用户名: 密码: 验证码:
板桁结合梁斜拉桥空间结构分析与施工控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥是一种由索、塔、梁三种基本构件组成的组合体系,属高次超静定结构,所采用的施工方法和安装顺序与成桥后的主梁线型及内力状念密切相关。斜拉桥建设过程中,受各种因素的影响,实际桥梁状态与设计状态必定产生误差,施工中这种误差的逐步积累,最终导致成桥后的状态与设计理想应力和线型状态相差较大,甚至危及结构安全。因此,大跨度斜拉桥的施工监控越来越受到业界人士的广泛关注。本文以天兴洲大桥工程为背景,就大跨度板桁给合钢桁梁斜拉桥的空间结构分析与施工控制技术进行系统的研究,其主要工作与研究成果如下:
     (1)基于非线性连续介质力学的基本原理,详细论述了杆系结构几何非线性分析理论,给出T.L.列式法和U.L.列式法的显式有限元公式,推演了Newton-Raphson迭代方程,讨论了U.L.列式与T.L.列式的区别。研究发现T.L.列式法与U.L.列式法在某些实际问题计算时结果相差甚微,由此可以理解很多文献在实际计算时,将两者中的应力与变形物理量相互混用的原因。
     (2)以天兴洲大桥工程为背景,重点讨论了斜拉桥结构计算参数化建模的方法、步骤与实施过程,利用ANSYS的二次开发工具APDL,实现了天兴洲大桥的参数化建模;利用已建模型,分析了大跨度钢斜拉桥几何非线性因素的影响。研究结果表明:非线性因素对不同受力构件的影响程度不同,主塔的纵向位移及主梁杆件的内力受几何非线性影响较大;几种非线性因素中,斜拉索垂度效应的影响最为显著,大位移效应次之,梁柱效应的影响最小。
     (3)在分析比较现有斜拉桥施工控制方法的基础上,提出BP神经网络法运用到桥梁施工控制的思想;系统讨论了斜拉桥的控制准则、精度目标和实施步骤;建立了天兴洲大桥施工控制体系,提交了施工监测方案。
     (4)分析了大跨度钢斜拉桥施工中各种误差产生的原因和对结构的影响程度。研究结果表明:对大跨度钢斜拉桥而言,由于工期长、施工期间季节温差大,而且钢材导热性能好,温度对其施工阶段的影响不容忽视;钢梁重量误差对结构成桥后的累计位移与内力影响也很显著;索力张拉误差是一种小范围误差。
     (5)在详细介绍神经网络原理与应用现状的基础之上,重点做了如下几方面的工作:讨论神经网络的收敛特性,非线性逼近能力和预测输出功能,从而为BP神经网络应用于大跨度斜拉桥施工控制中参数识别与预测预报找到理论依据;推演了BP神经网络训练与误差校验的计算公式,并归纳出实际应用时的详绌步骤;针对现有BP算法存在的缺陷与不足提出相应的改进措施与处理方法;设计了具有自适应调整功能的BP神经网络计算程序ABPNN;利用该程序分析了学习因子α、β和惯性系数η与学习速率的关系。结果表明:学习因子α、β的取值对收敛速度的影响较慢,其取值范围较宽,也因问题不同而异,通常α=β,且在0.2~5.0之间取值;惯性因子η的取值较为复杂,很易引起振荡,一般η在0.2~0.5之间取值较为合适。
     (6)运用BP神经网络的参数识别功能,实现天兴洲大桥施工过程中设计参数的识别;运用BP神经网络的预测预报功能,实现天兴洲大桥施工控制过程中的拼装标高和初始索力预测。实际结果表明,BP网络预测值与实测值吻合程度很好,完全满足工程及控制的要求。
     (7)首次利用BP神经网络的非线性逼近能力和逆向控制模型,实现天兴洲大桥施工过程中控制变量误差调整中的索力调整量计算和全桥合拢后的索力调整量计算。通过神经网络的实例分析与工程应用,结果表明了该方法的有效性和合理性,具有很好的理论和应用价值,是对传统方法新的补充。
     (8)文章最后总结几年的研究经验与体会,参照国内外发展趋势,并结合相关领域的研究成果,提出智能化大跨度斜拉桥施工控制体系的构想,为进一步的研究明确了方向。
The cable-stayed bridge is of a combination structure system which is composing of cable-stayed, tower, and beam etc. three kinds of essential component. It is a multi-order statically indeterminate structure. The line shape and state of internal force of the completed bridge are closely correlation with the construction method adopted and construction order.
     In cable stayed bridge construction process, for the influence of various factors, the errors between actual bridge state and design bridge state must come into being. This error gradually accumulating will lead that the great error produce between the actual stress state and line shape of completed bridge and stress state and line shape of ideal design, extremely this error will endanger structure safety. Therefore, the construction monitor and control of large span cable-stayed bridge is subjected to extensive concern of the industry practitioner, more and more. This paper taking Tianxinzhou bridge project as engineering background, systemically studies on spatial structure analysis and construction control technique of large span cable-stayed bridge with plate-truss combined steel beam .The mainly works and research results as follows.
     (1) Base on basic principle of continuum mechanics, the geometrical nonlinear analysis theories of bar system structure are discussed in detail. The explicit FEM formula of Total Lagrangian method and Updated Lagrangian method is given. The differences between U.L. method and T.L. method are also discussed. The research results indicate that the differences of calculation results are very tiny when applied these two methods to solve some actual problem. Thereby, this can be comprehended as why two sets physical parameter are mutually used in actual calculating process in a lot of literature.
     (2) Taken Tianxinzhou bridge project as engineering background, the parameterized modeling method, step and implement process of structure calculating for cable-stayed bridge are discussed. The geometric nonlinear effects of steel cable-stayed bridge are analyzed by means of the model established previously. Research results reveal that the influence degree of nonlinear factor on different component. The longitudinal displacement of main tower and the internal force of main truss beam are greatly subjected to influence. Among several nonlinear factors, the effect of cable-stayed droop degree is mast prominence, the second is large displacement effect, and the pressure-bend effect of beam and column is the least.
     (3) Based analyzing and comparing on existing construction control methods, the thoughts of that use BP neural network method to implement construction control is put forward. The control standard, accuracy target and implement step of cable-stayed bridge construction control are discussed in detail. The construction control system is established and the measurement and monitor scheme is submitted.
     (4) The reasons of which result in various errors in large span steel cable-stayed bridge construction process and the influence degree on the bridge structure are researched. The results indicate that the effects of temperature can not be neglected for large span steel cable-stayed bridge with the long construction periods, the large seasonal temperature difference and good heat conduction characteristic of steel material. The influence of error of steel beam weight to the total displacement of structure and internal force are also very obvious. Cable tension error is a kind of small scope error.
     (5) On the foundation of detailed discussing neural network principle and application state, these several works as follows is paid attention to. The convergence property, nonlinear fit function and forecast function of BP network are discussed, so that established theoretic foundation for the applying BP neural network to implement parameter identifying and predicting in large span cable-stayed bridge construction control process. The training and error check calculation formula of BP neural network are deduced. And the detailed step how to carry out is induced. The improving measures and disposal methods are put forward for the existing shortages and blemish of BP arithmetic. A program of BP arithmetic with adaptive function is set up. And the varying property of training rate of network depending on training factorα、βand inertiaηparameter is simulated by use of the program ABPNN. The research results indicate that the influence of training factorα、βon convergence rate is mild, and the influence degree exists difference for different problem. Then the scope of training factor is wide. As a rule, a=p, and the range is 0.2-5.0. The choosing of inertial factorηis more complicated, it very easily cause to surge, in generally, it is more suitable that the value ofηis between 0.2-0.5.
     (6)The design parameters identifying are implemented by means of BP neural network identifying function in Tianxinzhou bridge construction process. Making use of BP neural network forecast function, carried out assembled elevation and initial cable tension predicting during cantilever construction. The results show that the predicting value of BP network is good tally with measurement value, it completely satisfy the request of engineering and control.
     (7) Making use of nonlinear fit function and converse control model of BP neural network for the first time, the cable force adjustment calculating are implemented for error adjusting of control parameter and after bridge completed in Tianxinzhou bridge construction control process. The application results show that the BP neural network method is effectual and rational, it own high theoretic and use value and its application is a new complement to traditional method.
     (8) In the end, based on summed up research experience and realizes for several years , consult ed domestic and international development trend and combine the research results of related realm, a intelligentized construction control system of large span cable-stayed bridge is put forward. And this will direct direction of further research in future.
引文
[1]陈光.科学技术哲学-理论与方法[M].成都:西南交通大学出版社,2003,6
    [2]王树恩,陈士俊.科学技术论与科学技术创新方法论[M].天津:南开大学出版社,2001,9
    [3]林元培.斜拉桥[M].北京:人民交通出版社,2000
    [4]Gimsing S J.Cable Supported Bridges(second)[M].Chichester:John Wiley,1997,2
    [5]顾安邦,范立础.桥梁工程(下)[M].北京:人民交通出版社,2001,11
    [6]王伯惠.斜拉梁结构发展利中国经验[M].北京:人民交通出版社,2004,4
    [7]David P.Billington,Aly Naxmy.History and Aesthetics of Cable-Stayed Bridges[J].Journal of Structure Engineering,1990,117(19),3103-3134
    [8]M.S.特罗伊茨基著,王学俊等译.斜拉桥理论与设计[M].北京:中国铁道出版社,1980
    [9]Niels J.Gimsing.Cable Supported Bridges-Concept and Design[M].Norwich,1983
    [10]Walter Podolny,John B.Scalzi.Construction and Design of Cable-Stayed Bridges[M].John Wiley and Sons,1986
    [11]胡明义.我国长大桥梁技术发展与展望(第十四届全国桥梁学术会议论文集)[C].上海:同济大学出版社,2000,11
    [12]楼庄鸿.国内大跨径桥梁现状和发展趋势[JJ.中南公路工程,1994,68(1):62-66
    [13]高荣雄.混合梁斜拉桥施工控制技术研究[D].武汉理工大学博士学位论文,2005
    [14]Turner M.R.,Clough R.,Martin H.et al.Stiffness and deflection analysis of complex structure[J].Journal of Aero.Sci.,vol.23,9,805-823
    [15]郝超.大跨度钢斜拉桥施工阶段非线性结构行为研究[D].西南交通大学博士学位论文,2001
    [16]陈德伟.斜拉桥的非线性分析及工程控制[D].同济大学博士学位论文,1990,12
    [17]Man-Chung Tang.Design of Cable-Stayed Girder Bridge[J].Journal of Structural Division,ASCE,vol.98,8,1789-1802
    [18]Man-Chung Tang.Analysis of Cable-Stayed Girder Bridge[J].Journal of Structural Division,ASCE vol.97,5,1481-1496
    [19]Nazmy A.S,Abdel-Ghaffer A.M.Three-Dimensional Nonlinear Static Analysis of Cable-Stayed Bridges[J].Computer&Structures,vol.34,2,257-27
    [20]Aly S.Nazmy,Abmed M.Abdel-Gbaffar.Three-Dimensional Nonlinear Static Analysis of Cable-Stayed Bridges.Computer Structures,1990,Vol.34(2),257-271
    [21]John Fleming.Nonlinear Static Analysis of Cable-Stayed Bridge Structures[J].Computers &Structurcs,1979,10(4),621-635
    [22]Wang P.H.,Tseng T.C,Yang C.G.Initial Shape of Cable-stayed Bridges[J].Computers &Structures,vol.46,6,1095-1106
    [23]Zienkiewicz O.C.,Taylor R.L.The finite Element Method[M].New York:McGraw-Hill,1991
    [24]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1997
    [25]王焕定,吴德伦.有限单元法及计算程序[M].北京:中国建筑工业出版社,1997,6
    [26]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004,1
    [27]宋天霞,郭建生,杨元明.非线性固体计算力学[M].武汉:华中科技大学出版社,2002,11
    [28]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989,3
    [29]吴红林.大跨径斜拉桥非线性分析与施工控制研究[D].哈尔滨工业大学博士学位论文,2004
    [30]周上君.大跨度斜托桥非线性分析[J].桥梁建设,1982,4,11-24
    [31]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究.[J].土木工程学报,1993,26(1)
    [32]韦成龙.大跨度板桁结合主梁斜拉桥极限承载力分析[D].中南大学博士学位论文,2004
    [33]戴公连.桥梁复杂结构空间分析设计方法研究与应用[D].湖南大学博士后士学位论文,2001
    [34]叶贵如.斜拉桥非线性有限元计算和施工过程分析[D].浙江大学博士学位论文,2000
    [35]李富文.双向加肋的正交异性钢桥面板单元的刚度矩阵[J].桥梁建设,1980(1)
    [36]徐文焕.板析组合式钢桥空间计算的子结构法[J].铁道标准设计通讯,1981(6)
    [37]李富文,董春灵.偏心连接对板元刚度矩阵的影响[c].西南交通大学科学报告会论文集,1981
    [38]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000,8
    [39]顾安邦,张永水.桥梁施工监测与控制[M].北京:机械工业出版社,2005,9
    [40]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001,5
    [41]林元培.卡尔曼滤波法在斜拉桥施工中的应用[J].土木工程学报,1983,16(3),7-14
    [42]韩大建,官万轶,颜全胜等.斜拉桥施工过程的预测和控制[J].华南理工大学学报,2001,29(1),14-17
    [43]姜天华.卡尔曼滤波法在斜拉桥施工控制中的应用[D].华中理工大学硕士论文,2002,5
    [44]官万轶.斜拉桥施工过程的预测与控制方法研究[D].华南理工大学博士学位论文,2000
    [45]陈德伟,郑信光,项海帆.混凝土斜拉桥的施工控制[J].土木工程学报,1993,26(1)
    [46]方志,刘光栋,王光炯.斜拉桥施工的灰色预测控制系统[J].湖南大学学报,1997,26(3),74-81
    [47]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000,8
    [48]王旭,王宏,王文辉.人工神经元网络原理与应用[M].沈阳:东北大学出版社,2000,12
    [49]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999
    [50]Tong M.,Tham L.G.,Au.F.T.K et al.Numerical Modeling for Temperature distribution in Steel Bridges[J].Computers & Structures,vol.91,6,583o593
    [51]Sakai F.,Isoe A.,Umeda A.A new methodology for control of construction accuracy in cable-stayed bridges[C].Proceeding of 3rd East Asian-Pacific Conference on Structural Engineering and Construction,1991,Shanghai,China.
    [52]Han D.J.,Chen T.C.,Su.C.Application of BP neural networks for parameter identification in construction practice of a cable-stayed bridge[C].Proceeding of the 8th International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science(EPMESC Ⅷ),Shanghai,2001
    [53]H Adeli.Neural Networks in Civil Engineering:1989-2000[J].Computer Aided Civil and Infrastructure Engineering,2001,(16):126-142
    [54]Flood I,Kartam N.Neural network in civil engineering:system and application[J].Journal of Computer in Civil Engineering,ASCE,1994,8(2):179-200.
    [55]Flood I.Simulating the construction process using neural networks[A].Proc.7th Symposium on Automation and Robotics in Construction,ISARC[C].Bristol Polytechnic,Bristol,UK.,1990
    [56]Kartam N,Flood I,Tongthong T.Integrating knowledge-based systems and artificial neural networks for civil engineering[J].Journal of Artificial Intelligence in Engineering Design,1994,8(2),180-200.
    [57]N.Fujisawa,H.Tomo.Computer-Aided Cable Adjustment of Stayed Bridges.Proceeding of IABSE,1985
    [58]葛耀君,项海帆.大跨度桥梁工程控制的发展与展望[C].第十六届全国桥梁学术会议论文集2004,284-296
    [59]陈德伟.斜拉桥的非线性分析及工程控制[D].同济大学博士学位论文,1990
    [60]F.Sakai,A.Isoe,A.Umeda.A New Methodology for Control of Construction Accuracy in Cable-Stayed Bridge[C].Proceedings of 3rd EASEC,Shanghai,China,1991
    [61]F.Sakai,et al.Application of Construction Control System to Erection of Stiffening Truss Girder of Rainbow Bridge[C].Proceedings of International Conference on Bridge into 21Centuyr,HongKong,1994
    [62]陈德伟,范立础.独塔斜拉桥(广东三水桥)的施工控制[C].中国土木工程学会桥梁与结构工程学会第十二届全国学术会议论文集,1996
    [63]石雪飞.斜拉桥结构参数估计及施工控制系统[D].同济大学博士学位论文,1999.
    [64]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998,10
    [65]Bonet J.Wood R.D.Nonlinear Continuum Mechanics for Finite Element Analysis[M].New York:Cambridge University Press,1997
    [66]Ted Belytschko,Wing Kam Liu,Briam Moran.Nonlinear Finite Elements for Continua and Structures[M].John & Sons Ltd.,2000
    [67]Ted Belytscho,Wing Kan Liu,Brian Moran.Nonlinear Finite Elements for Continua and Structures[M].John Wiley & Sons Ltd.,2000
    [68]H.Adeli,J.Zhang.Fully nonlinear Analysis of Composite Girder Cable-Stayed Bridges[J].Computers &Structures.1995,54 {2),267}277
    [69]A.Kasuga,H.Arai,J.E.Brcen,K.Furukawa.Optimum Cable-Force Adjustment in Concrete Cable-Stayed Bridges[J].Journal of Structural Engineering,1995,121(4),685-694
    [70]王应良.大跨度斜拉桥考虑几何非线性的静、动力分析和钢箱梁的第二体系应力研究[D].西南交通大学博士学位论文,2000,5
    [71]Saafan,S.A.Theoretical Analysis of Suspension Bridges.Proc,ASCE.,1966,92(3),389-401
    [72]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究[J].土木工程学报,1993,26(1),31-37
    [73]Worsak Kanok-Nukulchai,et al.Mathematical Modeling of Cable-Stayed Bridges[J].Structural Engineering International,1992,2(2),108-113
    [74]Bathe K.J,Bolourchi S.Large displacement analysis of three-dimensional beam structures.In.J.Num Meth.Eng,1979,Vol.14,961-986
    [75]Ted Belytscho,Wing Kan Liu,Brian Moran.Nonlinear Finite Elements for Continua and Structures[M].John Wiley & Sons Ltd.,2000
    [76]P.Krishna,A.S.Arya,T.P.Agrawal.Effect of Cable Stiffness on Cable-Stayed Bridges.Journal of Structural Engineering.September,1985,111(9),2008-2020
    [77]Z.Q.CHEN,T.J.A.AGAR.Geometric nonlinear analysis of flexible spatial beam structure[J].Computer Structures,1993,49(6),1083-1094
    [78]Bergan P G,Holand I,Soreide T H.Use of Currents Stiffness Parameter in Solution of Nonlinear Problems.Energy Methods in Finite Element Analysis.John wiley & Sons,1979,265-282
    [79]Fleeting F.Nonlinear Static Analysis of Cable-Stayed Bridge Structures[J].Computers &Structures,vol.10,4,46-51
    [80]G.Narayanan,C.S.Krishnamoorthy,N.Rajagapalan.Investigations on Nonlinear Static and Dynamic Response of Cable-Stayed Bridges[J].Int.Conf.on Cable-Stayed Bridges,Bangkok,1987
    [81]吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论[J].计算结构力学及其应用,1995,12(4),485-490
    [82]蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法[J].工程力学,2006,6,sup.Ⅰ,69-72
    [83]梁志广,齐岳,石现峰.杆系结构几何非线性分析方法的讨论[J].石家庄铁道学院学报,1997,9,10(3),55-60
    [84]董石麟,张志宏,李元齐.空间网格结构几何非线性有限元分析方法的研究[J].计算力学学报,2002,8,19(3),365-368
    [85]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的U.L.列式法[J].土木工程学报,1992,25(5),34-44.
    [86]刘泵,许克宾.杆系结构非线性分析中T.L.列式与U.L.列式[J].工程力学,2000,1,361-363
    [87]Kiyohiro Imai,Dan M.Frangopol.Geometrical nonlinear finite element reliability analysis of structural systems,I:theory[J].Computers & Structures,vol.77,6,677-691
    [88]Dan M.Frangopol,Kiyohiro Imai.Geometrical nonlinear finite element reliability analysis of structural systems,Ⅱ:applications[J].Computers & Structures,vol.77,6,692-709
    [89]朱军,周光荣.空间桁架结构大位移问题的有限元分析方法[J].计算力学学报,2000,3,337-342
    [90]店辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001,1
    [91]刘坤,吴磊.ANSYS有限元方法精解[M].北京:国防工业出版社,2005,1
    [92]博弈创作室.ANSYS9.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社,2005,10
    [93]阚前华,谭长建,张娟等.ANSYS高级工程应用实例分析与二次开发[M].北京:电子工业出版社,2006,8
    [94]叶裕明,沈火明,刘春山等.ANSYS土木工程应用实例[D].北京:中国水利水电出版社,2007,1
    [95]ANSYS Manual Introduction to ANSYS.Vol.Ⅰ[M].Swanson Analysis systems,Inc
    [96]ANSYS User's Manual.Procedures.Vol.Ⅰ[M].Swanson Analysis Systems,Inc
    [97]ANSYS User's Manual.Commands.Vol.Ⅱ[M].Swanson Analysis Systems,Inc
    [98]ANSYS User's Manual.Elements.Vol.Ⅲ[M].Swanson Analysis Systems,Inc
    [99]江望,杨文兵,李振环.ANSYS二次开发技术在斜拉桥参数化建模中的应用[J].华中科技大学学报,2005,22,supp.76-80
    [100]田仲初,何斌,颜东煌等.基于ANSYS空间梁单元的桥梁数组建模技术[J].长沙交通学院学报,vol.20,2,15-18
    [101]张晓壳,陈宁,王应良等.斜拉桥的数学建模[J].国外桥梁,1998,2,52-56
    [102]秦浦雄,王书庆.桥梁结构的三维建模技术[J].计算机辅助工程,2002,2,46-52
    [103]刘晓波,沈予洪.基于APDL语言的参数化建模技术[J].电脑学习,2005,3,45-47
    [104]杨昀.桥梁有限元建模平台开发技术[J].工程设计CAD与智能建筑,2002,51-53.
    [105]孙军,经树栋.CAD与ANSYS的接口技术探讨[J].化工设备与管道,2004,2,55-57
    [106]张永水,顾安邦.灰色系统理论在连续刚构桥施工控制中的应用[J].公路,2001,6,42-44
    [107]邓聚龙.灰色预测与决策[M].武汉:华中科技大学出版社,2002,8
    [108]肖新平,宋中民,李峰.灰技术基础及其应用[J].北京:科学出版社,2005,8
    [109]陈太聪.结构工程自适应控制的参数分析新方法研究及其在大跨度斜拉桥施工中的应用[D].华南理工大学博士学位论文,2003
    [110]颜东煌.斜拉桥合理设计状态确定与施工控制[D].湖南大学博士学位论文,2001
    [111]FanLi Xu.Health Assessment and Monitoring of a Post-tensioned Segmental Concrete Brigde[D].The thesis for the degree of Doctor of Philosophy of University of Illinoiso,2002
    [112]马文田.混凝土斜拉桥的施工控制与索力调整.华南理工大学博士学位论文,1997
    [113]汪劲丰.预应力混凝土斜拉桥施工控制的关键技术研究[D].浙江大学博士学位论文,2003
    [114]钟万勰等.斜拉桥施工控制中的张拉控制和索力调整[J].土木工程学报,1992,3
    [115]郭文复.斜拉桥最优化调索方法[C].斜拉桥国际学术大会论文集,1994
    [116]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,3
    [117]吉中仁.斜拉桥的索力调整计算[J].桥梁建设,1993,3
    [118]K.Wada,et al.Construction of the Yokahama Bay Bridge superstructure.IABSE Proc.IABSE,1988,vol.P-92/85
    [119]杜亚凡编译。东神户大桥上部结构施工及架设精度控制(上)[J].国外桥梁,1994,1
    [120]杜亚凡编译.东神户大桥上部结构施工及架设精度控制(下)[J].国外桥梁,1994,3
    [121]李义.南浦大桥主桥桥面安装及工程控制[J].桥梁建设,1992,2
    [122]陈德伟等.施工控制在甬江斜拉桥施工中的应用[J].全国桥梁结构学术大会,1992
    [123]陈德伟等.混凝土斜拉桥的施工控制[J].土木工程学报,1993,26,1
    [124]黄大建等.吉林临江门大桥施工工艺及施工控制[J].第十二届全国学术会议论文集,同济大学出版社,1996
    [125]史永吉,曾志斌,白玲.大跨度钢斜拉桥施工精度控制目标值的建议[J].中国铁道科学,2001,22(6),87-89
    [126]徐郁峰.大跨度预应力混凝土斜拉桥施工控制理论与核心技术研究及软件开发[D].华南理工大 学博士学位论文,2004,4
    [127]罗月静.大跨度钢管混凝土拱桥施工控制研究[D].广西大学博士学位论文,2004,5
    [128]孙斌.桥梁结构施工控制的三维分析程序开发与应用[D].同济大学硕士学位论文,2001,7
    [129]范立础.桥梁工程(上册)[M].北京:人民交通出版社,2001,11
    [130]王序森,唐寰澄.桥梁工程[M].北京:中国铁道出版社,1995,12
    [131]黄绳武.桥梁施工及组织管理(上,下册)[M].北京:人民交通出版社,1999,3
    [132]林国雄,方秦汉,秦顺全.芜湖长江大桥设计与关键技术研究[J].桥梁建设,1998,12
    [133]周孟波.芜湖长江大桥施工新技术[J].桥梁建设,2000,2,14-19
    [134]易继援,刘晓东,刘朝强.南京长江二桥南汊主桥钢箱梁安装施工与工艺控制[C].第十四届全国桥梁学术会议论文集,84-88
    [135]李淞泉,万珊珊,史永吉等.大型公路钢箱梁正交异性桥面板工地接头的研究[C].第十四届全国桥梁学术会议论文集,91-99
    [136]段凯,杨新华,杨文兵.用ANSYS软件计算桥梁结构的温度应力[J].四川建筑科学研究,vol-31,3,55-59
    [137]常英.大跨钢箱梁斜拉桥施工控制要点分析[J].公路交通科技,vol.18,1,39-43
    [138]曾德荣.桥梁施工监测应力真值分析方法[J].重庆交通学院学报,vol.24,6,21-24
    [139]陈金旺,李孟绪,李秋生.斜拉桥成桥后的误差调整[J].公路,2000,7,21-24
    [140]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].同济大学博士学位论文,1996,5
    [141]钟万勰等.斜拉桥施工控制中的张拉控制和索力调整[J].土木工程学报,1992,25(3)
    [142]郝超.大跨度钢斜拉桥施工误差调整方法研究[J].浙江大学学报vol-37,3,310-313
    [143]Casas J.R.,Aparicio A.C.Monitoring of the Alamillo cable-stayed bridge during construction[J].Experimental Mechanics,vol.38,1,24-28
    [144]PaoHaii Wang,ChiungGuei Yang.Parametric Studies on Cable-Stayed Bridges[J].Computers & Structures,vol.60,3,243-260
    [145]Caetano E.,Cunhal A.,Taylor C.A.Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge.Part I:modal analysis[J].Earthquake Engineering and Structural Dynamics,2000,29,481-498
    [146]Reddy P.Ghaboussi J.Hawkins NM.Simulation of construction of cable-stayed bridge[J].Journal of Bridge Engineering,1999,4,258-262
    [147]Refiner M.W.Reising.Testing and Long-term Monitoring of a Five-Span Bridge with Multiple FRP Decks Performance and Design Issues[D].The thesis for the degree of Doctor of Philosophy of University of Cincinnati,2002
    [148]万珊珊,李守普.东营黄河公路斜拉桥[J].土木工程学报,1989,22(3),48-54
    [149]中华人民共和国交通部标准.公路桥涵设计通用规范(JTJ021-89)(Ⅰ).北京:人民交通出版社,1995.8
    [150]铁道部专业设计院,西南交通大学.钢桥、混凝土桥及结合桥[M].成都:西南交通大学出版社,1986.8
    [151]交通部重庆公路科学研究所.公路斜拉桥设计规范(试行)[Ⅰ].北京:人民交通出版社,1997,1
    [152]刘汉顺.天兴洲大桥主桥总体设计与铁路结合桥面研究[D].同济大学硕士学位论文,2007,2
    [153]余团营,王辉平,王志生等.南京长江二桥桥面板工地接头制造与施工的精度控制[J].桥梁建设.2000,4,42-44
    [154]陈太聪,韩大建.大跨度斜拉桥施工过程中的主梁节段自重识别[J].土木工程学报vol38,2,68-75
    [155]刘君辉,宋友成.大跨度桥梁施工过程中参数识别的BP神经网络方法[J].湖南交通科技,2003,29(2),49,51
    [156]雷俊卿,霍永生.用神经网络分析估计斜拉桥的施工控制参数[J].中国铁道科学,2005,26(3),22-25
    [157]OMoselhi,THegazy,PFazio.Neural Networks as Tools in Construction[J].Journal of Construction Engineering and Management[J].ASCE,1991,117(4),606-645
    [158]F.S.Wong.Time Series Forecasting using Back-propagation Neural Networks[J].Neuro-computing.1991,2:147-159
    [159]Saint-Donat J.,Bhat N.and Mcavoy T.J.Neural Net Based Model Predictive Control[J].Int.J.Control.1991,54(6):1453-1468
    [160]刘兴远.神经网络理论在土木工程应用中的几点认识[J].岩土工程学报,2003,25(4),514-516
    [161]何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学出版社,2000
    [162]周家刚.BP神经网络在大跨径斜拉桥施工控制中的应用研究[D].长安大学硕士学位论文,2003,6
    [163]朱群雄.神经网络结构理论与技术的研究及其在过程模拟与过程控制中的应用[D].北京化工大博士学位论文,1996,4
    [164]D.E.Rumelhart,G.E.Hinton and R.J.Williams.Learning representations by back-propagating errors[J].Nature,1986,323(9),533-536
    [165]Jian-Jun Xiong,Hui Zhang.Research on the problem of neural network convergence[J].Machine Learning and Cybernetics,2003,2,1132-1134
    [166]Leshno M.,Ya Lin V.,Pinkus A.,Schocken S.Multi-layer Feed-forward Networks with a Non-polynomial Activation Function Can Approximate any Function[J].Neural Networks,1993,6:861-867
    [167]Hornik K.,Stinchcombe M.,White H.Multi-layer Feed-forward Networks Are Universal Approximators[J].Neural Networks.1989,2,359-366
    [168]Funahashi K.On the Approximate Realization of Continuous Mappings Neural Network[J].Neural Networks.1989,2,183-192
    [169]Cybenko G.Approximation by Superposition of Sigmoid Functions[J].Mathematics of Control,Signals and Systems.1989,2,303-314
    [170]A.S.Weigend,B.A.Huberman,D.E.Rurnelhart.Predicting the Future:A Connectionist Approach[J].Int.Journal of Neural Systems,1990,1,193-209
    [171]徐湘元.预测控制的线性方法、非线性方法和神经网络方法[D].华南理工大学博士学位论文,2000,2
    [172]G.Box and G.Jenkins.Time Series Analysis,Forecasting and Control[J].San Francisco:Holden Day,1976
    [173]D.Teodorescu.Time Series-information and Prediction[J].Biol.Cybern.1990,63,477-485
    [174]J.Makhoul.Linear Prediction:a Tutorial Review[C].Proc.IEEE.1975,63,561-580
    [175]F.S.Wong.Time Series Forecasting using Back-propagation Neural Networks[J]Neuro-computing,1991,2,147-159
    [176]Hunt K Z,Starbaro D.Neural Networks for Nonlinear Internal Model Control[C].lEE Proc.D.1991,138(5),431-43
    [177]Hecht-Nielsen R.Theory of the Back-Propagation Neural Network[C].Proc.IEEE.1989 Int.Conf.on Neural Networks,560-605
    [178]Saint-Donat J,Bhat N.and Mcavoy T.J.Neural Net Based Model Predictive Control[J].Int.J.Control.1991,54(6),1453-146
    [179]A.Lapedes and R.Farber.Nonlinear Signal Processing Using Neural Networks Prediction and System Modeling[P].Technical Report LA-UR-87-2662.Los Alamos National Laboratory,1987
    [180]P.Sandon and L.Uhr,A local interaction heuristic for adaptive networks[C],Proc.of the IEEE International Conference on Neural Networks,Vol.I,.317,San Diego,CA(1988).
    [181]SZEWCZYK Z,HAJELA P.Neural network based damage detection in structure[J].ASCE Journal of Engineering mechanics and civil engineering,1994,8(2),163-178.
    [182]李传习,刘扬,张建仁.基于人工神经网络的混凝土大跨度桥梁主梁参数实时估计[J].中国公路学报,2001,14(3),62-66
    [183]朱宏平,张源.基于自适应神经网络的结构损伤检测[J].力学学报,2003,35(1),110-116.
    [184]陈建阳,向木生,郭峰祥,沈成武等.大跨度桥梁施工控制中的神经网络方法[J],桥梁建设,2001,6,42-45
    [185]程进,江见鲸,肖汝诚等.ANSYS二次开发技术及在确定斜拉桥成桥初始恒载索力中的应用[J].公路交通科技,2002,6,50-52
    [186]周强,杨文兵,杨新华.斜拉桥索力调整在ANSYS中的实现[J].华中科技大学学报(城市科学版),vol.22,sup.may,2005,81-83
    [187]张庆双,卞建设,迟爽等.大跨径叠合梁斜拉桥施工过程调索方法研究[J].哈尔滨工业大学学报,vol.37,6,769-772
    [188]张建民,肖汝诚.千米级斜拉桥施工过程中主梁的线形控制[J].同济大学学报(自然科学版),vol.32,12,1567-1572
    [189]郭文复.斜拉桥最优化调索方法[C].斜拉桥国际学术大会论文集,1994
    [190]A.Kasuga,et al.Optimum cable-force adjustments in concrete cable-stayed bridges[J].Journal of Structural Engineering,1995,121(4)
    [191]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,26(3)
    [192]吉中仁.斜拉桥的索力调整计算[J].桥梁建设,1993,3
    [193]王伯惠.广东九江斜拉桥运营两年后的索力调整[J].桥梁建设,1995,1
    [194]陈德伟等.混凝土斜拉桥的施工控制[J].土木工程学报,1993,26(1)
    [195]陈德伟,范立础.确定P.C.斜拉桥恒载初始索力的方法[J].同济大学学报,1998(2)
    [196]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,26(3)
    [197]张坚.斜拉桥恒载下自动调索计算方法[C].天津永和大桥学术讨论会论文集,1988
    [198]袁帅华,肖汝诚.基于网络的桥梁智能化施工控制系统研究[J].同济大学学报(自然科学版),2007,6,734-738
    [199]曹修定,阮俊,展建设,等.滑坡的远程实时监测控制与数据传输[J].中国地质灾害与防治学报,2002,13(1),61
    [200]赵文彬,张冠军,严璋.基于因特网技术的电气设备远程在线状态监测与诊断系统[J].中国电力,2003,36(4),60
    [201]陈斌.大跨径桥梁种能化施工控制系统构想[J].公路交通技术,2001,3,32-33
    [202]吴祥禄.桥梁安全施工的实时应力数据采集系统[D].中国海洋大学硕士学位论文,2006,5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700