用户名: 密码: 验证码:
疲劳耗散能及其在疲劳性能快速预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过传统的疲劳试验方法得到准确的高周疲劳参数,往往耗费大量的费用和时间。若干年来,探讨缩短试验时间、减少试验成本的快速预测高周疲劳性能的理论和实验方法,一直是研究人员关注的热点问题。能量方法是快速预测疲劳性能的一种重要手段,但现有方法在高周疲劳耗散能准确计算、宏观耗散能与内部微结构演化关系及储能测量等方面仍存在很多瓶颈和难点问题。为此,本文力求在基于耗散能的快速预测金属疲劳性能方法上做出一些较有价值的尝试和探索。首先针对高周疲劳过程中的微热变化,提出一种疲劳耗散能计算方法;其次,研究疲劳过程中宏观耗散能与内部微结构演化关系;最后,构建基于稳态耗散能和初始瞬态耗散能的疲劳性能快速预测方法。主要研究工作如下:
     (1)提出一种基于红外热像技术的疲劳耗散能计算方法。在热力学框架下,基于薄板假设,建立疲劳载荷下的材料的热传导方程。运用非接触式的红外热像技术和电液伺服疲劳实验机,构建一套观测疲劳微热变化的红外疲劳实验系统。通过设置参考试样和隔热装置以降低环境噪声的影响,分离出导致局部温升变化的耗散源、热弹性源和热辐射源,并推导出单循环疲劳耗散能计算公式及检测门限,最后通过实例验证耗散能计算方法的可行性和准确性。
     (2)通过不同载荷历程下的疲劳耗散能实验,验证了宏观疲劳耗散能可作为表征材料内部微结构演化的标识。基于疲劳过程中的能量平衡方程,推导出初始瞬态和稳定能量耗散阶段疲劳耗散能、塑性应变能和储能的理论计算方法,分析弹性迟滞区间内耗散能和塑性应变能的变化规律。通过全面对比分析拉伸损伤和疲劳损伤前后耗散能变化规律,可知宏观疲劳耗散能与内部微结构演化密切相关,可作为疲劳损伤评估的一个敏感指标,并应用于等变幅疲劳损伤实时监测中。
     (3)提出一种基于稳态耗散能的疲劳性能参数快速预测方法。当经历一定的疲劳寿命循环次数后,材料达到稳态能量耗散阶段后,内部微观结构演化达到准平衡态过程,单循环疲劳耗散能基本保持恒定。通过拟合对应不同疲劳载荷水平的稳态耗散能,提出预测疲劳极限的单线法和双线法。同时,拟合出疲劳耗散能-寿命曲线与应力-寿命曲线相同的规律,且耗散能-寿命曲线能够表征疲劳寿命的离散分布。推导出基于稳态耗散能的Miner累积损伤模型,将其用于预测剩余寿命预测和载荷次序效应研究中,所得结果与实验数据一致,具有较好的精度。
     (4)研究基于初始瞬态耗散能的高周超高周疲劳性能参数预测方法。在疲劳初始瞬态能量耗散阶段,耗散能迅速增加并逐渐稳定,对应于材料的初始微塑性效应。通过实时监测不同疲劳载荷作用下初始瞬态耗散能变化规律,研究基于初始累积塑性耗散能的疲劳性能参数预测方法,所得疲劳极限与稳态耗散能方法及实验确定的疲劳极限相近;拟合的初始塑性耗散能-寿命曲线也呈现出与应力-寿命和稳态耗散能-寿命曲线相同的规律。最后,基于安定理论和Dang-Van疲劳准则,探索基于初始累积耗散能的超高周疲劳极限预测方法,具有一定的合理性。
The conventional fatigue tests need lots of cost and time to obtain the accurate high-cycle fatigue parameters. Therefore, the theoretical and experimental rapid predictionmethods became the focus problem of the researchers. Energy theory is an importantmethod for rapid prediction of fatigue properties. However, there are many bottlenecks anddifficult problems in the existing methods, such as the computational accuracy of the high-cycle fatigue dissipated energy, the relationship between the macro dissipated energy andthe internal microstructure evolution and the stored energy measurements, etc. To this end,this dissertation aims to establish some valuable method to predict the fatigue properties inbasis of dissipation energy computation. First, a dissipated energy computation method wasproposed for the small thermal changes during high-cycle fatigue process. Secondly, therelationship between dissipation energy in macroscopic scale and the internal micro-structure evolution in microscopic scale was studied during fatigue process. Finally, tworapid prediction methods of high-cycle fatigue properties were established based on stable-state dissipated energy and initial transient dissipated energy. The major research works ofthis dissertation are as follows:
     (1) A fatigue dissipated energy computational technique for fatigue loadings based oninfrared thermal imaging technology is developed. In the thermodynamics framework, aheat conduction equation was established under fatigue loadings based on thin-planeassumption. An infrared fatigue test system was set to observe the small thermal changesusing the non-contact infrared thermal imaging technology and fatigue test machine. In thesystem, the environmental noise was reduced by setting the reference specimen and thethermal insulation equipment. The dissipation source, thermo-elastic source and thermalradiation source causing local temperature changes were isolated. A dissipated energy per-cycle computational equation then derived from the dissipation source, and the detectionthreshold was determined by dissipated energy measurements. The feasibility and accuracyof the dissipated energy computational technique was finally verified by a fatigue test.
     (2) Through fatigue dissipated energy measurements under different load history, themacro-dissipated energy can be used as a marker of the internal microstructure evolution.Based on energy balance equation in fatigue process, the dissipated energy, plastic strainenergy and stored energy per-cycle theoretical calculation method were developed underthe initial transient and steady state stages. The variation of dissipated energy and plastic strain energy were analyzed in elastic hysteresis domain. Through a comprehensivecomparative analysis of dissipated energy variations during tensile damage, fatigue damagethe results show that the fatigue dissipated energy is closed related with the internalmicrostructure evolution, and it could be used as a sensitive indicator to fatigue damageassessment. Fially, the constant and variable amplitude fatigue damage was in-stiumonitored by fatigue dissipated energy.
     (3) Based on the steady state dissipated energy, a rapid prediction method for fatigueproperties was developed. After a certain number of fatigue lifetime cycles, the materialreaches a steady state dissipation energy stage, and the internal microstructure evolutionreached a quasi-equilibrium state. The dissipated energy was remained constant duringfatigue process. One curve method and dual curve method of fatigue limit predictionwere proposed by fitting dissipated energy under different levels of fatigue loadings insteady-state stage. Meanwhile, the dissipated energy versus lifetime curves derived showsthe same rule with the stress versus lifetime curve, and the dissipated energy versus lifetimecurve was also characterized the discrete distribution of fatigue lifetime. A Miner’scumulative damage model was deduced from dissipated energy measurements. The modelwas used to predict the residual lifetime and to study the load sequence effects. The resultswere consistent with the experimental data with good accracy.
     (4) A high-cycle and very high-cycle fatigue lifetime prediction was studiedconsidering with initial micro-plasticity effects. The dissipated energy per-cycle wasrapidly increasing and then gradually stabilized, corresponding to the initial micro-plasticeffects at the initial transient dissipated energy stage. Variations of the initial dissipatedenergy were monitored under different levels of fatigue loadings at the initial transient andsteady state stages. A new prediction method was studied based on the initial plasticdissipated energy. The fatigue limit according to this method was close to the one predictedby the steady-state dissipated method and the experimental test. The initial plasticdissipated energy versus lifetime curve fitting was also similar to stress versus lifetime andsteady-state dissipated energy versus lifetime curve. Based on the shakedown theory ofplasticity and Dang-Van fatigue criteria, a new fatigue limit prediction method of veryhigh-cycle fatigue was studied based on the initial cumulative dissipated energy. Theexperimental results proved that the method has certain rationality.
引文
[1] Baithwaite F. On the fatigue and consequent fracture of metals. Minutes of theProceedings,1854,13:463-467
    [2] Suresh S. Fatigue of materials. UK: Cambridge university press,1998
    [3]廖化荣.交通荷载下路基软土动应力累积及塑性应变累积特性研究:[中山大学博士学位论文].广州:中山大学,2008
    [4]曾伟.疲劳过程中能量耗散的实验分析及其应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2008
    [5]李源,韩旭,刘杰,等.一种基于耗散能计算的高周疲劳参数预测方法.力学学报,2013,45(3):367-374
    [6]郭杏林,王晓钢.疲劳热像法研究综述.力学进展,2009,34(2):217-227
    [7]杨锋平,孙秦,罗金恒,等.一个高周疲劳损伤演化修正模型.力学学报,2012,44(01):140-147
    [8] Granato A, Lücke K. Theory of mechanical damping due to dislocations. Journal ofApplied Physics,1956,27(6):583-593
    [9] Magnin T. Recent advances in low cycle fatigue from the physical metallurgy pointof view. Developpements recents en fatigue oligocyclique sous l'angle de lametallurgie physique,1991,88(1):33-48
    [10]向绪君.能量法预测循环荷载下16MnR钢的结构疲劳寿命:[东南大学博士论文].南京:东南大学,2009
    [11] Francois D, Pineau A, Zaoui A, Comportement mecanique des materiaux. FR:Hermes:1991
    [12] Chrysochoos A. Energy Balance for Large-Strain Elastoplasticity. Bilan energetiqueen elastoplasticite grandes deformations,1985,4(5):589-614
    [13] Benzerga A, Bréchet Y, Needleman A, et al. The stored energy of cold work:predictions from discrete dislocation plasticity. Acta Materialia,2005,53(18):4764-4779
    [14] Que é Y. Physics of materials. Boca Raton: CRC Press,1998
    [15] Fran ois D, Pineau A, Zaoui A. Mechanical behaviour of materials. Elasticity andPlasticity,1998:19-27
    [16] Chrysochoos A, Maisonneuve O, Martin G, et al. Plastic and dissipated work andstored energy. Nuclear Engineering and Design,1989,114(3):323-333
    [17]姚磊江.疲劳损伤过程的能量耗散分析及基于能量耗散的疲劳损伤模型:[西北工业大学博士论文].西安:西北工业大学,2000
    [18] Connesson N. Contribution à l'étude du comportement thermomécanique dematériaux métalliques:[Thesis of Doctorat of ENSAM]. Chalons en Champagne:ENSAM,2010
    [19] Atkins P W. The second law: Energy, Chaos, and Form. US: The Free Press, aDivision of Simon&Schuster, Inc,1994
    [20] Caillard D, Martin J L. Thermally activated mechanisms in crystal plasticity. UK:Cambridge university press,2003
    [21] Lemaitre J. Mechanics of solid materials, UK: Cambridge university press,1990
    [22] Berthel B, Chrysochoos A, Wattrisse B, et al. Infrared image processing for thecalorimetric analysis of fatigue phenomena. Experimental Mechanics,2008,48(1):79-90
    [23]王晓钢.基于热像法的寿命预测与疲劳分析:[大连理工大学硕士学位论文].大连:大连理工大学,2009
    [24] Charkaluk E, Constantinescu A. Dissipative aspects in high cycle fatigue. Mechanicsof Materials,2009,41(5):483-494
    [25] Hopkinson B, Williams G T, The elastic hysteresis of steel. In Proc. Royal Soc Lond,1912; pp10-17
    [26] Farren W S, Taylor G I. The heat developed during plastic extension of metals. Proc.R. Soc.,1925,107(107):422-451
    [27] Galtier A. Contribution àl'étude de l'endommagement des aciers sous sollicitationsuni ou multiaxiales[J]. Contribution àl'étude de l'Endommagement des Aciers SousSolicitations Uni ou Multiaxials,1993
    [28] Dillon Jr O W. A nonlinear thermoelasticity theory. Journal of the Mechanics andPhysics of Solids,1962,10(2):123-131
    [29] Dillon Jr O W. An experimental study of the heat generated during torsionaloscillations. Journal of the Mechanics and Physics of Solids,1962,10(3):235-244
    [30] Dillon Jr O W. The heat generated during the torsional oscillations of copper tubes.International Journal of Solids and Structures,1966,2(2):181-204
    [31] St rk K. Thermometrische Untersuchungen zum Zyklischen. Verformungsverhalten:Metallischer Werkstoffe,1980
    [32] Dillon Jr O W. Coupled thermoplasticity. Journal of the Mechanics and Physics ofSolids,1963,11(1):21-33
    [33] Curti G, la Rosa G, Orlando M, analisi tramite infrarosso termico della temperaturalimite in prove di fatica. In14th Conference on the Italian Society for stress analysis,catania,1986; pp211-220
    [34] Luong M P. Infrared thermographic characterization of engineering materials. SpiroIrving J. Proceedings of SPIE-The International Society for Optical Engineering.San Diego, CA, USA: Publ by Int Soc for Optical Engineering,1990.327-338
    [35] Luong M P. Infrared thermography of fatigue in metals. Proceedings of SPIE-TheInternational Society for Optical Engineering. Orlando, FL, USA: Publ by Int Soc forOptical Engineering,1992.222-233
    [36] Bérard J Y, Rathery S, Béranger A S. Détermination de la limite d'endurance desmatériaux par thermographie infrarouge. Matériaux et Techniques,1998,1-2:55-57
    [37] Luong M P. Fatigue limit evaluation of metals using an infrared thermographictechnique. Mechanics of Materials,1998,28(1-4):155-163
    [38] La Rosa G, Risitano A. Thermographic methodology for rapid determination of thefatigue limit of materials and mechanical components. International Journal ofFatigue,2000,22(1):65-73
    [39] Luong M P. Infrared thermographic scanning of fatigue in metals. NuclearEngineering and Design,1995,158(2-3):363-376
    [40] La Rosa G, Risitano A. Thermographic methodology for rapid determination of thefatigue limit of materials and mechanical components. International Journal ofFatigue,2000,22(1):65-73
    [41] Curà F, Curti G, Sesana R. A new iteration method for the thermographicdetermination of fatigue limit in steels. International Journal of Fatigue,2005,27(4):453-459
    [42] Fernández-Canteli A, Castillo E, Argüelles A, et al. Checking the fatigue limit fromthermographic techniques by means of a probabilistic model of the epsilon-N field.International Journal of Fatigue,2012,39:109-115
    [43] Fargione G, Geraci A L, La Rosa G, et al. Rapid determination of the fatigue curveby the thermographic method[J]. International Journal of Fatigue,2002,24(1):11-19
    [44] Risitano, A. and G. Risitano. Cumulative damage evaluation in multiple cycle fatiguetests taking into account energy parameters. International Journal of Fatigue,2013,48(10):214-222
    [45] Bremond P, Potet P. Lock-in thermography: a tool to analyze and locatethermomechanical mechanisms in materials and structures. Aerospace/DefenseSensing, Simulation, and Controls. International Society for Optics and Photonics,2001.560-566
    [46] Krapez J C, Pacou D. Thermography detection of early thermal effects during fatiguetests of steel and aluminum samples. AIP Conference Proceedings,2002,615:1545-1552
    [47] Weibull W. A statistical theory of the strength of materials. Ing. Vetenskaps Akad.Handl,1939,151(151):1-45
    [48] Doudard C, Calloch S, Hild F, et al. Identification of the scatter in high cycle fatiguefrom temperature measurements. Identification de la dispersion des limitesd'endurance àl'aide d'un essai d'échauffement,2004,332(10):795-801
    [49] Doudard C, Calloch S, Cugy P, et al. A probabilistic two-scale model for high-cyclefatigue life predictions. Fatigue and Fracture of Engineering Materials and Structures,2005,28(3):279-288
    [50] Germain P, Nguyen Q S, Suquet P. Continuum thermodaynamics. Journal of AppliedMechanics, Transactions ASME,1983,50(4b):1010-1020
    [51] Lemaitre J, Doghri I. Damage90: a post processor for crack initiation. ComputerMethods in Applied Mechanics and Engineering,1994,115(3-4):197-232
    [52] Doudard C, Calloch S, Hild F, et al. Identification of heat source fields from infraredthermography: Determination of 'self-heating' in a dual-phase steel by using a dogbone sample. Mechanics of Materials,2010,42(1):55-62
    [53] Munier R, Doudard C, Calloch S, et al. Digital image correlation and infraredmeasurements to determine the influence of a uniaxial pre-strain on fatigue propertiesof a dual phase steel. EPJ Web of Conferences,2010,6:37007-37008
    [54] Poncelet M, Doudard C, Calloch S, et al. Probabilistic multiscale models andmeasurements of self-heating under multiaxial high cycle fatigue. Journal of theMechanics and Physics of Solids,2010,58(4):578-593
    [55] Poncelet M, Doudard C, Calloch S, et al. Dissipation measurements in steel sheetsunder cyclic loading by use of infrared microthermography. Strain,2010,46(1):101-116
    [56] Doudard C, Calloch S, Cugy P, et al. A probabilistic two-scale model for high-cyclefatigue life predictions. Fatigue and Fracture of Engineering Materials and Structures,2005,28(3):279-288
    [57] Amiri M, Khonsari M M. Rapid determination of fatigue failure based ontemperature evolution: Fully reversed bending load. International Journal of Fatigue,2010,32(2):382-389
    [58] Naderi M, Khonsari M M. Real-time fatigue life monitoring based on thermodynamicentropy. Structural Health Monitoring,2011,10(2):189-197
    [59] Crupi V, Guglielmino E, Risitano A, et al. Different methods for fatigue assessmentof T welded joints used in ship structures. Journal of Ship Research,2007,51(2):150-159
    [60] Crupi V. An Unifying Approach to assess the structural strength. InternationalJournal of Fatigue,2008,30(7):1150-1159
    [61] Wang X G, Crupi V, Guo X L, et al. Quantitative thermographic methodology forfatigue assessment and stress measurement. International Journal of Fatigue,2010,32(12):1970-1976
    [62] Risitano A, Risitano G. Cumulative damage evaluation of steel using infraredthermography. Theoretical and Applied Fracture Mechanics,2010,54(2):82-90
    [63] Risitano A, Clienti C, Risitano G, Determination of fatigue limit by mono-axialtensile specimens using thermal analysis. In Key Engineering Materials, Nagasaki,2011;'Vol.'452-453, pp361-364
    [64] Yang B, Liaw P K, Wang H, et al. Thermographic investigation of the fatiguebehavior of reactor pressure vessel steels. Materials Science and Engineering A,2001,314(1-2):131-139
    [65] Harry R, Joubert F, Gomaa A. Measuring the actual endurance limit of one specimenusing a nondestructive method. Journal of Engineering Materials and Technology,Transactions of the ASME,1981,103(1):71-76
    [66] Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energydissipation. International Journal of Fatigue,2007,29(1):81-94
    [67] Pastor M L, Balandraud X, Grédiac M, et al. Applying infrared thermography tostudy the heating of2024-T3aluminium specimens under fatigue loading. InfraredPhysics and Technology,2008,51(6):505-515
    [68] Meneghetti G, Ricotta M. The use of the specific heat loss to analyse the low-andhigh-cycle fatigue behaviour of plain and notched specimens made of a stainless steel.Engineering Fracture Mechanics,2011
    [69] Atzori B, Meneghetti G, Ricotta M. Analysis of the fatigue strength under two loadlevels of a stainless steel based on energy dissipation. EPJ Web of Conferences,2010,6:38008-38009
    [70] Atzori B, Lazzarin P, Meneghetti G. Fatigue strength of welded joints based on local,semi-local and nominal approaches. Theoretical and Applied Fracture Mechanics,2009,52(1):55-61
    [71] Meneghetti G, Quaresimin M. Fatigue strength assessment of a short fiber compositebased on the specific heat dissipation. Composites Part B: Engineering,2011,42(2):217-225
    [72]李守新,黄毅,师昌绪.金属板材在弹塑性形变过程中热场的有限元分析.金属学报,1985,(01):101-109
    [73]黄毅,李守新,林雪荣.金属过载荷疲劳过程中的红外发射.红外研究,1984,(01):43-48
    [74]黄毅,林雪荣,徐军,等.高强度钢压力容器疲劳锻练的热图研究.金属学报,1994,(05):225-231
    [75]黄毅.热弹性红外图像安全检测系统.中国科学院院刊,2003,(03):202-205
    [76]潘蜀健.热弹性应力测定法.力学与实践,1987,(04):44-46
    [77]郑中兴.评估材料疲劳损伤和疲劳极限的新方法.无损探伤,2004,(05):11-14
    [78]刘浩,曾伟,丁桦,等.利用红外热像技术快速确定材料疲劳极限.力学与实践,2007,(04):36-39
    [79]刘浩,赵军,丁桦.疲劳过程中生热机理的实验探讨.实验力学,2008,(01):1-8
    [80]曾伟,韩旭,丁桦,等.基于红外热象技术的金属材料疲劳性能研究方法.机械强度,2008,(04):658-663
    [81]王晓钢,郭杏林,张小鹏,利用热像法快速获取Q235钢的疲劳极限与S-N曲线.见:2010海峡两岸材料破坏断裂学术会议论文集.中国台湾台南:中国台湾疲劳与断裂学会,2010,896-900
    [82]郭杏林,张传豹.基于锁相热像法的金属疲劳性能研究.科学技术与工程,2010,22(1):21-24
    [83]赵延广,郭杏林,任明法.基于锁相红外热成像理论的复合材料网格加筋结构的无损检测.复合材料学报,2011,(1):199-205
    [84]樊俊铃,郭杏林,赵延广,等.定量热像法预测焊接接头的S-N曲线和残余寿命.材料工程,2011,(12):29-33
    [85] Fan J L, Guo X L, Wu C W, et al. Research on fatigue behavior evaluation andfatigue fracture mechanisms of cruciform welded joints. Materials Science andEngineering A,2011,528(29-30):8417-8427
    [86]樊俊铃,郭杏林,吴承伟.疲劳特性的红外热像定量分析方法研究进展.力学与实践,2012,53(06):7-8
    [87]魏凌霄,闫志峰,王文先,等.基于红外热成像的镁合金疲劳裂纹扩展的研究.机械工程学报,2012,48(06):64-69
    [88]闫志峰,张红霞,王文先,等.红外热像法预测镁合金的疲劳性能.机械工程材料,2012,36(2):72-75
    [89] Galtier A, Bouaziz O, Lambert A. Influence of steel microstructure on theirmechanical properties. Influence de la microstructure des aciers sur leur propriétésmécaniques,2002,3(5):457-462
    [90] Yang B, Liaw P K, Huang J Y, et al. Stress analyses and geometry effects duringcyclic loading using thermography. Journal of Engineering Materials and Technology,Transactions of the ASME,2005,127(1):75-82
    [91] Morabito A E, Chrysochoos A, Dattoma V, et al. Analysis of heat sourcesaccompanying the fatigue of2024T3aluminium alloys. International Journal ofFatigue,2007,29(5):977-984
    [92] Maquin F, Pierron F. Heat dissipation measurements in low stress cyclic loading ofmetallic materials: From internal friction to micro-plasticity. Mechanics of Materials,2009,41(8):928-942
    [93] Maquin F. Methodologie experimentale d'etude du comportement thermo-mecaniquedes materialux sous sollicitations cycliques[Thesis of Dortor of ENSAM]. Chalons enChampagne: ENSAM,2006
    [94] Connesson N, Maquin F, Pierron F. Experimental Energy Balance During the FirstCycles of Cyclically Loaded Specimens Under the Conventional Yield Stress.Experimental Mechanics,2011,51(1):23-44
    [95] Connesson N, Maquin F, Pierron F. Dissipated energy measurements as a marker ofmicrostructural evolution:316L and DP600. Acta Materialia,2011,59(10):4100-4115
    [96] Mareau C, Favier V, Weber B, et al. Micromechanical modeling of the interactionsbetween the microstructure and the dissipative deformation mechanisms in steelsunder cyclic loading. International Journal of Plasticity,2012,32(1),106-120
    [97]姚磊江,童小燕,吕胜利.基于能量耗散的疲劳损伤模型.机械强度,2004,(5):522-525
    [98]李娜,童小燕,姚磊江.纯铜低周疲劳中的温度响应与微观形貌变化.材料科学与工程学报,2006,(5):754-757
    [99]姚磊江,李斌,童小燕.疲劳过程热耗散与表面微观结构演化相关性的试验研究.西北工业大学学报,2008,(2):225-228
    [100]潘应雄,童小燕,李斌.复合材料疲劳性能的能量耗散试验研究.强度与环境,2009,(1):51-56
    [101]李斌,童小燕,姚磊江,等.基于红外和声发射的复合材料疲劳损伤实时监测.机械科学与技术,2011,(2):191-194
    [102] Hopkinson B, Williams G T. The elastic hysteresis of steel. Proceedings of the RoyalSociety of London. Series A,1912,87(598):502-511
    [103] Taylor G I, Quinney H. The latent energy remaining in a metal after cold working.Proceedings of the Royal Society of London. Series A,1934,143(849):307-326
    [104] Clarebrough L M, Hargreaves M E, West G W, et al. The energy stored in fatiguedmetals. Proceedings of the Royal Society of London. Series A. Mathematical andPhysical Sciences,1957,242(1229):160-166
    [105] Troshchenko V T. Method for an accelerated determination of the fatigue limit ofmetals. Prikl. Mech.,1967,3(5):50-54
    [106] Oliferuk W, Maj M, Raniecki B. Experimental analysis of energy storage ratecomponents during tensile deformation of polycrystals. Materials Science andEngineering A,2004,374(1-2):77-81
    [107] Oliferuk W, Maj M. Stress-strain curve and stored energy during uniaxialdeformation of polycrystals. European Journal of Mechanics, A/Solids,2009,28(2):266-272
    [108] Oliferuk W, Maj M. Identification of energy storage rate components. Theoreticaland experimental approach. Journal of Physics: Conference Series,2010,240
    [109] Rosakis P, Rosakis A J, Ravichandran G, et al. Thermodynamic internal variablemodel for the partition of plastic work into heat and stored energy in metals. Journalof the Mechanics and Physics of Solids,2000,48(3):581-607
    [110] Hodowany J, Ravichandran G, Rosakis A J, et al. Partition of plastic work into heatand stored energy in metals. Experimental Mechanics,2000,40(2):113-123
    [111] Kamlah M, Haupt P. On the macroscopic description of stored energy and selfheating during plastic deformation. International Journal of Plasticity,1997,13(10):893-911
    [112] Favier D, Louche H, Schlosser P, et al. Homogeneous and heterogeneousdeformation mechanisms in an austenitic polycrystalline. Acta Materialia,2007,55(16):5310-5322
    [113] Longère P, Dragon A. Evaluation of the inelastic heat fraction in the context ofmicrostructure-supported dynamic plasticity modelling. International Journal ofImpact Engineering,2008,35(9):992-999
    [114] Harvey Ii D P, Bonenberger R J, Wolla J M. Effects of sequential cyclic andmonotonic loadings on damage accumulation in nickel270. International Journal ofFatigue,1998,20(4):291-300
    [115] Macdougall D. Determination of the plastic work converted to heat using radiometry.Experimental Mechanics,2000,40(3):298-306
    [116] Zehnder A T, Babinsky E, Palmer T. Hybrid method for determining the fraction ofplastic work converted to heat. Experimental Mechanics,1998,38(4):295-302
    [117] Schlosser P, Louche H, Favier D, et al. Image processing to estimate the heat sourcesrelated to phase transformations during tensile tests of NiTi tubes. Strain,2007,43(3):260-271
    [118] Schlosser P, Favier D, Louche H, et al. Experimental characterization of NiTi SMAsthermomechanical behaviour using temperature and strain full-field measurements.CIMTEC2008-Proceedings of the3rd International Conference on Smart Materials,Structures and Systems Research and Application of SMAs Technologies. Acireale,Sicily:2008.140-149
    [119] Dumoulin S, Louche H, Hopperstad O S, et al. Heat sources, energy storage anddissipation in high-strength steels: Experiments and modelling. European Journal ofMechanics, A/Solids,2010,29(3):461-474
    [120] Wong A K, Kirby Iii G C. A hybrid numerical/experimental technique fordetermining the heat dissipated during low cycle fatigue. Engineering FractureMechanics,1990,37(3):493-504
    [121] Jiang L, Wang H, Liaw P K, et al. Temperature Evolution and Life Prediction inFatigue of Superalloys. Metallurgical and Materials Transactions A: PhysicalMetallurgy and Materials Science,2004,35A(3):839-848
    [122] Vincent L. On the ability of some cyclic plasticity models to predict the evolution ofstored energy in a type304L stainless steel submitted to high cycle fatigue. EuropeanJournal of Mechanics, A/Solids,2008,27(2):161-180
    [123] H kansson P, Wallin M, Ristinmaa M. Prediction of stored energy in polycrystallinematerials during cyclic loading. International Journal of Solids and Structures,2008,45(6):1570-1586
    [124] Kaleta J, Blotny R, Harig H. Energy stored in a specimen under fatigue limit loadingconditions. Journal of Testing and Evaluation,1991,19(4):326-333
    [125] Chrysochoos A, Berthel B, Latourte F, et al. Local energy approach to steel fatigue.Strain,2008,44(4):327-334
    [126] Connesson N, Maquin F, Pierron F. Experimental Energy Balance During the FirstCycles of Cyclically Loaded Specimens Under the Conventional Yield Stress.Experimental Mechanics,2011,51(1):23-44
    [127] Mareau C. Modelisation micromecanique de l'echauffement et de la microplasticitedes aciers sous solliciations cycliques:[These de doctorat of ENSAM]. Chalons-en-Champagne: ENSAM,2007
    [128] Vincent L. On the ability of some cyclic plasticity models to predict the evolution ofstored energy in a type304L stainless steel submitted to high cycle fatigue. EuropeanJournal of Mechanics, A/Solids,2008,27(2):161-180
    [129] Vivier G, Trumel H, Hild F. On the stored and dissipated energies in heterogeneousrate-independent systems: Theory and simple examples. Continuum Mechanics andThermodynamics,2009,20(7):411-427
    [130] Charkaluk E, Constantinescu A. Dissipative aspects in high cycle fatigue. Mechanicsof Materials,2009,41(5):483-494
    [131] Mollica F, Rajagopal K R, Srinivasa A R. The inelastic behavior of metals subject toloading reversal. International Journal of Plasticity,2001,17(8):1119-1146
    [132] Plekhov O, Uvarov S, Naimark O. Theoretical and experimental investigation of thedissipated and stored energy ratio in iron under quasi-static and cyclic loading.Strength of Materials,2008,40(1):90-93
    [133] Wong A K, Kirby III G C. A hybrid numerical/experimental technique fordetermining the heat dissipated during low cycle fatigue. Engineering fracturemechanics,1990,37(3):493-504
    [134] Lemaitre J, Chaboche J L. Mécanique des Matériaux Solides. UK: Cambridgeuniversity press,1985
    [135] Rosakis P, Rosakis A J, Ravichandran G, et al. Thermodynamic internal variablemodel for the partition of plastic work into heat and stored energy in metals. Journalof the Mechanics and Physics of Solids,2000,48(3):581-607
    [136] Louche H. Analyse par thermographie infrarouge des effets dissipatifs de lalocalisation dans des aciers:[These de doctorat of Universite Montpellier Ⅱ].Montpellier: Universite Montpellier Ⅱ,1999
    [137] Chrysochoos A, Louche H. Infrared image processing to analyze the calorific effectsaccompanying strain localization. International Journal of Engineering Science,2000,38(16):1759-1788
    [138] Boulanger T, Chrysochoos A, Mabru C, et al. Calorimetric analysis of dissipative andthermoelastic effects associated with the fatigue behavior of steels. InternationalJournal of Fatigue,2004,26(3):221-229
    [139] Doudard C. Determination rapide des proprietees en fatigue a grand nombre decycles a partir d'essais d'echauffement:[These of doctrat of ENS]. Cachan: ENSCachan,2004
    [140] Maquin F. Methodologie experimentale d'etude du comportement thermo-mecaniquedes materiaux sous sollicitions cyclques:[These of doctrat of ENSAM]. Chalons-en-Champagne: ENSAM,2006
    [141] Connesson N. Contribution à l'étude du comportement thermomécanique dematériaux métalliques:[These of doctrat of ENSAM]. Chalons-en-Champagne:ENSAM,2010
    [142] Maquin F, Pierron F. Heat dissipation measurements in low stress cyclic loading ofmetallic materials: From internal friction to micro-plasticity. Mechanics of Materials,2009,41(8):928-942
    [143] Chrysochoos A, Berthel B, Latourte F, et al. Local energy approach to steel fatigue.Strain,2008,44(4):327-334
    [144] Piatti G, Schiller P. Thermal and mechanical properties of the Cr-Mn-(Ni-free)austenitic steels for fusion reactor applications. Journal of Nuclear Materials,1986,141-143(PART1):417-426
    [145] Boulanger T, Chrysochoos A, Mabru C, et al. Calorimetric analysis of dissipative andthermoelastic effects associated with the fatigue behavior of steels. InternationalJournal of Fatigue,2004,26(3):221-229
    [146] Feltner C E, Laird C. Cyclic stress-strain response of F.C.C. metals and alloys-IIDislocation structures and mechanisms. Acta Metallurgica,1967,15(10):1633-1653
    [147] Mughrabi H. Self-consistent experimental determination of the dislocation linetension long-range internal stresses in deformed copper crystals by analysis ofdislocation curvatures. Materials Science and Engineering A,2001,309-310:237-245
    [148] Déprés C, Fivel M, Tabourot L. A dislocation-based model for low-amplitude fatiguebehaviour of face-centred cubic single crystals. Scripta Materialia,2008,58(12):1086-1089
    [149] Fivel M C. Discrete dislocation dynamics: an important recent break-through in themodelling of dislocation collective behaviour. Comptes Rendus Physique,2008,9(3-4):427-436
    [150] Fujii T, Watanabe C, Nomura Y, et al. Microstructural evolution during low cyclefatique of a3003aluminum alloy. Materials Science and Engineering A,2001,319-321:592-596
    [151]陈胜红.疲劳损伤过程热耗散与微观形貌的同步测量:[西北工业大学硕士学位论文].西安:西北工业大学,2007
    [152] Meneghetti G, Ricotta M. The use of the specific heat loss to analyse the low-andhigh-cycle fatigue behaviour of plain and notched specimens made of a stainless steel.Engineering Fracture Mechanics,2012,81(1):2-16
    [153] Atzori B, Meneghetti G, Ricotta M, Fatigue behaviour of a stainless steel based onenergy measurements. In Key Engineering Materials,2010;'Vol.'417-418, pp333-336
    [154] Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energydissipation. International Journal of Fatigue,2007,29(1):81-94
    [155] Susmel L, Atzori B, Meneghetti G, et al. Notch and mean stress effect in fatigue asphenomena of elasto-plastic inherent multiaxiality. Engineering Fracture Mechanics,2011,78(8):1628-1643
    [156] Meneghetti G, Quaresimin M. Fatigue strength assessment of a short fiber compositebased on the specific heat dissipation. Composites Part B: Engineering,2011,42(2):217-225
    [157]李莉,谢里阳,何雪浤,等.疲劳寿命影响因素的试验研究.中国机械工程,2010,(03):355-358
    [158]李莉,谢里阳,何雪浤,等.疲劳加载下金属材料的强度退化规律.机械强度,2010,(06):967-971
    [159]谢里阳,吕文阁,师照峰.两级载荷作用下疲劳损伤状态的试验研究.机械强度,1994,(03):52-54
    [160]谢里阳,徐灏,王德俊.疲劳过程中材料强化和弱化现象的探讨.机械强度,1991,(01):32-35
    [161]赵少汴. S N曲线转折点循环数N_0的探讨.机械强度,2001,(01):22-24
    [162]赵少汴.常用累积损伤理论疲劳寿命估算精度的试验研究.机械强度,2000,(03):206-209
    [163] Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: A surveyof the state of the art for homogeneous materials. International Journal of Fatigue,1998,20(1):9-34
    [164]胡燕慧,张峥,钟群鹏,等.金属材料超高周疲劳研究进展.机械强度,2009,(06):979-985
    [165]谢里阳,秦大同.疲劳强度与可靠性设计.北京:化学工业出版社,2013
    [166]周承恩,谢季佳,洪友士.超高周疲劳研究现状及展望.机械强度,2004,(05):526-533
    [167] Wang C, Blanche A, Wagner D, et al. Dissipative and microstructural effectsassociated with fatigue crack initiation on an Armco iron. International Journal ofFatigue,2014,58(1):152-157
    [168] Wang C, Wagner D, Wang Q Y, et al. Gigacycle fatigue initiation mechanism inArmco iron. International Journal of Fatigue,2012,45(1):91-97
    [169] Wagner D, Cavalieri F J, Bathias C, et al. Ultrasonic fatigue tests at high temperatureon an austenitic steel. Propulsion and Power Research,2012,1(1):29-35
    [170] Sakai T, Takeda M, Shiozawa K, et al. Experimental evidence of duplex S-Ncharacteristics in wide life region for high strength steels. Higher Education Press,Fatigue'99: Proceedings of the Seventh International Fatigue Congress.1999,573-578
    [171]郑小涛,轩福贞,喻九阳.压力容器与管道安定/棘轮评估方法研究进展.压力容器,2013,(01):45-53
    [172]孙阳,沈水龙.能量原理在路面结构安定分析中的应用研究.工程力学,2010,(11):88-93
    [173]冯西桥,刘信声.随动强化结构的安定性分析.力学学报,1992,(04):500-503
    [174]金刚.级配碎石三轴试验研究:[大连理工大学硕士学位论文].大连:大连理工大学,2007.
    [175] Constantinescu A, Dang Van K, Maitournam M H. A unified approach for high andlow cycle fatigue based on shakedown concepts. Fatigue and Fracture of EngineeringMaterials and Structures,2003,26(6):561-568
    [176]魏密,杨群,郭忠印.安定理论在柔性路面设计中的应用.公路交通技术,2007,(01):5-9
    [177]周承恩,谢季佳,洪友士.超高周疲劳研究现状及展望.机械强度,2004,26(5):526-533
    [178] Sun C, Lei Z, Xie J, et al. Effects of inclusion size and stress ratio on fatigue strengthfor high-strength steels with fish-eye mode failure. International Journal of Fatigue,2013,48(0):19-27
    [179] Charkaluk E, Constantinescu A, Maitournam H, et al. Revisiting the dang vancriterion[A]. Procedia Engineering. Oxford:2009.143-146
    [180] Papadopoulos I V. Fatigue polycyclique des metaux: une nouvelle approche:[Thesieof Doctorat of EPC]. Chaussees: Ecole des Ponts et Chaussees,1987
    [181] Dang Van K. Sur la résistance àla fatigue des métaux. Sciences et Techniques del'Armement,1973,47(3):647-722
    [182]刘旭,张开林,姚远,等.两种评定准则下的车轮疲劳强度分析.机车电传动,2012,(04):23-25
    [183] Cugy P, Galtier A. Microplasticity and temperature increase in low carbon steels.Proc.8th Int. Fatigue Conf.,2002:549-556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700