New York, 1970).
    [46] Y. Muto, T. Sugino, J. Shirafuji, et al, Appl. Phys. Lett. 59 (1991) 843.
    [47] P. W. May, S. H(?)hn, M. N. R.Ashfold, J. Appl. Phys. 84 (1998) 1618-1625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700