用户名: 密码: 验证码:
四环素类抗生素在土壤中的环境行为及生态毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以四环素类抗生素为研究对象,结合2种典型土壤即褐土和红壤,分别通过振荡平衡法和室内模拟方法研究了此类抗生素在土壤中吸附、解吸和降解行为,且在不同介质(水和土壤)中研究了此类抗生素对土壤植物-小麦的生态毒性,研究结果表明:四环素类抗生素在土壤环境中的吸附动力学:在不同条件下,土壤对四环素的吸附均能在24h时达到稳定平衡。随着液土比的降低和土壤有机质的去除,四环素在2种土壤上的吸附速度加快。Elovich方程和双常数方程对四环素在土壤中的吸附动力学具有良好的拟合效果。
     四环素类抗生素在土壤环境中的吸附和解吸行为:四环素和土霉素均能被土壤强烈的吸附,结果表明,在本研究所有的测定条件下,土壤吸附了>80.00%的添加在溶液中的四环素类类抗生素,且2种土壤对四环素的吸附强于土霉素。Freundlich方程对此类抗生素在土壤中的吸附等温线具有良好的非线性拟合效果。随着土壤有机质和氧化物的去除,土壤对此类抗生素的吸附容量下降;Ca2+、K+、Na+ 3种离子介质条件下,由于Ca2+与此类抗生素能够形成稳定的络合物,因此以Ca2+介质中抗生素在土壤上的吸附最弱;随着液土比的增加,土壤对抗生素的吸附容量和吸附强度均呈下降趋势;当pH值>5.5,随着实际土壤平衡溶液中的pH的增加,土壤对四环素的吸附下降。此类抗生素在褐土中的解吸滞后系数高于红壤,且土霉素的解吸滞后性强于四环素。去除土壤有机质基本上能够增加此类抗生素在土壤中的滞后性;不同离子条件下,以四环素在Ca2+介质中的解吸滞后系数最大,土霉素在K+介质中的解吸滞后系数最大。温度对此类抗生素吸附解吸的影响并不明显。四环素类抗生素在土壤中的吸附以物理吸附为主。
     四环素类抗生素在土壤环境中的降解行为:四环素和土霉素在土壤中的降解随着时间的延长而变缓。根据半衰期数值显示,四环素在土壤中具较易降解性,而土霉素具中等降解性;四环素在褐土中的降解快于红壤,而土霉素在红壤中的降解快于褐土。去除土壤有机质能够延缓四环素和土霉素的降解,且土壤有机质对四环素降解的影响比土霉素强烈。土著微生物并不影响此类抗生素在土壤中的降解。
     四环素类抗生素对小麦的生态毒性:根伸长抑制率是此类抗生素最好的生态毒性指示指标。土壤对抗生素污染有重要的缓冲作用,其中对土霉素的缓冲强度高于四环素。在不同介质中,小麦的根伸长抑制率(或芽伸长抑制率)与此类抗生素的浓度之间均存在明显的剂量-效应关系。四环素和土霉素在水溶液中的生态毒性指标IC10分别为25.88,24.22mg/L,而在土壤中分别增加至377.8,717.6mg/kg,介质类型严重影响着污染物的IC10值。
Batch sorption methods and indoor simulation methods were employed to reveal adsorption, desorption and degradation process of antibiotic tetracyclines in two tested soils (cinnamon soil and red soil). The effects of antibiotic tetracyclines on the eco-toxicity of wheat in two medium (water and soil) was also investigated. The results were as follows:
     Adsorption dynamic of tetracycline in two soils. Under different condition, the absorption of tetracycline in soil can reach stable equilibrium after 24h. With the decreasing of soil-to-solution ratio and the removal of soil organic matter, absorption rate of tetracycline in two kinds of soil was speeded up. Elovich equation and Exponent equation can better simulate the relationship tetracycline adsorption in the soil and time.
     Adsorption and desorption of antibiotic tetracyclines in two soils. Tetracycline and oxytetracycline were both strongly absorbed in soils. In this study, more than 80.00% antibiotic tetracyclines added in the solution were absorbed by soils under all condition. And the absorption of soils on tetracycline was stronger than oxytetracycline. Freundlich equation was better non-linear fitting to the antibiotics adsorption isotherm in soils. As the removal of soil organic matter and soil oxides, the absorption capacity of Soil on such antibiotics declined. Under Ca2+、K+、Na + medium, the adsorption of antibiotics in the soil was the weakest in Ca2+ medium. With the increasing of the soil-to-solution ratio, soil absorption capacity and absorption intensity of antibiotics decreased. When pH is above 5.5, soil absorption of tetracycline decreased with the increasing of pH in the final soil solution.
     Hysteresis index (HI) of desorption of anyibiotic in cinnamon soil was higher than in red soil, and HI of oxytetracycline was higher than tetracycline in same soil. Removal of soil organic matter is basically able to increase HI of desorption of such antibiotics in the soil. Under Ca2+、K+、Na + medium, HI of tetracycline in Ca2+ medium and oxytetracycline in K+ medium were higher than other condition. There was obvious effect of temperature on the absorption of antibiotics in soil. The adsorption of antibiotic tetracyclines in the soils mainly was physical adsorption.
     The degradation of antibiotic tetracyclines in two soils. The degradation of tetracycline and oxytetracycline in soils gradually slowed with the increasing of time. According to the half-life of antibiotic, tetracycline was easier to degrade and oxytetracycline was middle-easier to degrade. The degradation of tetracycline in cinnamon soil was faster than in red soil, and oxytetracycline was on the contrary. Removal of soil organic matter can decreased the degradation of tetracycline and oxytetracycline in soils. The effect of soil organic matter on tetracycline degradation was stronger than oxytetracycline. Indigenous soil microorganisms can not affect the antibiotics degradation in soil.
     The eco-toxicity of tetracycline antibiotics to wheat. The inhibition rate of root elongation was the most appropriate eco-toxicity index in following three parameters including seed germinating, root elongation and shoot elongation. Soil on tetracycline antibiotics pollution has an important buffer. Soil buffer on oxytetracycline was stronger than on tetracycline. In different medium, there was a significant logarithmic relationship between the concentration of antibiotics and the inhibition rates of root elongation (or inhibition rates of shoot elongation) of wheat. IC10 of tetracycline and oxytetracycline in water was 25.88mg/kg and 24.22mg/kg, respectively, however, their IC10 values were increased largely in soil with 377.8mg/kg and 717.6mg/kg, respectively. Aboved results showed that medium can strongly affect IC10 values.
引文
1 Aga D S., O’Connor S., Enslev S O., et al. 2006. Determination of the persistence of tetracycline antibiotics and their degradates in manure - amended soil using enzyme - linked immunosorbent assay and liquid chromatography- mass spectrometry [J]. Journal of Agricultural and Food Chemistry, 53: 7165-7171.
    2 Ajit K S., Michael T., Meyer, et al. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 65(5):725-759.
    3 Alcock R E., Sweetman A., Jones, K C., 1999. Assessment of organic contaminant fate in wastewater treatment plants I. Selected compounds and physiochemical properties [J]. Chemosphere, 38: 2247-2262.
    4 Alexander M.1985. Biodegradation of organic chemicals [J].Environmental Science Techno1ogy, 19: 106-111.
    5 Baguer A J., Jensen J., Krogh P H. 2000. Effects of the antibiotics oxytetracycline and tylosin on soil fauna [J]. Chemosphere, 40(7): 751-757.
    6 Bailey V L., Smith J L., Jr Bolton H. 2002. Fungal - to- bacterial ratios in soils investigated for enhanced C sequestration [J]. Soil Biology & Biochemistry, 34(7): 997-1007.
    7 Bailey V M., Smith J L., Bolton H. 2003. Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal : bacterial ratios in soil [J]. Biology and Fertility of Soils, 38: 154-160.
    8 Backhaus T., Grimme L H. 1999. The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri [J]. Chemosphere, 38: 3291-3301.
    9 Batchelder A R. 1981. Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures [J]. Journal of Environment Quality, 10 (4): 515-518.
    10 Batchelder A R. 1982. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems [J]. Journal of Environment Quality, 11(4): 675-678.
    11 Beconi-Barker M G., Hornish R E., Vidmar T J., et al. 1996. Ceftiofur hydrochloride: plasma and tissue distribution in swine following intramuscular administration at various doses [J]. Journal of Veterinary Pharmacology and Therapeutics, 19: 192-199.
    12 Blackwell P., Lützh?ft H C., Ma H P., et al., 2004. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC–UV and fluorescence detection [J]. Talanta, 64(4):1058-1064.
    13 Boleas S., Alonso C., Pro J., Fernández A, et al. 2005. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi - species - soil system (MS·3) and influence of manure co- addition [J]. Journal of Hazardous Materials, 122: 233-241.
    14 Boxall A B A., Blackwell P., Cavallo R., et al. The sorption and transport of a sulphonamide antibiotic in soil systems [J]. Toxicology, 2002, 131: 19- 28.
    15 Bradel B G., Preil W., Jeske H. 2000. Remission of the free-branching pattern of Euphorbia pulcherrima by tetracycline treatment [J]. Journal Phytopathology, 148: 587-590.
    16 Bruce J R., Paul K S L., Michael M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China [J]. Marine Pollution Bulletin, 2005, 50: 913-920.
    17 Campagnolo E R., Johnson K R., Karpati A., et al. 2002. Antimicrobial residues in animal waste and water resources proximal to large - scale swine and poultry feeding operations [J]. Science of the Total Environment, 299: 89-95.
    18 Carter M C., Kilduff J E., Weber J W J. 1995. Site energy distribution analysis of preloaded adsorbents [J]. Environmental Science Techno1ogy, 29: 1773-1780.
    19 Cheng G., Karthikeyan K G., Samuel D S., et al. 2007. Complexation of the antibiotic tetracycline with humic acid [J]. Chemosphere, 66(8): 1494-1501.
    20 Cheng Gu. 2005. Interaction of Tetracycline with Aluminum and Iron Hydrous Oxides [J]. Environmental Science Techno1ogy, 39: 2660-2667.
    21 De Liguoro M., Cibin V., Capolongo F., et al. 2003. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil [J]. Chemosphere, 52: 203- 212.
    22 Donoho, A.L., 1984. Biochemical studies on the fate of monensin in animals and in the environment [J]. Journal of Animal Science, 58, 1528-1539.
    23 Elmund G K., Morrison S M., Grant D W., et al. 1971. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste [J]. Bull Environ Toxicol, 6: 129-132.
    24 European Federation of Animal Health (FEDESA). 2001. Antibiotic use in farm animals does not threaten human health? FEDESA/FEFANA Press release. 13 July. Brussels, Belgium. 167-169.
    25 Figueroa R A., Leonard A., Mackay A A., 2004. Modeling tetracycline antibiotic sorption to clays [J]. Environmental Science Techno1ogy, 38: 476-483.
    26 Gavalchin J., Katz S E. 1994. The persistence of faecal2borne antibiotics in soil [J]. Journal of AOAC International, 77: 481-485.
    27 Giorgia M L., Davide C., Paolo G. et al. 2004. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy [J]. Chemosphere, 54(5): 661-668.
    28 Gr?slund S., Holmstr?m K., Wahlstr?m A. 2003. A field survey of chemicals and biological products used in shrimp farming [J]. Marine Pollution Bulletin, 46(1): 81-90.
    29 Gu C., Karthikeyan K G. 2005. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environmental Science Techno1ogy, 39: 2660-2667.
    30 Halling-S?rensen B., Lykkeberg A., Ingerslev F., et al. 2003. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC–MS–MS [J]. Chemosphere, 50 (10): 1331-1342.
    31 Halling-S?ensen B. 2001. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents [J]. Archives of Environmental Contamination and Toxicology, 40: 451-460.
    32 Halling-S?rensen B. 2000. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere, 40: 731-739.
    33 Halling - S?rensen B., Nors Nielsen S., Lanzky P F., et al., 1998. Occurrence, fate and effects of pharmaceutical substances in the environment - a review [J]. Chemosphere, 36(2): 357-393.
    34 Hamscher G., Sczesny S., Hoper H., Nau H. 2002. Determination of persistent tetracycline residues insoil fertilized with liquid manure by high - performance liquid chromatography with electrospray ionization tandem mass spectrometry [J]. Analytical Chemistry, 74: 1509-1518.
    35 Hamscher G., Sczesny S., Abu - Qare A. et al. 2000. Substanceswith pharmacological effects including hormonally active substances in the environment: identification of tetracyclines in soil fertilized withanimal slurry [J]. Dtsch Tierarztl Wochenschr, 107(8): 332-334.
    36 Hans S., Richard A B., David J J., et al. 2004. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones [J]. Toxicology, 203(1-3): 27-40.
    37 Heilig S., Lee P., Breslow L. 2002. Curtailing antibiotic use in agriculture [J]. West J Med, 176: 9-11.
    38 Hektoen H., Berge J A., Hormazabal V. et al. 1995. Persistence of antibacterial agents in marine sediments [J] . Aquaculture, 133: 175-184.
    39 Herd R. 1996. Points in question ecotoxicity of the avermectins: A reply to Forbes [J]. Journal of Parasitology, 26(5): 571-572.
    40 Hirsch R., Terlles T., Haberer K. 1999. Occurrence of antibiotics in the aquatics environment [J]. Science of the Total Environment, 36: 3573-3593.
    41 Hoekstra J A., van Ewijk PH. 1993. Alternatives for the No-Observed-effect level [J]. Environmental Toxicology and Chemistry, 12(1): 187-194.
    42 Holten L H. 1999. Algal toxicity of antibacterial agents applied on Danish fish farming [J]. Archives of Environmental Contamination and Toxicology, 36: 1-6.
    43 Hossain A K M, Alexander M. 1984. Enhanzing soybean rhizosphere colonization by Rhizobium japonicum [J]. Applied and Environmental Microbiology, 48: 468-472.
    44 Huang W L., Peng P A., Yu Z Q et al. 2003. Effects of Organic Matter Heterogeneity on Sorption and Desorption of Organic Contaminants by Soils and Sediments [J]. Applied Geochemistry, 18: 955-972.
    45 Huang W., Weber W J. 1998. A distributed reactivity model for sorption by soils and sediments. 11. Slow concentration-dependent sorption rates [J]. Environmental Science Techno1ogy, 32: 3549-3555.
    46 Huang W., Weber W J. 1997. A distributed reactivity model for sorption by soils and sediments. 10. Relationship between desorption, hysteresis, and the chemical characteristics of organic domains [J]. Environmental Science Techno1ogy, 31: 2562-2569.
    47 Ingerslev F., Halling-S?rensen B. 2001. Biodegradability of Metronidazole, Olaquindox, and Tylosin and Formation of Tylosin Degradation Products in Aerobic Soil–Manure Slurries [J]. Ecotoxicology and Environmental Safety, 48(3):311-320.
    48 Jemba P K. 2002. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review [J]. Agriculture, Ecosystems and Environment, 93: 267-278.
    49 Jensen J. 2001. Veterinary medicines and soil quality: the Danish situation as an example. In: Daughton, C.G., Jones-Lepp, T. (Eds.), Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues, Symposium Series, vol. 791. American Chemical Society, Washington, DC, pp. 282-302.
    50 Jerold S T., Roger D M. 2003. Aerobic degradation of tylosin in cattle, chicken, and swine excreta [J]. Environmental Research, 93: 45-51.
    51 Juttar V P., Davida L. 2007. Sorption of Tetracycline and Chlortetracycline on K- and Ca-Saturated Soil Clays, Humic Substances, and Clay-Humic Complexes [J]. Environmental Science Techno1ogy, 41: 1928-1933.
    52 Kjaer C., Pedersen N., Elmegaard N. 1998. Effects of soil copper on black bindweed (Fallopia convov ul us) in the laboratory and in the field [J]. Arch Environ Contamn Toxicol, 35:14-19.
    53 Kong W D., Zhu Y G., Liang Y C., et al. 2007. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.) [J]. Environmental Pollution, 147: 187-193.
    54 Kong W D., Zhu Y G., Fu B J., et al. 2006. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community [J]. Environmental Pollution, 143: 129-137.
    55 Kuhne M., Ihnen D., Moller G., et al. 2002. Stability of tetracycline in water and liquid manure [J]. Journal Veterinary Medicine A, 47: 379-84.
    56 Kumar K., Gupta S C., Chander Y., et al. 2005. Antibiotic use in agriculture and their impact on terrestrial environment [J]. Advances in Agronomy, 87: 1-54.
    57 Loke M L., Sonja J., Vreeken R., et al. 2003. Determination of oxytetracycline and its degradation products by high-performance liquid chromatography–tandem mass spectrometry in manure-containing anaerobic test systems [J]. Journal of Chromatography B, 783(1): 11-23.
    58 Lunestad B T., Goks?yr J. 1990. Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium [J]. Diseases of Aquatic Organisms, 9: 67-72.
    59 Miskoski S., Sánchez E., Garavano M., et al. 1998. Singlet molecular oxygen-mediated photo-oxidation of tetracyclines: kinetics, mechanism and microbiological implications [J]. Journal of Photochemistry and Photobiology B: Biology, 43(2): 164-171.
    60 Montforts M H. 1999. Environmental risk assessment for veterinary medicinal products. Part 1: Other than GMO-containing and immunological products. RIVM report 601300 001, N120. National Institute of Public Health and the Environment, Bithoven, The Netherlands.
    61 Morales - Mu?z S., Luque - García J L., Luque de Castro M D. 2004. Continuous microwave - assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples [J]. Journal of Chromatography A, 1059(1-2): 25-31.
    62 Müller S R., Singer H P., Stoob K., et al. 2003. Occurrence and fate of antibiotics in manure, soil and water [J]. Mitt Lebensm Hyg, 94: 574-578.
    63 OECD. OECD guidelines for testing of chemicals, test guideline 106: adsorption/desorption using a batch equilibrium method [M]. Revised Draft Document. Paris: OECD, 2000. 1-45.
    64 Oka H., Ito Y., Matsumoto H. 2000. Chromatographic analysis of tetracycline antibiotics in foods [J]. Journal of Chromatography A, 882: 109-133.
    65 Pankai kulshrestha, Rossman F. Giese, JR., and Diana S. Aga. 2004. Investigating the Molecular Interactions of Oxytetracycline in Clay and Organic Matter: Insights on Factors Affecting Its Mobility in Soil [J]. Environmental Science Techno1ogy, 38: 4097-4105.
    66 Qafoku, Nikolla P., Malcolm E. 2000. Anion transport in columns of variable charge subsoils: nitrate and chloride [J]. Journal of Environmental Quality, 29(2):484-493.
    67 Rab?lle M., Spliid NH. 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline 90and tylosin in soil [J]. Chemosphere, 40(7): 715-722.
    68 Raquela A F., Allisonleonard A M. 2005. Sorption of Oxytetracycline to Iron Oxides and Iron Oxide-Rich Soils [J]. Environmental Science Techno1ogy, 39: 6664-6671.
    69 Raquela F., Allisonleonard, Allisona M. 2004. Modeling Tetracycline Antibiotic Sorption to Clays [J]. Environmental Science Techno1ogy, 38: 476-483.
    70 Recep G., Bilal A., Mehmet H A. 2004. Copper (Ⅱ) adsorption from aqueous solution by herbaceous peat [J]. Journal of Colloid and Interface Science, 269:303-309.
    71 Roman H., Thomas T., Klaus H., et al. 1999. Occurrence of antibiotics on the aquatic environment [J]. Science of the Total Environment, 225:109-118.
    72 Samuelsen O B., Torsvik A. 1992. Long-range changes in oxytetracycline concentration and bacterial resistance toward oxytetracycline in a fish sediment after medication [J]. Science of the Total Environment, 114:25-36.
    73 Samuelsen O B. 1989. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm [J]. Aquaculture, 83(1-2): 7-16
    74 Sassman S A., Lee L S. 2005. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange [J]. Environmental Science Techno1ogy, 39: 7452-7459.
    75 Schmitt M O., Schneider S., 2000. Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+ [J]. Phys Chem Comm, 9: 1-14.
    76 Sitaula B K., Sitaula J B., Aakra A., et al. 2001. Nitrification and methane oxidation in forest soil: Acid deposition, nitrogen input and plant effects [J]. Water, Air and Soil Pollution, 130(1-4): 1061-1066.
    77 Stephen A S., Linda S L. 2005. Sorption of Three Tetracyclines by Several Soils: Assessing the Role of pH and Cation Exchange [J]. Environmental Science Techno1ogy, 39: 7452-7459.
    78 Tang Y L., Wang R C., Huang J F. 2004. Relations between red edge Characteristics and agronomic parameters of crops [J]. Pedosphere, 14(4): 467-474.
    79 Thiele S., Beck I C. 2005a. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere, 59(4): 457- 465.
    80 Thiele S. 2005b. Microbial inhibition by pharmaceutical antibiotics in different soils - dose - effect relations determined with the iron (III) reduction test [J]. Environmental Toxicology and Chemistry, 24(4): 869- 876.
    81 Thiele-Bruhn S., Seibick T., Schulten H R., et al. 2004. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions [J]. Journal of Environmental Quality, 33: 1331-1342.
    82 Thiele-Bruhn S., Peters D., Halling-S?rensen B., et al. 2003. Photodegradation and ageing of antibiotic pharmaceutical on soil. Lyon: Presentation of project results on Envirpharma European conference, 14-16.
    83 Tolls J. 2001. Sorption of veterinary pharmaceuticals in soils: A review [J]. Environmental Science Techno1ogy, 35(17): 3397-3406.
    84 Tue S?eborg., Flemming Ingerslev, Bent Halling-S?rensen. 2004. Chemical stability ofchlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water [J]. Chemosphere, 57(10): 1515-1524.
    85 UCS. 2001. Hogging it: Estimates of antimicrobial abuse in livestock [OL] . Food and Environment. Union of Concerned Scientists (UCS). 2001 - 01. http:/ /www.ucsusa.org/ food and environment / antibiotic resistance/ index
    86 Warman P R., Thomas R L. 1981. Chlortetracycline in soil amended with poultry manure [J]. Canadian Journal of Soil Science, 61(1): 161-163.
    87 Westergaard K., Müller A. K., Christensen S., et al. 2001. Effects of tylosin as a disturbance on the soil microbial community [J]. Soil Biology and Biochemistry, 33(15): 2061-2071.
    88 Wessels J M., Ford W E., Szymczak W., et al. 1998. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: a spectroscopic study [J]. J. Phys. Chem. B 102, 9323–9331.
    89 Wollenberger L., Hallong-Sorensen B., Kusk K O. 2000. Acute and chronic toxicity of veterinary antibio tics to Daphnia magna [J]. Chemosphere, 40: 723-730.
    90 Yu Y., Zhou Q X. 2005. Adsorption characteristics of pesticides methamidophos and glyphosate by two soils [J]. Chemosphere, 58: 811-816.
    91 Zhou Q X., Zhang Q R., Liang J D. 2006. Toxic effects of acetochlor and methamidophos on earthworm Eisenia foetida in phaeozem, northeast China [J]. Journal of Environmental Sciences, 18(4): 741-745.
    92鲍艳宇,周启星,谢秀杰. 2008.素类抗生素对小麦种子芽与根伸长的影响[J].中国环境科学,28(6):313-318.
    93鲍艳宇. 2006.几种畜禽粪便堆腐过程中物质转化及无害化和腐熟度参数的探讨[A].博士学位毕业论文,36.
    94陈育枝,张元元,袁希平,张曦. 2006.动物四环素类抗生素现状及前景[J].兽药,11(3):16-17.
    95陈志宇,苏继影,栾冬梅. 2004.畜禽粪便堆肥技术研究进展[J] .当代畜牧,10: 41- 43.
    96刁晓平,孙振钧,沈建忠. 2004.兽药的生态毒理及其对环境影响的研究进展[J].应用生态学报,15(2):321-325.
    97傅献彩,沈文霞,姚天扬,等. 1997.物理化学(第四版)[M].北京:高等教育出版社,961-978.
    98高俊敏,郑泽根,王琰. 2003. TiO2/ZnO光催化降解四环素的研究[J] .重庆环境科学,25(1):17-19.
    99龚道新,汪传刚,邹雅竹,杨仁斌,郭正元,樊德方.咪鲜胺及其三种主要代谢物在六种水稻土中的吸附[J].土壤学报,2007,44(1):90-97.
    100何家香. 2003.原料乳中抗生素残留的现状与对策[J].当代畜禽养殖业,8:53-54.
    101胡枭,樊耀波,王敏健. 1998.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境科学进展,7(5):14-22.
    102孔维栋,朱永官. 2007.抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J].生态毒理学报,2(1):1-9.
    103李兆君,姚志鹏,张杰,梁永超. 2008.兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J].生态毒理学报,3(1):15-20.
    104梁重山,党志,刘丛强,黄伟林. 2006.不可提取态有机质对菲和萘的吸附过程的影响[J].土壤学报,43(2):342-346.
    105梁重山,党志,刘丛强,黄伟林. 2005.土壤有机质对菲的吸附-解吸平衡的影响[J].高等学校化学学报,26(4):671-676.
    106梁继东,周启星.甲胺磷、乙草胺和铜单一与复境安全的胁迫研究[J].环境科学学报, 2004, 24(3):474-481.
    107廖新俤,蒋骥,吴银宝,肖德武. 2001.猪场使用药物饲料添加剂对环境的影响[J].家畜生态,22(1):13-15.
    108刘忠珍,何艳,吴愉萍,汪海珍,徐建明. 2007.土壤中丁草胺的吸附动力学[J].中国环境科学,27(4):493-497.
    109陆志强,郑文教,马丽等. 2005.不同浓度萘和芘处理对红树植物秋茄胚轴萌发和幼苗生长的影响[J].厦门大学学报(自然科学版),44(4): 580-582.
    110欧晓明,余淑英,罗玲,王永江,王晓光. 2007.新农药硫肟醚在土壤上的吸附[J].农业环境科学学报,26(2):577-582.
    111齐香君. 2004.现代生物制药工艺学[M].北京:化学工业出版社.
    112万寅婧,占新华,周立祥. 2005.土壤中芘、菲、萘、苯对小麦的生态毒性影响[J].中国环境科学,25(5):563-566.
    113王方浩,马文奇,窦争霞,马林,刘小利,许俊香,张福锁. 2006.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,26(5):614-617
    114王兰. 2006.抗生素污染现状及对环境微生态的影响[J].药物生物技术,13(2):144-148.
    115王冉,刘铁铮,王恬. 2006.抗生素在环境中的转归及其生态毒性[J].生态学报,26(1):265-269.
    116王泽港,葛才林,万定珍等. 2006. 1, 2, 4-三氯苯和萘对水稻幼苗生长的影响[J].农业环境科学学报,25(6):1402-1407.
    117吴银宝,汪植三,廖星俤,陈杖榴. 2005.恩诺沙星在鸡体中的排泄及其在鸡粪中的降解[J].畜牧兽医学报,36(10):1069-1074.
    118肖希龙.1999.兽药的发展和管理[J].中国禽业导刊,16(1):14-17.
    119谢显传,张少华,王冬生,皇甫伟国,杨挺,赵健. 2007.阿维菌素土壤吸附特性研究[J].中国农业科学,40(9):1959-1963.
    120俞道进,曾振灵,陈杖榴. 2004.四环素类抗生素残留对水生态环境影响的研究进展[J].中国兽医学报,24(5):515-517.
    121俞文和,杨纪根. 1988.抗生素工艺学[M].沈阳:辽宁科学技术出版社.
    122张从良,王岩,文春波,王福安. 2007.磺胺嘧啶在不同类型土壤中的吸附研究[J].农机化研究,9:143-146.
    123张丛志,赵炳梓,张佳宝,张辉,王秋英. 2007.我国典型土壤对病毒等温静态吸附的数值模拟[J].环境科学,28(8):1835-1840.
    124张劲强,董元华,安琼,刘新程. 2005.兽药抗生素在土壤环境中的行为[J].土壤,37(4):353-361.
    125张克强,高怀友. 2004.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社
    126张树清,张夫道,刘秀梅,等. 2005.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005, 11(6):822-829.
    127张许科,刘兴金.2002.国内外兽药发展趋势及对策[J].中国家禽,24(7):1-4.
    128章明奎,王丽平,郑顺安. 2008.两种外源抗生素在农业土壤中的吸附与迁移特性[J].生态学报,28(2):761-766.
    129周启星,罗义,王美娥. 2007.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2(3):243-251.
    130周启星,王美娥. 2006.土壤生态毒理学研究进展与展望[J].生态毒理学报,1(1):1-11.
    131周启星,孔繁翔,朱琳. 2004.生态毒理学[M].北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700