用户名: 密码: 验证码:
典型化工污染土壤的微修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业化和城市化发展及《斯德哥尔摩国际公约》的履约进程,近几年出现了一大批关闭搬迁或即将退役的化工企业。废弃的化工污染场地被开发作商用和民用,污染场地中大量有毒物质的存在严重影响着生态环境和人居环境安全,因此亟需对化工污染场地进行高效、快速的修复。
     在污染场地修复工程中,热修复技术作为一种最主要的场地修复技术得到广泛应用。土壤热修复技术中,由于常规加热的传热机制导致能量传递速度慢,处理效率低下;另外由于需要将土壤进行整体加热,消耗的能量较大。近年来有研究采用微波(Microwave, MW)来替代常规加热的热源,利用MW的特殊加热方式来迅速提高土壤温度,促进污染物的解吸、分解或固定化过程并实现土壤修复;同时MW加热具有选择性,直接作用于土壤中的极性污染物和水分子等吸波物质,可大大节省能量。MW技术具有对污染物的种类和性质无选择性、处理时间短等优点,对于化工场地土壤中种类繁多、毒性大、浓度高的污染物是一种非常合适的治理技术。
     本文分别以制药业的抗生素、有机化工的硝基化合物和无机化工的重金属三类不同污染物为研究对象,研究了污染土壤MW修复技术的影响因素和机理,在小试研究的基础上对MW土壤修复设备进行了研究开发。本文的主要研究内容与结论有:
     (1)研究了氯霉素(Chloramphenicol, CAP)污染土壤的MW修复条件及机理,结果表明:MW敏化剂对MW修复CAP污染土壤的效果依次为颗粒活性炭(GAC)>铁粉>水>二氧化锰;GAC作MW敏化剂时,MW功率和GAC剂量对修复效率影响最大;在一定范围内,土壤修复效果随土壤量的增加而显著增大,对于3 g土壤,CAP的去除率在辐射5 min时可达到93%,而对于0.5 g土壤,MW辐射20 min后去除率仅为80%;污染物的初始浓度对修复效果影响较小;MW辐射下CAP经历了C-C键的断裂和氧化反应,部分裂解碎片与土壤有机质发生反应,生成了新的大分子产物,但产物的浓度极低,辐射时没有脱氯过程的发生。
     (2)研究了4-硝基酚(4-nitrophenol,4-NP)模拟污染土壤的MW修复条件及机理,并对实际污染土壤的修复效果进行了考察,结果表明:几种MW敏化剂中GAC的敏化效果最好,向土壤中添加一定水分可使4-NP的去除率有所提高,但提高率不足10%;MW功率越高去除效果越好,4-NP初始浓度对去除率无显著影响。加入GAC作MW敏化剂时可显著促进MW修复4-NP污染实际土壤的效果,以1 g污染土为处理对象并加入0.3 g GAC,采用700 w的MW功率辐射20 min后4-NP去除率达70%;保持土壤量和GAC剂量的比值一定,增加土壤量可以显著促进4-NP的去除率,当土壤量大于2 g时4-NP去除率达96%以上;4-NP在MW辐射下的去除无挥发作用的发生,其机理很可能为在高温下直接矿化为CO2和H2O,或者本身和分解的中间产物直接同土壤产生化学结合而被固定,因而从土壤中无法被萃取出来。
     (3)研究了土壤中Cr(Ⅵ)的MW强化还原技术,结果发现:土壤有机质的存在本身会使土壤中的Cr(Ⅵ)还原,初期还原速率较快,初始浓度为100 mg·kg-1的Cr(Ⅵ)污染土壤,放置3天后Cr(Ⅵ)还原率接近70%,后期还原速率显著降低,Cr(Ⅵ)的浓度趋于平稳;当有机质含量一定时,Cr(Ⅵ)初始浓度越高,还原率越低,但实际还原量增大。以GAC作为还原剂,采用MW辐射对土壤中的Cr(Ⅵ)进行强化还原,MW辐射在1-3 min内就可将土壤中85%以上的Cr(Ⅵ)还原成Cr(Ⅲ),其中GAC的剂量是影响还原效果的重要因素,辐射时间和MW功率对Cr(Ⅵ)的还原率影响不大;Cr(Ⅵ)初始浓度对还原率无显著影响,MW辐射处理3 min对浓度范围为7.34-610.48 mg·kg-1的Cr(Ⅵ)污染土壤还原率都能达到75%以上;若仅依靠土壤有机质对Cr(Ⅵ)的还原作用,将土壤中85%的Cr(Ⅵ)还原成Cr(Ⅲ)需数十天的时间,而采用MW辐射技术仅需1-3 min就可获得同样的还原效果;对于土壤中Cr(Ⅵ)的还原,MW强化还原技术具有高效、快速的特点。
     (4)在小试研究基础上,设计加工了MW原位土壤修复和MW脱氮中试设备。土壤修复中试设备对污染土壤有着较好的修复效果,对200 g初始浓度为100mg·kg-1的4-NP污染硅藻土,600W的MW功率下辐射处理50min时4-NP的去除率为68-82%,且设备运行稳定、操作方便,也无MW泄漏现象的发生,但MW敏化剂的回收和循环使用问题还需要解决。MW脱氮中试设备的日处理量为5吨,MW功率为4.8 kW,该设备对实际焦化废水的脱氮率可达74-84%;较低的环境温度和较高的废水流速会降低脱氮效率,废水的初始氨氮浓度对脱氮效果影响不大,曝气能使脱氮率增加9-10%;该设备比常规蒸氨工艺所需成本稍低。
With the industrialization and urbanization and the performance of "Stockholm International Convention", a large number of chemical enterprises to be closed or retired are presented in our country. The abandoned chemical industry sites will be developed for commercial and residential use. The residues of the multi-type, high load, high toxic pollutants in contaminated sites pose potential risk to ecological environment and public health. Thus, it is necessary to remediate the contaminated sites effectively.
     Thermal remediation technology was widely used in contaminated sites remediation. In conventional heating method, heat transfers by thermal conduction, convection and radiation, which leads to slow heat transfer velocity and low remediation efficiency. Besides, conventional heating is an integral heating process, which consumes more energy. In recent years, microwave (MW) heating was used to instead of the conventional heating method for soil remediation. Soil can be heated rapidly and selectively by MW, and the pollutants in the soil were desorbed, degraded or stabilized. MW technology has shown great potential for the remediation of contaminated site of chemical industry due to its non-selective for the pollutants, high heating rates and great control of the treatment process.
     In this paper, three typical contaminants, antibiotic of pharmaceutical industry, nitro-compound of organic chemical industry and heavy metal of inorganic chemical industry, were selected as the treatment targets by MW technology. The operation conditions were optimized and the removal mechanisms were investigated. Then pilot-scale MW equipments were designed and used to explore the prospect of industrial application of MW technology. The main conclusions are drawn as follows:
     (1) Chloramphenicol (CAP), a typical antibiotic, was treated by MW radiation. The catalytic effect of the MW absorbents followed granular activated carbon (GAC)>Fe>H2O>MnO2. When GAC was used as MW absorbent, large MW power and GAC dosage should be used for a completed decomposition of CAP. The remediation efficiencies increased with the soil mass in the range from 0.5 g to 3.0 g. For 3 g soil, 93% of CAP remediation efficiency was reached in 5 min, whereas for 0.5 g soil, it was only 80% even in 20 min MW radiation. The effect of initial CAP concentration was minute. CAP experienced carbon-carbon bond rupture and oxidation reactions in MW radiation, and a part of CAP fragment reacted with the soil organic matter and formed new compounds, but the concentration of each product was extremely low. No dechlorination process occurred during this process.
     (2) MW technology was used to treat simulated 4-nitrophenol (4-NP) contaminated soil. GAC shows the best catalysis effect among the MW absorbents. Degradation efficiency of 4-NP increased when water was added into the soil, but the increment was less than 10%. The addition of GAC obviously increased the degradation efficiency of 4-NP in real soil. For 1 g real soil mixed with 0.3 g GAC,70% of 4-NP remediation efficiency was reached in 20 min at the MW power of 700 W. The 4-NP remediation efficiency was above 96% for 2 g soil mixed with 0.6 g GAC. The degradation efficiency increased with the MW power, the 4-NP initial concentrations had minute effect on the degradation efficiency.4-NP did not evaporate from the simulated soil by MW radiation, it was probably thermally decomposed to CO2 and H2O, or decomposed to fragments, which were further tightly bound to the soil.
     (3) Cr (Ⅵ) could be reduced by soil organic matter (SOM), Cr (Ⅵ) was reduced fastly at the beginning state, its concentration in soil decreased from 100 mg·kg-1 to 31.73 mg·kg-1 in the first 3 days. Then the reduction rate decreased. At a certain SOM concentration, the reduction rate of Cr (Ⅵ) decreased with the initial Cr (Ⅵ) concentration, but the reduction amount was increased. MW radiation posed a great reduction effect for Cr (Ⅵ) in the soil, and about 85% of the Cr (Ⅵ) could be reduced in 1-3 min at the MW power of 700 W. GAC dosage was the most important impact factor for the reduction process, the effects of radiation time and MW power were minute. When the initial concentration ranged from 7.34-610.48 mg kg-1, more than 75% of Cr (Ⅵ) could be reduced in 3 min. Several ten days was needed to reduce 85% of Cr (Ⅵ) by SOM in the soil, but only 3 min was needed by MW radiation. MW enhanced reduction of Cr (Ⅵ) showed great efficiency, which is of fleetness and high performance.
     (4) The pilot-scale MW soil remediation equipment showed great effect for the contaminated soil. For 200 g 4-NP contaminated diatomite with initial concentration of 100 mg kg-1, the removal of 4-NP reached 68-82% in 50 min MW radiation. The equipment was run stable and convenient to operate, and no MW leakage was detected. Nevertheless, the problem of recovery and utilization of the MW absorbent needs to be solved. Summarily, MW radiation can be considered as a promising technology for the site remediation of chemical industry. A pilot-scale MW reactor was developed to remove ammonia nitrogen in coke-plant wastewater, the output power of the reactor was 4.8 kW and the handling capacity was about 5 tons per day. Low ambient temperature and higher flow rate reduced the effectiveness of the MW reactor, initial concentration had minute influence on ammonia removal, and the removal could be enhanced about 9-10% with aeration. Ammonia removal efficiency of the MW pilot-scale system could reach 74-84% for real coke-plant wastewater. The cost of the MW equipment was a litter lower than conventional steam-stripping method.
引文
[1]Li T. P., Yuan S. H., Wan J. Z., et al. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl beta cyclodextrin. Chemosphere,2009,76(9):1226-1232
    [2]陈静,王琳玲,陆晓华等.点源排放六氯苯在植物中的分布研究.环境科学与管理,2009,30(4):1173-1178
    [3]杨居荣,薛纪渝,夸田共之.日本公害病发源地的今天.农业环境保护,1999,18(6):268-271
    [4]Gao Y. Z., He J. Z., Ling W. T., et al. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ. Int.,2003,29(5):613-618
    [5]Wu L. H., Luo Y. M., Christie P., et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere,2003,50(6):819-822
    [6]Wasay S. A., Barrington S., Tokunaga S. Organic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns. Water Air Soil Pollut., 2001,127(1-4):301-314
    [7]Liu X. T., Yu G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil. Chemosphere,2006, 63(2):228-235
    [8]Collings A. F., Farmer A. D., Gwan P. B., et al. Processing contaminated soils and sediments by high power ultrasound. Miner. Eng.,2006,19(5):450-453
    [9]Naidu R., Kookana R. S., Sumner M. E., et al. Cadmium sorption and transport in variable charge soils:A review. J. Environ. Qual.,1997,26(3):602-617
    [10]Liu R. Q., Zhao D. Y. In situ immobilization of Cu(Ⅱ) in soils using a new class of iron phosphate nanoparticles. Chemosphere,2007,68(10):1867-1876
    [11]Robinson B., Duwig C., Bolan N., et al. Uptake of arsenic by New Zealand watercress(Lepidium sativum). Sci. Total Environ.,2003,301(1-3):67-73
    [12]Wu J., Hsu F. C., Cunningham S. D. Chelate-assisted Pb phytoextraction:Pb availability, uptake, and translocation constraints. Environ. Sci. Technol.,1999, 33(11):1898-1904
    [13]Palmroth M. R. T., Koskinen P. E. P., Pichtel J., et al. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J. Soil Sediment,2006,6(3):128-136
    [14]孙铁珩,李培军,周启星.土壤污染形成机理与修复技术.北京:科学出版社,2005
    [15]Kumar P. B. A. N., Dushenkov V., Motto H., Raskin I. Phytoextraction:the use of plants to remove heavy metals from soils. Environ. Sci. Technol.,1995,29(5): 1232-1238
    [16]Alpaslan B., Yukselen M. A. Remediation of lead contaminated soils by stabilization/solidification. Water Air Soil Poll.,2002,133(1-4):253-263
    [17]Miretzky P., Fernandez-Cirelli A. Phosphates for Pb immobilization in soils:a review. Environ. Chem. Lett.,2008,6(3):121-133
    [18]Han Y. H., Quan X., Chen S., et al. Electrochemical enhancement of adsorption capacity of activated carbon fibers and their surface physicochemical characterizations. Electrochim. Acta,2007,52(9):3075-3081
    [19]Raicevic S., Kaludjerovic-Radoicic T., Zouboulis A.I. In situ stabilization of toxic metals in polluted soils using phosphates:theoretical prediction and experimental verification. J. Hazard. Mater.,2005,117(1):41-53
    [20]Mahabadi A. A., Hajabbasi M. A., Khademi H., et al. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma,2007,137(3-4):388-393
    [21]Shanableh A., Kharabsheh A. Stabilization of Cd, Ni and Pb in soil using natural zeolite. J. Hazard. Mater.,1996,45(2-3):207-217
    [22]Shi W. Y., Shao H. B., Li H., et al. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater.,2009,170(1):1-6
    [23]赵英铭,李震坤.工业区土壤重金属污染的防治对策.内蒙古科技与经济,2001,7(3):33-34
    [24]Ko S. O., Schlautman M. A., Carraway E. R. Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environ. Sci. Technol.,1998, 32(22):3542-3548
    [25]Sahoo D., Smith J. A. Enhanced trichloroethene desorption from long term contaminated soil using Triton X-100 and pH increases. Environ. Sci. Technol., 1997,31(7):1910-1915
    [26]Ko S. O., Schlautman M. A. Partitioning of hydrophobic organic compounds to sorbed surfactants.2. Model development/predictions for surfactant-enhanced remediation applications. Environ. Sci. Technol.,1998,32(18):2776-2781
    [27]Zhou M. F., Rhue R. D. Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization. Environ. Sci. Technol.,2000, 34(10):1985-1990
    [28]West C. C., Harwell J. H. Surfactants and subsurface remediation. Environ. Sci. Technol.,1992,26(12):2324-2330
    [29]Lee J. F., Liao P. M., Kuo C. C., et al. Influence of a nonionic surfactant(Triton X-100) on contaminant distribution between water and several soil solids. J. Colloid Interface Sci.,2000,229(2):445-452
    [30]Zhou W. J., Zhu L. Z. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Environ. Pollut.,2007,147(2): 350-357
    [31]Zhao B. W., Zhu L. Z., Yang K. Solubilization of DNAPLs by mixed surfactant: Reduction in partitioning losses of nonionic surfactant. Chemosphere,2006, 62(5):772-779
    [32]Yang K., Zhu L. Z., Xing B. S. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environ. Sci. Technol.,2006,40(13):4274-4280
    [33]Xu J. A., Xu Y. A., Dai S. U. Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere,2006,62(10):1630-1635
    [34]Stellner K. L., Scamehorn J. F. Hardness tolerance of anionic surfactant solutions, 2. Effect of added nonionic surfactant. Langmuir,1989,5(1):77-84
    [35]Roy D., Kommalapati R. R., Mandava S. S., et al. Soil washing potential of a natural surfactant. Environ. Sci. Technol.,1997,31(3):670-675
    [36]Kile D. E., Chiou C. T., Zhou H., et al. Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters. Environ. Sci. Technol.,1995, 29(5):1401-1406
    [37]陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996
    [38]Puls R. W., Powell R. M., Donald C. Effect of pH, solid/solution rate, ionic strength, and organic acids on Pb and C. D sorption on kaolinite Water Air Soil Pollut.,1991,57-58(4):423-430
    [39]何宏平.粘土矿物与金属离子作用研究.北京:石油工业出版社,2001
    [40]Undabeytia T., Nir S., Rytwo G., et al. Modeling adsorption-desorption processes of Cu on edge and planar sites of montmorillonite. Environ. Sci. Technol.,2002, 36(12):2677-2683
    [41]Xu Y. H., Zhao D. Y. Removal of copper from contaminated soil by use of poly(amidoamine) dendrimers. Environ. Sci. Technol.,2005,39(7):2369-2375
    [42]Bezbaruah A. N., Thompson J. M., Chisholm B. J. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J. Environ. Sci. Heal. B.,2009,44(6):518-524
    [43]Cho H. H., Park J. W. Reactive dechlorination of PCE using zero valent iron plus surfactants. In:Henry SM, Warner SD, editors. Chlorinated Solvent and Dnapl Remediation-Innovative Strategies for Subsurface Cleanup. Acs Symposium Series,2003,837:141-153
    [44]Satapanajaru T., Anurakpongsatorn P., Pengthamkeerati P., et al. Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Poll.,2008,192(1-4):349-359
    [45]Weng C. H., Lin Y. T., Lin T. Y., et al. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. J. Hazard. Mater.,2007, 149(2):292-302
    [46]Xu Y. H., Zhao D. Y. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res.,2007,41(10):2101-2108
    [47]Franco D. V., Da Silva L. M., Jardim W. F. Chemical Reduction of Hexavalent Chromium and Its Immobilisation Under Batch Conditions Using a Slurry Reactor. Water Air Soil Poll.,2009,203(1-4):305-315
    [48]Lee E. S., Woo N. C., Schwartz F. W., et al. Characterization of controlled-release KMnO4(CRP) barrier system for groundwater remediation:A pilot-scale flow-tank study. Chemosphere,2008,71(5):902-910
    [49]Chen H., Berndtsson R., Ma M. G., et al. Characterization of insolubilized humic acid and its sorption behaviors. Environ. Geol.,2009,57(8):1847-1853
    [50]Kubal M., Janda V., Benes P., et al. In situ chemical oxidation and its application to remediation of contaminated soil and groundwater. Chem. Listy.,2008,102(7): 493-499
    [51]Tsai T. T., Kao C. M., Hong A., et al. Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system. Colloid. Surface. A.,2008, 322(1-3):130-137
    [52]Yang L., Donahoe R. J., Redwine J. C. In situ chemical fixation of arsenic-contaminated soils:An experimental study. Sci. Total Environ.,2007, 387(1-3):28-41
    [53]Thepsithar P., Roberts E. P. L. Removal of phenol from contaminated kaolin using electrokinetically enhanced in situ chemical oxidation. Environ. Sci. Technol.,2006,40(19):6098-6103
    [54]陈承利,廖敏.重金属污染土壤修复技术研究进展.广东微量元素科学,2004,11(10):1-8
    [55]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):143-150
    [56]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,4(3):72-75
    [57]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施.西南农业学报,2003,16(8):33-37
    [58]Mavrogianopoulos G. N., Frangoudakis A., Pandelakis J. Energy Efficient Soil Disinfestation by Microwaves. J. Agric. Eng. Res.,2000,75(2):149-153
    [59]Liu X. T., Zhang Q., Zhang G. X., et al. Application of microwave irradiation in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil. Chemosphere,2008,72(11):1655-1658
    [60]Liu X. T., Yu G., Han W. Y. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution. J. Hazard. Mater.,2007,147(3):746-751
    [61]Li D. W., Quan X., Zhang Y. B., et al. Microwave-induced thermal treatment of petroleum hydrocarbon-contaminated soil. Soil Sediment Contam.,2008,17(5): 486-496
    [62]Kawala Z., Atamanczuk T. Microwave enhanced thermal decontamination of soil. Environ. Sci. Technol.,1998,32(17):2602-2607
    [63]Di P., Chang D. P. Y., Dwyer H. A. Modeling of polychlorinated biphenyl removal from contaminated soil using steam. Environ. Sci. Technol.,2002,36(8): 1845-1850
    [64]Abramovitch R. A., Huang B. Z., Abramovitch D. A., et al. In situ decomposition of PAHs in soil and desorption of organic solvents using microwave energy. Chemosphere,1999,39(1):81-87
    [65]Abramovitch R. A., Huang B. Z., Davis M., et al. Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy. Chemosphere, 1998,37(8):1427-1436
    [66]Yuan S. H., Tian M., Lu X. H. Microwave remediation of soil contaminated with hexachlorobenzene. J. Hazard. Mater.,2006,137(2):878-885
    [67]Tai H. S., Jou C. J. G. Immobilization of chromium-contaminated soil by means of microwave energy. J. Hazard. Mater.,1999,65(3):267-275
    [68]Hsieh C. H., Lo S. L., Chiueh P. T., et al. Microwave enhanced stabilization of heavy metal sludge. J. Hazard. Mater.,2007,139(1):160-166
    [69]Hill J. M., Marchant T. R. Modeling microwave heating. Appl. Math. Model., 1996,20(1):3-15
    [70]Holzwarth A., Lou J., Hatton T. A., et al. Enhanced microwave heating of non-polar solvents by dispersed magnetic nanoparticles. Ind. Eng. Chem. Res., 1998,37(7):2701-2706
    [71]Jones D. A., Lelyveld T. P., Mavrofidis S. D., et al. Microwave heating applications in enviromnental engineering-a review. Resour. Conserv. Recy., 2002,34(2):75-90
    [72]Clark D. E., Folz D. C., West J. K. Processing materials with microwave energy. Johns Isl, South Carolina,1999:153-158
    [73]王鹏.环境微波化学技术.北京:化学工业出版社,2003
    [74]Venkatesh M. S., Raghavan G. S. V. An Overview of microwave processing and dielectric properties of agri-food materials. Biosyst. Eng.,2004,88(1):1-18
    [75]Di Fiore R. R., Clark D. E. Microwave-induced decomposition of ceramic oxides to form unique composites. In:Bray D, editor. Cocoa Beach, Fl.,1998,20(24): 517-523
    [76]Hidaka H., Saitou A., Honjou H., et al. Microwave-assisted dechlorination of polychlorobenzenes by hypophosphite anions in aqueous alkaline media in the presence of Pd-loaded active carbon. J. Hazard. Mater.,2007,148(1-2):22-28
    [77]Diprose M. F. Some considerations when using a microwave oven as a laboratory research tool. Plant Soil,2001,229(42):271-280
    [78]Punt N. M., Raghavan G. S. V., Belanger J. M. R., et al. Microwave-assisted process(MAP(TM)) for the extraction of contaminants from soil. J. Soil Contam., 1999,8(5):577-592
    [79]Dharmadhikari D. M., Vanerkar A. P., Barhate N. M. Chemical oxygen demand using closed microwave digestion system. Environ. Sci. Technol.,2005,39(16): 6198-6201
    [80]Gan J., Papiernik S. K., Koskinen W. C., et al. Evaluation of accelerated solvent extraction(ASE) for analysis of pesticide residues in soil. Environ. Sci. Technol., 1999,33(18):3249-3253
    [81]Darby G., Clark D. E. Uniformity in microwave processed Al2O3-ZrO2 composite bars. In:Bray D, editor. Cocoa Beach, Fl.,1998,20(13):355-360
    [82]Atong D., Clark D. E. Synthesis of TiC-Al2O3 composites using microwave-induced self-propagating high temperature synthesis(SHS). In:Bray D, editor. Cocoa Beach, Fl.,1998,20(44):415-421
    [83]Abramovitch R. A., Abramovitch D. A., Iyanar K., et al. Application of Microwave-Energy to Organic Synthesis Improved Technology. Tetrahedron Lett.,1991,32(39):5251-5254
    [84]Atong D., Clark D. E. The effect of reaction parameters on microwave-induced combustion synthesis of Al2O3-TiC composite powders. In:Folz DC, Booske JH, Clark DE, Gerling JF, editors. Sydney, Australia.,2002:207-220
    [85]Kastanek P., Kastanek F., Hajek M. Microwave-enhanced thermal desorption of polyhalogenated biphenyls from contaminated soil. J. Environ. Eng. Asce,2004, 136(3):295-300
    [86]Schulz R. L., Clark D. E., Folz D. C., et al. Microwave waste remediation:An update on applications and current research. In:Folz DC, Booske JH, Clark DE, Gerling JF, editors. Sydney, Australia,2002:433-443
    [87]Shang H., Snape C. E., Kingman S. W., et al. Treatment of oil-contaminated drill cuttings by microwave heating in a high-power single-mode cavity. Ind. Eng. Chem. Res.,2005,44(17):6837-6844
    [88]Shang H., Snape C. E., Kingman S. W., et al. Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity. Sep. Purif. Technol.,2006,49(1):84-90
    [89]Tonuci L. R. S., Paschoalatto C. F. P. R., Pisani Jr R. Microwave inactivation of Escherichia coli in healthcare waste. Waste Manage.,2008,28(5):840-848
    [90]Lee C. L., Jou C. J. G., Huang H. G. Degradation of Chlorobenzene in Water Using Nanoscale Cu Coupled with Microwave Irradiation. J. Environ. Eng.-Asce, 2004,136(4):412-416
    [91]Palafox C. L., Chase H. A. Microwave-Induced Pyrolysis of Plastic Wastes. Ind. Eng. Chem. Res.,2001,40(22):4749-4756
    [92]Ania C. O., Menendez J. A., Parra J. B., et al. Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon 2003 Conference. Oviedo, Spain,2003:1383-1387
    [93]Ania C. O., Parra J. B., Menendez J. A., et al. Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Micropor. Mesopor. Mat.,2005, 85(1-2):7-15
    [94]Ania C. O., Parra J. B., Menendez J. A., et al. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Res.,2007,41(15): 3299-3306
    [95]Carrott P. J. M., Nabais J. M. V., Carrott M., et al. Thermal treatments of activated carbon fibres using a microwave furnace. Micropor. Mesopor. Mat., 2001,47(2-3):243-252
    [96]Liu X. T., Quan X., Bo L. L., et al. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation. Appl. Catal. A-Gen.,2004,264(1):53-58
    [97]Liu X. T., Quan X., Bo L. L., et al. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon,2004,42(2):415-422
    [98]Menendez J. A., Menendez E. M., Garcia A., et al. Thermal treatment of active carbons:A comparison between microwave and electrical heating. J. Microwave Power Electromag. Energy,1999,34(3):137-143
    [99]傅大放,邹宗柏,曹鹏.活性炭的微波辐照再生试验.中国给水排水,1997,13(5):7-10
    [100]Radoiu M. T. Studies of 2.45 GHz microwave induced plasma abatement of CF4. Environ. Sci. Technol.,2003,37(17):3985-3988
    [101]Yet-Pole I. Construction of a low-pressure microwave plasma reactor and its application in the treatment of volatile organic compounds. Environ. Sci. Technol.,2004,38(13):3785-3791
    [102]Abramovitch R. A., Capracotta M. Remediation of waters contaminated with pentachlorophenol. Chemosphere,2003,50(7):955-957
    [103]Tai H. S., Jou C. J. G. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere,1999,38(11): 2667-2680
    [104]Sun Y., Zhang Y. B., Quan X. Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. Purif. Technol.,2008,62(3):565-570
    [105]Boldor D., Balasubramanian S., Purohit S., et al. Design and implementation of a continuous microwave heating system for ballast water treatment. Environ. Sci. Technol.,2008,42(11):4121-4127
    [106]孙磊,蒋新,周健民等.五氯酚污染土壤的热修复初探.土壤学报,2004,41(3):462-465
    [107]Windgasse G., Dauerman L. Microwave treatment of hazardous wastes:removal of volatile and semi-volatile organic contaminants from soil. J. Microwave Power Electromag. Energy.,1992,27(1):23-32
    [108]Abramovitch R. A., Huang B. Z., Abramovitch D. A., et al. In situ decomposition of PCBs in soil using microwave energy. Chemosphere,1999,38(10):2227-2236
    [109]Shang H., Kingman S. W., Snape C. E., et al. Reactors effects on microwave decontamination of oily wastes in a multimode cavity. Ind. Eng. Chem. Res., 2007,46(14):4811-4818
    [110]Shang H., Robinson J. P., Kingman S. W., et al. Theoretical study of microwave enhanced thermal decontamination of oil contaminated waste. Chem. Eng. Technol.,2007,30(1):121-130
    [111]余刚,刘希涛,黄俊.土壤中多氯联苯的微波热解吸/碱催化分解处理方法.专利号:200610083726,1
    [112]Abramovitch R. A., Lu C., Hicks E., Sinard J. In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosphere,2003, 53(9):1077-1085
    [113]方琳,田禹,黄君礼等.微波干燥污泥重金属及有机物固定化机理研究.哈尔滨工业大学学报,2007,39(10):1591-1595
    [114]Gan Q. A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water. Waste Manage., 2000,20(8):695-701
    [115]Forster M., Laabs V., Lamshoft M., et al. Sequestration of Manure-Applied Sulfadiazine Residues in Soils. Environ. Sci. Technol.,2009,43(6):1824-1830
    [116]Halling-Sorensen B., Nors Nielsen S., Lanzky P. F., et al. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere, 1998,36(2):357-393
    [117]李兆君,姚志鹏,张杰等.兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展.生态毒理学报,2008,3(1):15-20
    [118]Loffler D., Rombke J., Meller M., et al. Environmental fate of pharmaceuticals in water/sediment systems. Environ. Sci. Technol.,2005,39(14):5209-5218
    [119]Demoling L. A., Baath E. No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environ. Sci. Technol.,2008, 42(18):6917-6921
    [120]Drillia P., Stamatelatou K., Lyberatos G Fate and mobility of pharmaceuticals in solid matrices. Chemosphere,2005,60(8):1034-1044
    [121]Hamscher G.., Sczesny S., Hoper H., et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem.,2002,74(7):1509-1518
    [122]Arikan O. A., Mulbry W., Rice C. Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals. J. Hazard. Mater.,2009,164(2-3):483-489
    [123]Migliore L., Civitareale C., Brambilla G., et al. Effects of sulphadimethoxine on cosmopolitan weeds(Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Adv. Environ. Res.,1997,65(2):163-168
    [124]Kummerer K. Drugs in the environment:emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review. Chemosphere,2001,45(6-7):957-969
    [125]Ternes T. A., Meisenheimer M., McDowell D., et al. Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol.,2002,36(17):3855-3863
    [126]Baguer A. J., Jensen J., Krogh P. H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere,2000,40(7):751-757
    [127]Liu H., Zhang G. P., Liu C. Q. Determination of chloramphenicol and three tetracyclines by solid phase extraction and high performance liquid chromatography-ultraviolet detection. Chinese J. Anal. Chem.,2007,35(3): 315-319
    [128]Berto J., Rochenbach G. C., Barreiros M. A. B., et al. Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters. Ecotox. Environ. Safe, 2009,72(4):1076-1081
    [129]Batt A. L., Kim S., Aga D. S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere,2007,68(3):428-435
    [130]Baumgarten S., Schroder H. F., Charwath C., et al. Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds. Aachen, Germany,2007,12-13(4):1-8
    [131]Belden J. B., Maul J. D., Lydy M. J. Partitioning and photo degradation of ciprofloxacin in aqueous systems in the presence of organic matter. Chemosphere, 2007,66(8):1390-1395
    [132]Bendz D., Paxeus N. A., Ginn T. R., et al. Occurrence and fate of pharmaceutically active compounds in the environment, a case study:Hoje River in Sweden. J. Hazard. Mater.,2005,122(3):195-204
    [133]Benotti M. J., Trenholm R. A., Vanderford B. J., et al. Pharmaceuticals and Endocrine Disrupting Compounds in US Drinking Water,2009,43(3):597-603
    [134]Takino M., Daishima S., Nakahara T. Determination of chloramphenicol residues in fish meats by liquid chromatography-atmospheric pressure photoionization mass spectrometry. J. Chromatogr. A.,2003,1011(1-2):67-75
    [135]Ramos M., Munoz P., Aranda A., et al. Determination of chloramphenicol residues in shrimps by liquid chromatography-mass spectrometry. J. Chromatogr. B.,2003,791(1-2):31-38
    [136]Forti A. F., Campana G., Simonella A., et al. Determination of chloramphenicol in honey by liquid chromatography-tandem mass spectrometry. Noordwijkerhout, Netherlands,2004,10-12(51):257-263
    [137]McNiven S., Kato M., Levi R., et al. Chloramphenicol sensor based on an in situ imprinted polymer,1st International Cyber Congress on Analytical BioSciences. Japan,1998:69-74
    [138]Levi R., McNiven S., Piletsky S. A., et al. Optical detection of chloramphenicol using molecularly imprinted polymers. Anal. Bioanal. Chem.,1997,69(11): 2017-2021
    [139]李锋格,窦辉,全晓盾等.凝胶渗透色谱和固相萃取净化气相色谱-负化学源-质谱测定羊肠衣中的氯霉素残留量.中国卫生检验杂志,2007,17(6):979-982
    [140]Gentili A., Perret D., Marchese S. Liquid chromatography-tandem mass spectrometry for performing confirmatory analysis of veterinary drugs in animal-food products. Trac-Trend. Anal. Chem.,2005,24(7):704-733
    [141]Niessen W. M. A. Analysis of antibiotics by liquid chromatography mass spectrometry. J. Chromatogr. A.,1998,812(1-2):53-75
    [142]Stolker A. A. M., Niesing W., Hogendoorn E. A., et al. Liquid chromatography with triple-quadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water. Anal. Bioanal. Chem.,2004,378(4):955-963
    [143]Rabolle M., Spliid N. H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere,2000,40(7):715-722
    [144]苏洁.微波敏化剂.塑料科技,1998,7(4):5-7
    [145]谌伟艳,韩永忠,丁太文等.微波热修复污染土壤技术研究进展.微波学报,2006,22(4):66-70
    [146]邵芸,吕远,董庆等.含水含盐土壤的微波介电特性分析研究.遥感学报,2002,8(6):416-425
    [147]田勐,袁松虎,陆晓华.微波辐射在二氧化锰诱导下对六氯苯污染土壤的修复研究.环境保护科学,2006,32(2):49-52
    [148]Sheridan R., Policastro B., Thomas S., et al. Analysis and occurrence of 14 sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction followed by LC/MS/MS analysis. J. Agr. Food Chem.,2008,56(10): 3509-3516
    [149]Hong L., Horni A., Hesse M., et al. Identification and evaluation of radiolysis products of irradiated chloramphenicol by HPLC-MS and HPLC-DAD. Chromatographia,2002,55(1-2):13-18
    [150]Mclafferty F·W.王光辉译.质谱解析.第3版.北京:化学工业出版社,1987
    [151]尤启东.药物化学.北京:化学工业出版社,2004
    [152]Ye P., Lemley A. T. Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT. Water Res.,2009, 43(5):1303-1312
    [153]Sabio E., Zamora F., Ganan J., et al. Adsorption of p-nitrophenol on activated carbon fixed-bed. Water Res.,2006,40(16):3053-3060
    [154]Verchot L. V., Borelli T. Application of para-nitrophenol(pNP) enzyme assays in degraded tropical soils. Soil Biol. Biochem.,2005,37(4):625-633
    [155]Lu Q. L., Sorial G. A. A comparative study of multicomponent adsorption of phenolic compounds on GAC and ACFs. J. Hazard. Mater.,2009,167(1-3): 89-96
    [156]Kavitha V., Palanivelu K. Degradation of nitrophenols by Fenton and photo-Fenton processes. J. Photochem. Photobiol. A-Chem.,2005,170(1):83-95
    [157]Bo L. L., Quan X., Chen S., et al. Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Res.,2006,40(16):3061-3068
    [158]La Farre M., Oubina A., Marco M. P., et al. Evaluation of 4-nitrophenol ELISA kit for assessing the origin of organic pollution in wastewater treatment works. Environ. Sci. Technol.,1999,33(21):3898-3904
    [159]Wang C., Li J., Mele G., et al. Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl. Catal. B-Environ.,2007,76(3-4):218-226
    [160]Zhang H., Fei C. Z., Zhang D. B., et al. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater.,2007,145(1-2):227-232
    [161]于静.硝基酚的厌氧毒性和厌氧生物降解性研究:[硕士学位论文].青岛:中国海洋大学图书馆,2007
    [162]U. S EPA. Water Quaity Criteria. U. S. EPA. Washington, DC.,1976
    [163]张晖,蒋明,费成志等.电化学反应器中Fenton试剂分解4-硝基酚动力学.化工学报,2008,59(3):597-601
    [164]郭坤梅,邓友军.紫外分光光度法测定对硝基苯酚的适宜条件的探讨.环境污染与防治,1998,20(1):47-49
    [165]郝俊英,任守信.电化学法同时测定水样中的间硝基酚和对硝基酚.环境化学,2004,23(2):213-217
    [166]谢冰.超声波作用下有机污染物的降解.水处理技术,2000,26(2):114-118
    [167]Ramirez-Ramirez R., Calvo-Mendez C., Avila-Rodriguez M., et al. Cr(Ⅵ) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie Van Leeuwenhoek,2004,85(1):63-68
    [168]Fritzen M. B., Souza A. J., Silva T. A. G., et al. Distribution of hexavalent Cr species across the clay mineral surface-water interface. J. Colloid Interf. Sci., 2006,296(2):465-471
    [169]Gonzalez A. R., Ndung'u K., Flegal A. R. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California. Environ. Sci. Technol., 2005,39(15):5505-5511
    [170]彭莉.含铬废渣稳定化处理技术研究:[硕士学位论文].成都:西南大学图书馆,2006
    [171]张瑞华,孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤.环境科学2007,28(5):1131-1136
    [172]古昌红.铬渣对土壤污染的研究.矿业安全与环保,2005,32(6):18-21
    [173]周保学,周定.铬与人体健康.化学世界,2000,41(3):164-165
    [174]罗峰.青海海北化工厂铬渣堆积场土壤中铬的环境化学行为研究:[硕士学位论文].西安:西北农林科技大学图书馆,2006
    [175]AbdelSamad H., Watson P. R. An XPS study of the adsorption of chromate on goethite(alpha-FeOOH). Appl. Surf. Sci.,1997,108(3):371-377
    [176]Fukuoka H., Shigemoto N., Inomo H., et al. Chromate adsorption on iron oxyhydroxides with different crystal forms in the presence of soil materials. J. Chem. Eng. Jpn.,2008,41(2):69-75
    [177]Jiang J., Xu R. K., Wang Y, et al. The mechanism of chromate sorption by three variable charge soils. Chemosphere,2008,71(8):1469-1475
    [178]Vodyanitskii Y. N. Chromium and arsenic in contaminated soils(Review of publications). Eurasian Soil Sci.,2009,42(5):507-515
    [179]周加祥,刘铮.铬污染土壤修复技术研究进展.环境污染治理技术与设备,2000,1(4):52-60
    [180]Wittbrodt P. R., Palmer C. D. Reduction of Cr(VI) by soil humic acids. Eur. J. Soil Sci.,1997,48(1):151-162
    [181]Agrawal S. G., Fimmen R. L., Chin Y P. Reduction of Cr(Ⅵ) to Cr(Ⅲ) by Fe(Ⅱ) in the presence of fulvic acids and in lacustrine pore water. Chem. Geol.,2009, 262(3-4):328-335
    [182]Leita L., Margon A., Pastrello A., et al. Soil humic acids may favour the persistence of hexavalent chromium in soil. Environ. Pollut.,2009,157(6): 1862-1866
    [183]Zhilin D. M., Schmitt-Kopplin P., Perminova I. V. Reduction of Cr(VI) by peat and coal humic substances. Environ. Chem. Lett.,2004,2(3):141-145
    [184]于世繁,张国峰,齐丽艳.铬污染土壤中六价铬的测定.干旱环境监测,1996,10(4):207-210
    [185]Lu W. Y., Chen W. X., Li N., et al. Oxidative removal of 4-nitrophenol using activated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Appl. Catal. B-Environ.,2009,87(3-4):146-151
    [186]中国环境监测总站.土壤元素的近代分析方法.北京:中国环境科学出版社,1992
    [187]Hwang I., Batchelor B., Schlautman M. A., et al. Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids. J. Hazar. Mater.,2002,92(2):143-159
    [188]王锋.镧系掺杂氟化物发光生物标记纳米材料的制备与性能研究:[博士学位论文].杭州:浙江大学图书馆,2006
    [189]Liu T. Z., Rao P. H., Lo I. M. C. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron. Sci. Total Environ., 2009,407(10):3407-3414
    [190]Gaberell M., Chin Y. P., Hug S. J., et al. Role of dissolved organic matter composition on the photoreduction of Cr(Ⅵ) to Cr(Ⅲ) in the presence of iron. Environ. Sci. Technol.,2003,37(19):4403-4409
    [191]Grabarczyk M., Kaczmarek L., Korolczuk M. Determination of Cr(VI) in the presence of complexing agents and humic substances by catalytic stripping voltammetry. Electroanal.,2007,19(11):1183-1188
    [192]Gu B. H., Chen J. Enhanced microbial reduction of Cr(Ⅵ) and U(Ⅵ) by different natural organic matter fractions. Geochim. Cosmochim. Acta,2003, 67(19):3575-3582
    [193]张定一.土壤有机质对六价铬的还原解毒作用.农业环境保护,1990,9(4):29-31
    [194]单明军,冯卫强,杨建芳等.高含酚焦化废水处理工艺的实验研究.环境科学与管理,2006,31(6):72-74
    [195]周莉,傅敏,王建伟等.焦化废水高级氧化技术研究进展.重庆工商大学学报(自然科学版),2007,24(1):56-59
    [196]蔡攀,蔡建安,肖应峰.焦化废水生化处理工艺进展.广州化工,2006,34(5):49-52
    [197]赵庆良,李巍.废水脱氮工艺的原理、特征与应用.黑龙江大学自然科学学报,2005,22(5):580-587
    [198]Liu W., Qiu R. Water eutrophication in China and the combating strategies. J. Chem. Technol. Biotechnol,2007,82(9):781-786
    [199]Welander U., Henrysson T., Welander T. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res.,1998,32(5):1564-1570
    [200]林莉.废水的微波脱氮技术及机理研究:[硕士学位论文].武汉:华中科技大学图书馆,2007
    [201]Singh R. P., Heldman D. R. Introduction to Food Engineering, San Diego, California:Academic Press,2001
    [202]Kitagawa K., Kanuma Y. The reliability of magnetrons for microwave ovens. J. Microwave Power Electromag. Energy,1986,21(3):149-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700