用户名: 密码: 验证码:
土霉素的微生态效应及其在土壤环境中的降解特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着畜牧业的发展,抗生素作为兽药被越来越广泛地应用于畜禽养殖业中。它在保障动物健康,促进畜牧业发展,改善人民生活水平等方面起了重要的作用。但是,兽药为人们带来诸多方便的同时,也造成了对人体健康和环境卫生的潜在危害,如兽药在动物性食品中的残留可导致人类变态(或过敏)反应、致畸、致突变和激素样作用等等。用药动物排至环境中的兽药及其代谢产物也会对人类生活的环境和生态系统产生影响。因此,除进行兽药对食品动物的药理毒理学研究外,亦应重视其对生态环境影响的研究,以求创造更安全、更适于畜牧业持续发展的优良生态环境。开展兽药对环境影响的研究是关系到人类健康和环境保护的重大课题。为此,我们通过室内微型模拟培养试验,并采用高效液相色谱等手段,对兽用抗生素土霉素的微生态环境效应进行了研究,同时还研究了土霉素在不同温度条件下降解特征。取得的主要研究结果如下:
     1.土霉素的生态毒理效应
     本试验研究了土霉素对我国两种有代表性的土壤(潮土和黑土)微生物活性的影响,结果表明,土霉素在土壤中有一定的生态风险,对土壤酶活性和土壤微生物生物量的影响较为复杂,且与其在土壤中的持留时间有关,具体表现为:
     (1)土霉素对土壤酶活性的影响。潮土脲酶活性表现为前期受到抑制,后期则受到刺激,而黑土脲酶活性在56天以前表现不明显(第1天100 mg OTC kg-1处理除外),56天以后表现为激活作用;潮土磷酸酶活性表现为前期受到刺激而后期则表现为抑制作用,黑土磷酸酶活性整体表现为前期以抑制作用为主,培养第112天则变现为低浓度时受到刺激和高浓度受到抑制;土霉素对潮土过氧化氢酶活性的影响表现为,整个培养期内均受到抑制,但是在后期随着培养时间的延长,过氧化氢酶活性受抑制的程度逐渐减弱,土霉素对黑土过氧化氢酶活性的影响与潮土相似;土霉素对潮土蔗糖酶活性的影响表现为,在培养第7、14、21、28、56天里,所有土霉素的处理,土壤蔗糖酶活性均低于对照,直到第112天蔗糖酶活性才恢复到对照的水平;土霉素对黑土蔗糖酶活性的影响在前期不明显,后期表现为强烈的抑制作用,直到培养结束这种抑制作用仍然存在;土霉素对潮土脱氢酶活性的影响在整个培养期间表现为刺激作用;土霉素对黑土脱氢酶活性的影响,在第28天前不明显,第28天后对脱氢酶活性具有刺激作用,第56天后则表现为抑制作用。
     (2)土霉素对土壤微生物生物量的影响。本试验条件下,土霉素对土壤微生物生物量及微生物生物量碳/氮的影响也与土霉素在土壤中的持留时间有关。具体表现为:培养第14至21天,土霉素对土壤微生物生物量影响较强烈,在培养第112天,土霉素对土壤微生物生物量的影响仍然存在。在培养后期,土霉素增加了土壤微生物生物量碳和氮的比率,表明土霉素可能会引起土壤微生物种群的改变。
     2.不同温度条件下土霉素的降解规律。
     土霉素在不同温度下降解速率是不同的,具体表现为:
     (1)土霉素在不同温度处理土壤中降解速率不同,25℃培养条件下降解速度明显快于4℃培养。土霉素在土壤中的降解符合一级动力学方程,不论是在25℃培养还是在4℃培养,其降解曲线均为幂指数方程,相关系数显著。
With the development of stockbreeding, antibiotics are widely used in the animal and poultry production as veterinary drugs to protect animal and poultry from illness and to promote their growth. The usage of antibiotics in animal and poultry farms has been successful in improving farm animal production, promoting the development of animal husbandry, improving living standard and food security. However, veterinary drugs are potentially harmful to organisms in environments. For instance, veterinary drug residues in animal food can cause human allergy, malformation and mutation. Moreover, veterinary drug residues in environments can influence human life and ecosystem. Thus, in order to create a safe and clean environment, research objectives should be focused on not only the veterinary drugs pharmacology and toxicology, but also the influence of veterinary drugs on microorganisms in terrestrial ecological environments. In the present research, primary micro-ecological effects of oxytetracycline were evaluated by using incubation experiments and its degradation in soil under different temperature regimes was also investigated by means of HPLC. The main results were presented as follows:
     1.The micro-ecological effects of oxytetracycline in soil
     An incubation experiment was conducted to study the micro-ecological effects of oxytetracycline in two representative soils in China (fluvo-aquic soil and black soil). The results showed that oxytetracycline posed some ecological risks in the soils. The effects of oxytetracycline on soil enzymes and microbial biomass were dependant on the retention time of oxytetracycline in soils.
     (1) The effects of oxytetracycline on soil enzymes. Urease activity was inhibited at early stages but were stimulated at later stages in fluvo-aquic soil tested, while it was unchanged before the 56- day in the black soil tested (except for the treatment with OTC at the level of 100 mg OTC kg-1 at the first day of incubation), and stimulated by OTC at the 112th day. Phosphatase activity was inhibited in fluvo-aquic soil tesed in the early stages and stimulated in the later stages. By contrast, phosphatase activity of black soil was restrained until the 112th day, and was stimulated with lower concentrations of OTC and restrained with higher concentrations of OTC. The activities of catalase were restrained in the whole culture periods, but were enhanced with increasing of culture time in both tested soils. The activity of sucrase in the fluvo-aquic soil treated with OTC was lower than that of the control treatment and was not recovered to the normal level until at the 112th day. However, in black soil, effects of OTC on activity of sucrase were not changed significantly within 28 days, and the enzyme activity was inhibited strongly afterwards. In general, the OTC added stimulated the activity of dehydrogenase in the fluvo-aquic soil. The activity of dehydrogenase in the black soil was not siginificantly affected by OTC before the 28th day and was stimulated until the 56th day, but was inhibited afterwards.
     (2) The effect of veterinary drug oxytetracycline on microbial biomass in soil
     Under the experimental conditions, the effect of OTC on microbial biomass and carbon-nitrogen ratio (C/N) was dependent closely on the retention time of OTC in soil. The results showed that OTC significantly affected soil microbial biomass from the 14th day to the 21th day and such effect could be still observed at the 112th day. In addition, the addition of oxytetracycline could increase the ratio of soil microbial biomass carbon to soil microbial biomass nitrogen, suggesting that oxytetracycline might change the microbial community.
     2. Degradation of oxytetracycline under different temperature regimes.
     The degradation of oxytetracycline varied greatly from temperature regimes.
     (1) The degradation rate of oxytetracycline was quicker at 25℃than at 4℃. The degradation curve of oxytetracycline at 25℃or 4℃could be fitted into exponent equationswith correlation coefficient reached significantly level.
引文
1. 曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105~109.
    2. 陈杖榴, 杨桂香,孙永学等.兽药残留的毒性与生态毒理研究进展,华南农业大学学报,2001,22(1):88~91.
    3. 程云,周启星.土壤脲酶和脱氢酶对活性 X~3B 红污染暴露的耐受性及机理研究.环境科学,2003,24(2):23~29.
    4. 单敏, 虞云龙,方华等.丁草胺对土壤微生物数量和酶活性的影响.农药学学报,2005, 7 (4) : 383~386.
    5. 刁晓平,孙英健,孙振钧等. 磺胺二甲基嘧啶对土壤微生物活动的影响.农业环境科学学报,2005,24(4):694~697.
    6. 刁晓平,孙英健,孙振钧等.安普霉素对不同土壤中微生物活动的影响.生态环境,2004, 13(4): 565~568.
    7. 房文红,邵锦华,施兆鸿等.斑节对虾血淋巴中诺氟沙星含量测定及药代动力学.水生生物学报,2003,27(1):13~17.
    8. 冯新,韩文瑜,雷连成.细菌对四环素类抗生素的耐药机制研究进展.2004,38(2):38~42
    9. 高俊敏,郑泽根,王琰. TiO2/ZnO 光催化降解四环素的研究.重庆环境科学,2003,25(1):17~19
    10. 关松荫.土壤酶及其研究法.北京:农业出版社,1986.
    11. 关松荫.土壤酶与土壤肥力的关系.土壤肥料,1980,(2):19~21.
    12. 和文祥,朱铭莪. 陕西主要土壤脲酶活性与肥力关系研究.土壤学报,1997,34(4):392~398.
    13. 胡滨.家禽土霉素蓄积性毒性试验与 HPLC 残留分析研究[硕士论文].成都:四川农业大学,2006.
    14. 胡著邦.镉与苄嘧磺隆除草剂复合污染土壤的微生物生态效应[硕士论文].杭州:浙江大学,2003.
    15. 黄智,李时银,刘新会等.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响.环境化学,2002,25(5):481~484.
    16. 贾继元.铅与苄嘧磺隆除复合污染对苄嘧磺隆的降解及土壤微生物生物量的影响.硕士论文,2005.
    17. 抗生素滥用:无知和贪婪的恶果。http://nxtv.39.net.cn/Professional/Drug/News/ 200110/1085302011022.htm,2004.
    18. 可欣,颜丽,朱宁等.双氰胺对土壤酶活性的影响.土壤通报,2003,34(4):346~348.
    19. 孔维栋.土霉素在土壤—植物系统中的行为及对土壤微生物群落的影响[博士论文].北京:中国科学院生态中心,2006.
    20. 李时银,张晓昆,冯建昉等.氰戊菊酯及代谢物对土壤过氧化氢酶活性的影响.中国环境科学,2002,(2):154~157.
    21. 李涛,解启英,佟恒敏等.十种抗生素在马体内的代谢动力学.中国农业科学,1990,23(3):76~79.
    22. 李雪梅,张其中,魏明.土霉素在鱼体内的动力学研究概况.2004,24(5):8~9.
    23. 李兆君,马国瑞.有机污染物污染土壤环境的植物修复机理.土壤通报,2005,36(3):436~439.
    24. 李兆君.土壤中甲磺隆结合残留的风险评价及水稻对其影响基因型差异的机理研究[博士论文].杭州:浙江大学,2005.
    25. 刘慧慧,饶钦雄,刘向明等.鱼肉中氟喹诺酮类药物多残留检测方法的建立及恩诺沙星在鲫鱼体内残留消除规律的研究.中国兽医杂志,2007,43(1):74~76.
    26. 孟 勇,吴光红,朱晓华等.RP~HPLC 同时测定中华绒螯蟹肝脏中诺氟沙星、环丙沙星和恩诺沙星残留.中国水产科学,2005,12(5):772~778.
    27. 南京农业大学主编.土壤农化分析.农业出版社.北京,1981,33~117.
    28. 曲甍甍,孙立伟等.兽药添加剂阿散酸和土霉素的毒理学研究.农业环境科学学报,2004,23(2):240~242.
    29. 孙波,赵其国,张桃林等.土壤质量与持续环境(Ⅲ).土壤质量评价的生物学指标.土壤,1997,29(5):225~234.
    30. 孙剑英,刁晓平,沈建中.阿维菌 Bla 对土壤微生物和蚯蚓的影响.应用生态学报,2005,16(11):2140~2143.
    31. 唐礼庆.四环素类制药废水污染物降解试验研究 [硕士论文].南京:河海大学,2007.
    32. 唐松林,钟声.环境中抗生素的副集、分离和监测.江苏环境科技,2007,20,Supp.2:66~67.
    33. 汪海珍,徐建民,谢正苗.甲磺隆污染土壤生物修复的初步探索.农药学学报,2003,5(4):53~58.
    34. 王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展.环境科学与技术,2007,30(3):108~111.
    35. 王冬.多氯联苯(PCBs)的环境生态毒理研究[硕士论文].杭州:浙江大学,2006.
    36. 王加龙,刘坚真,陈杖榴等.恩诺沙星残留对土壤微生物数量及群落功能多样性的影响.应用与环境生物学报,2005,11(1):86~89.
    37. 王金花,朱鲁生,王军等.除草剂阿特拉津对土壤脲酶活性的影响.应用生态学报,2003,14(12):2281~2284.
    38. 王兰.抗生素污染现状及对环境微生态的影响.药物生物技术,2006,13(2): 144~148.
    39. 王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性. 生态学报,2006,1(1):265~270.
    40. 王唯芬.养殖中国对虾 Penaeus chinensist 体内抗生素残留研究[博士论文].青岛:中国海洋大学,2005.
    41. 王岩,蔡大同.土壤生物量—碳和—氮与土壤有机碳,氮及施肥的关系.南京农业大学学报,1993,16(3):59~63.
    42. 吴银宝,汪植三,廖新悌,陈杖榴.土壤对恩诺沙星的吸附和解吸特性研究.生态环境,2005a,14(5):645~649.
    43. 吴银宝,汪植三,廖星俤,陈杖榴.恩诺杀星在鸡体中的排泄及其在鸡粪中的讲解.畜牧兽医学报,2005b,36(10):1069~1074.
    44. 谢正苗,卡里德.镉铅锌污染对红壤中微生物生物量碳氮磷的影响.植物营养与肥料学报,2000,6(1):69~74.
    45. 徐建民,黄昌勇.磺酰脲类除草剂对土壤质量生物学指标的影响.中国环境科学,2000,20(6):491~494.
    46. 徐维海.典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿[博士学位论文].杭州:浙江大学,2007.
    47. 薛冬,姚槐应,何振立等.红壤酶活性与肥力的关系.应用生态学报,2005, 16(8):1455~1458.
    48. 严旭升.土壤肥力研究方法.北京:农业出版社,1988.
    49. 杨永华, 姚健. 农药污染对土壤微生物群落功能多样性的影响. 微生物学杂志, 2000 , 20 (2) : 23~25.
    50. 姚斌,钱晓刚,于成志等.土壤微生物多样性的表征方法.贵州农业科学,2005,33(3):91~92.
    51. 叶央芳,闵航,周湘池. 苯噻草胺对水田土壤呼吸强度和酶活性的影响.土壤学报,2004,41(1):93~96.
    52. 俞道进, 曾振灵, 陈杖榴.高效液相色谱法测定底泥中土霉素含量.福建畜牧兽医,2005, 27(5):1~2.
    53. 俞道进, 曾振灵, 陈杖榴等.四环素类抗生素残留对水生态环境影响的研究进展.中国兽医学报,2004,24(5):515~517.
    54. 俞慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3):413~422.
    55. 张劲强,董元华,安琼等.兽药抗生素在土壤环境中的行为.土壤, 2005,37(4):353~361.
    56. 张树清,张夫道,刘秀梅等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用.中国农业科学,2006,39(2):337~343.
    57. 张跃华,罗志文.阿维菌素对土壤微生物的活性影响.佳木斯学报:自然科学版,2002, 20(1):49~51.
    58. 郑巍,刘慧君,刘维屏.吡虫啉农药及代谢产物对土壤过氧化氢酶活性的影响.中国环境科学,2000,20(6):524~527.
    59. 中 国 医 药 资 讯 网 , 青 霉 素 类 产 品 市 场 状 况 . http ://www.yy2000.com/xinyaodongtai/gcppeixun/qimeisu_4.htm,2004.
    60. 周礼恺,张志明,曹承绵等.土壤的重金属污染与土壤酶活性.环境科学学报,1985,2(2):176~183.
    61. 周启星,罗义,王美娥.抗生素的环境残留、生态毒性及抗性基因污染.生态毒理学报,2007,2(3):243~250.
    62. 祝万菊,邓旭明,张艳萍等.等恩诺沙星缓释溶液在猪体内的药物动力学及生物利用度.吉林农业大学学报,2003,25(3):335~338.
    63. Aga D S, Connor S, Payero J, et al. Determination of the persistence of tetracycline antibiotics and degradates in manure—amended soil using enzyme—linked immunosorbent asssy and liquid chromatography—mass spectrometry. J. Agric Food Chem., 2006, 53: 7165~7171.
    64. Ajwa H. A., Dell C. J., Rice C. W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Bio & Biochem, 1999,31:769~777.
    65. Al-Ahmad A, Daschner F D, Kammerer K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfaethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol., 1999,37: 158~163.
    66. Alcaide E, Blasco M-D, Esteve C. Occurrence of drug-resistant bacteria in two European eel farms. Appl. Environ. Microbiol, 2005,71(6):3348~3350.
    67. Alder A C, McArdell C S, Golet E M, et al. Occurrence and fate of fluoroquinolome, macrolide, and sulfonamide antibiotics during wastewater treatment and in anbient waters in Switerland. In C G Daughton and T Jones-Lepp: Pharmaceuticals and personal care products in the environment: scientific and regulatory issues, pp. 56~69, 2001,American Chemical Society, Washington, D.C.
    68. Ali-Shtayeh M S,Jamous R M,Abu-Ghdeib S I. Ecology of cycloheximide-resistant fungi in field soils receiving raw city wastewater of normal irrigation water l J J、Mycopathologia.,1998,144:39~54.
    69. Aminov R I, Chee-Sanford J C,Garrigues N, et al. Development, validation,and application of PCR primers for detection of tetracycline efflux genes of gram~negative bacteria. Appl. Environ. Microbiol., 2002,68:1786~1793.
    70. Angel J B, John J, Paul H K. Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere, 2000, 40: 751~757.
    71. Animal Health Institute. Market Reseach Report. U.S. Animal Health Product Industry: Alexandria, VA, 1997, P -59.
    72. Azeez G . Ampicillin threat leads to wider transgene concern. Nature,2005,435 (2): 561.
    73. Baath E. Effects of heavy metal in soil on microbial processes and populations: a review. Water Air Soil Pollution, 1989, 335~379 .
    74. Badiane N. N. Y., Chotte J. L., Pate E., et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology,2001,18, 229~238 .
    75. Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 2000, 40:751~757.
    76. Bailey V L, Smith J L, Bolton H. Fungal-to-bacterial ratios in soil investigated for enhanced C sequestration. Soil Biol. Biochem., 2002,34(7): 997~1007.
    77. Bailey V L, Smith J L, Bolton H. Novel antibiotics as inhibitors for the selective respirstory inhibition method of measuring fungal: bacterial ratios in soil. Bio. Fertil. Soils, 2003,38:154~160.
    78. Benbrook C M. Antibiotic drug use in US . aquaculture. Institute for Agriculture and Trade Policy Report, February, 2002, www.iatp.org/library/antibiotics.
    79. Blanck H, Wangberg, S-A, Molander S. Pollution-induced community tolerance A new ecotoxicological tool. In: Cairns, J., Pratt,J.R.(Eds.) , Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals, 1988.American Society for Testing and Materials, Philadelphia, pp. 219~230 .
    80. Boleas S, Alonso C, Pro J, et al.Toxicity of The antimicrobial oxytercycline to soil organisms in a multi-species-soil system (MS.3) and influence of manure co-addition. J. Hazard. Mater., 2005, 122:233~241.
    81. Boxall A B A. Blackwell P, Cavallo R, et al. The sorption and transport of a sulponamide antibiotic in soil systems. Toxicol. Lett., 2002,131: 19~28.
    82. Boxall A B, Fogg L A, Blackwell P A. Veterinary medicines in the environment. Rev. Environ. Contam. T., 2003a, 180: 1~91.
    83. Boxall A B, Kolpin D W, Halling~s?rensen B, Tolls J. Are Veterinary medicines causing environmental risks? Environ. Sci. Technol., 2003b, 37:286A~294A.
    84. Bradley L., Fyles J. W. A kinetic parameter describing soil available carbon and its relationship to rate increase in C mineralization. Soil Biol. Biochem., 1994,22 (2): 167~172.
    85. Campagnolo E R, Johnson K R, Karpati A, et al. Esteban J E,Currier R W, Smith K, Thu K M, McGeehin M. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci. Total Environ., 2002,299(1-3): 89~95.
    86. Carréira J. A. Caréia R. R., Liétora J., Harrison A. F. Changes in soil phosphatase activity and P transformation rates induced bu application of N- and S-containing acid~mist to a forest canopy. Soil Bio & Biochem, 2000,32, 1857~1865.
    87. Chee-Sanford J C,Aminov R I,Krapac I J,et al..Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swineproduction facilities.Applied and Environmental Microbiology., 2001, 67(4):1494~1502.
    88. Chen Y, Riazza J P, Reese C P, et al. Microbial models of soil metabolism: biotransformations of danofloxacin. J. Ind. Microbial Biotechnol., 1997,19:378~384.
    89. Ching Hua H, Jay E R, Muller J, Haberer K, Occurrence of drugs in German sewage treatment plants and river. Water Research, 1998, 32(11): 3245~3260.
    90. Chopra I , Roberts M. Tetracycline antibiotics: mode of action, applications, Molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. R., 2001,65(2):232~260.
    91. Chrysi S. L., Bruce E. R. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 2002,36, 2711–2720.
    92. Dar G H. Impact of lead and sewage sludge on soil microbial biomass and carbon and nitrogen mineralization. Bull. Environ. Contam. Toxicol.,1997, 58: 234~240.
    93. Dick R. P. Soil enzyme activities as integrative indicators of soil health: In: Pankhurst C. E., Doube B M., Gupta V. V. S. R. Biological Indicators of Soil Health, CAB International, Wellingford, 1997, 121~156 .
    94. Dick R. P., Breakwill D., Turco R. Soil enzyme activities and biodiversity measurements as integrating biological indicators. In: Doran et al. Handbook of Methods for Assessment of Soil Quality (Eds). Madison: SSSA Special Pub. 49. Soil Sci Soc Am Spec Publ, 1996, 247~272 .
    95. Diza-Cruz M S, De Alda M J L, Barceló D. Environment behavior and analysis of verinary and human drugs in soils. Sediments and sludge. Trends in Analytical Chemistry, 2003,22(6): 340~350.
    96. Esiobu N,Arments L,Ike J. Antibiotic resistance in soil and water environments used for various activities . International Journal of Environmental Research and Public Health,.2002 ,12:133~144.
    97. Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol, 2004,38(2): 476~483.
    98. Giberson T J,Hornish R E,Jaglan P S, et al. Enviromental fate of ceftiofur sodium,a cephalosporin antibiotic.Role of animal excreta in its decomposition.J Agric Food Chem, 1990.38:890~894.
    99. Golet E M, Strehler A., Alder A C, Giger W. Determination of fluoroquinolone antibacterial agents in sewage sludge~treated soil ssing accelerated solvent extraction followed by solid-phase extraction. Anal. Chem., 2002, 74: 5455~5462.
    100. Halling-S?rensen B, Sengel?v G, Ingerslev F, Jensen L B. Reduced antimicrobial potencies of oxyteracycline, tylosin, sulfadiazine, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch. Environ. Contam. Toxicol. 2003,44: 7~16.
    101. Halling-S?rensen B, Tj?rnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline~resistant bacteria. Arch. Environ. Contam. T. 2002, 42:263~271.
    102. Halling-S?rensen B, J?rgensen S E. Drugs in the environment. Chemosphere, 2000, 40(7): 691~699.
    103. Halling-S?rensen B, Nors Nielsen S, Lanzkey P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998,36(2):357~393.
    104. Hamscher G, Sczesny S, H ?per H, Nau H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with eletrospray ionization tandem mass spectrometry. Anal. Chem., 2002,74(7): 1509~1518.
    105. Heberer T, Schmidet-Baumler K, Stan H J. Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part1: Drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydrochimica ET Hydrobiologica, 1998,26(5): 272~278.
    106. Hektoen H,Berge J A,Hormazabal V,Yndestad M,.Persistence of antibacterial agents in marine sediments.Aquaculture, 1995,133:175~184.
    107. Henrot J. Vegetation removal in two soils of the humid tropics: Effect in microbial biomass. Soil Bio. Biochem. 1994,26:111~116.
    108. Holm J V, Tugge K, Bjerg P L, Christensen T H. Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark). Environ. Sci. Technol., 1995, 29:1415~1420.
    109. Hossain A K M, Alexander M. Enhanzing soybean rhizosphere colonization by Rhizobium japonicum. Appl. Environ. Microbiol. 1984,48 :468~472.
    110. Ingerslev F, Halling-S?rensen B. Biodegradability of metronidazole, olaquindox,and tylosin and formation of tylosin degradation products in aerobic soil~manure slurries. Ecotoxicol. Enrion. Saf. 2001,48:311~320.
    111. Jenkinson D S, Ladd J N. Microbial biomass in soil : measurement and turnover . In: Paul,E A ,Ladd J N(Eds.), 2001,Soil Biochemistry ,vol.5.Marcel Dekker, New York, NY.pp.415~471.
    112. Jenkinson, D.C. The turnover of organic matter in soil. In: Wild, A. (Eds.), Soil Conditions and Plant Growth. Longmans, Harlow, 1988,pp. 564–607.
    113. Jensen L B, Baloda S, Boye M, Aarestrup F M. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural Soil. Environ. Int. 2001, 26:581~587.
    114. Jerold S T,Roger D M. Aerobic degradation of tylosin in cattle,chicken,and swine excreta[J].Environmental Research, 2003, 93:45~51.
    115. Kandeler E., Luftenegger G., Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1997, 23:299~306.
    116. Kay P, Blackwell P A, Boxall A B A. Column studies to investigate the fate of veterinary antibiotics through a clay soil following slurry application to agricultural land. Chemosphere, 2005a, 60(4):497~507.
    117. Kay P, Blackwell P A, Boxall A B A. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere, 2005b, 59(7): 951~959.
    118. Kolpin D W, Furlong E T, Meyer E M, et al.Pharmaceuticals, hormones, and other organic wastewater contaminats in US stream, 1999~2000: A national reconnaissance. Environ. Sci.Technol., 2002, 36(6): 1202~1211.
    119. Kulshrestha P, Giese R F, Aga D S.Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol, 2005b,38(15): 4097~4105.
    120. Lee K. E., Pankhurst C. E. Soil organisms and sustainable productivity. Aust. J. Soil Res. 1992, 30:855~892.
    121. Loke M L, Tj?rnelund J, Halling-S?rensen B. Determination of the distribution coefficeinet (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 2002,48: 351~361.
    122. Lunestad B T, Tore B, Samuelsen O B, et al. Photostabiligy of eight antibacterial agents in seawater. Aquaculture, 1995, 134: 217~225.
    123. Marengo J A,Kok R A,Brian O K, et al.1997.Aerobic biodegradation of 14C-Sarafloxacin hydrochloride in soil. Environ Toxical and Chem,16:462~471.
    124. Marzadori C, Francioso O, Ciavatta C, Gessa C. Influence of the content of heavy metals and molecular weight of humic acids fractions on the activity and stability of urease. Soil Biology & Biochemistry, 2000,32:1893~1898.
    125. McGrath J W, Hammerschmidt F, Quinn J P. Biodegradation of phosphonomycin by Rhizobium huakuiiPMY1. Appl. Environ. Microbiol. 1999,64: 356~358.
    126. Mellon M, Benbrook C , Benbrook K L. Hogging It . Estimates of antimicrobial abuse in livestock : Union of Concerned Scientists Publications , Washington DC , 2001a, 7~9.
    127. Mellon M, Benbrook C, Benbrook K L. Hogging It: Estimates of Antimicrobial Abuse in Livestock.Union of Scientists: Cambridge, MA, 2001b, www.ucsusa.org/publications.
    128. Meyer M T, Bumgarner J E, Varns J L, et al. Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry. Sci. Total Envrion., 2000,248(2-3):181~187.
    129. M?lbak, Baggensen DL, Aarestruo F M, et al. Frydendahl K,Gerner-Smidt P, Petersen A M, Wengener H C. An outbreak of multidurg-resistant Salmonella enterica serotype typhimurium DT104. New Engl.J.Med. 1999, (19): 1420~1425.
    130. Montforts M H M M, Kalf D F, Van Vlaardingen P L A, Linders J B H J. The exposure assessment for veterinary medicinal products. Sci. Total Environ. 1999. 225: 119~133
    131. Morales-Muńoz S, Luque-García J L, Luque de Castro M D. Continuous microwave~assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples. J. Chromatogr. A, 2004,1059(1-2): 25~31.
    132. Moreno J. L, García C, Landi L, et al.The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biology and Biochemistry, 2001,33: 483~489 .
    133. Nowara A, Burhene J, Spiteller M. Binding of fluroquinolone carboxylic acid derivatives toclay minerals. J. Agric. Food Chem, 1997, 45: 1459~1463.
    134. Pursell L, Samuelsen O B, Smith P. Reduction in the in-vitro activity of flumequine against Aeromonas salmonicida in the presence of the concentration of Mg2+ and Ca2+ ions in found in sea water.Aquaculture, 1995, 135 (4): 245~255.
    135. Rabolle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 2000,65(5): 715~722.
    136. Riesenfeld C S. Goodman R M, Handelsman J. Uncultured soil bacteria area reservoir of new antibiotic resistance genes. Environ. Microbiol. 2004,6 (9):981~989.
    137. Rutgers M, van’t Verlaat I M, Wind B , et al.Rapid method For assessing pollution~induced community tolerance in contaminated soil. Environ. Toxicol. Chem. 1998, 17:2201~2213.
    138. Rutgers M,Breure A M, 1999.Risk assessment, microbial communities, and Pollution~induced community tolerance. Human and Ecological Risk Assessment5:661~670.
    139. Sannino F., Gianfreda L. Pesticide influence on soil enzymatic activities. Chemosphere, 2001, 45: 417~425.
    140. Sassman S A, Lee L S. Sorption of three tetracycline by several soils : assessing the role of PH and cation exchange. Environ Sci Technol.2005,39: 7452~7459.
    141. Sengel?v G, Agerso Y, Halling-S?rensen B, et al. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environmental Internation, 2003,28(7):587~595.
    142. Spaepen K P I, Van Leemput L J J, Wislocki P G, Werchuern C. Auniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environ Toxicol Chem., 1997, 16: 1977~1982.
    143. Tate Ⅲ R L.2000. Soil Microbiology, second ed. John Wiley and Sons, New York, NY.
    144. Thiele S, Beck I C,. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 2005a, 59(4): 457~465.
    145. Thiele S, Peters D, Halling-S?rensen B, Leinweber P. Photodegardation and ageing of antibiotic pharmaceuticals on soil surfaces. Envirpharma, European Conference on Human and veterinary Pharmaceuticals in the Environment. 2003a, 4: 14~16.
    146. Thiele S. Microbial inhibition pharmaceutical antibiotics in different soils-does-effect relations determined with the iron (Ⅲ ) reduction test. Environ. Toxicol. Chem., 2005b, 24 (4): 869~876.
    147. Thiele S. Pharmaceutical antibiotic compound in soils – a review. Plant Nutr. Soil Sci., 2003b, 166:145~167.
    148. Tolls J. Sorption of veterinary in soils: a review. Environ Sci Technol, 2001,35(17): 3397~3406.
    149. Trasar C. C., Leirós M C., Seoane S., Gil S. F. Limitations of soil enzymes as indicators of soil pollution. Soil Bio & Biochem, 2000,32: 1867~1875.
    150. Van Gestel M, Ladd J N, Amat M. Microbial biomass response to seasonal change andimposed drying regimes at increasing depths of undisturbed topsoil profiles. Soil Biol Biochem, 1992, 24:103~111.
    151. Warman P R.The effect of Amprolium and Aureomycin antibiotic on the nitrification of poultry manure-amended soil.Joumal of the soil Science Society of America,1980,44(6):1333~l334.
    152. Weerainghe H C, Towner D. Aerobic biodegradation of virginamycin in soil. Environ. Toxicol. Chem., 1997, 16: 1873~1876.
    153. Winckler C, Grafe A. Charakterisierung und Verwertung von Abf?llen aus der massentierhaltung unter Berücksichtigung verschiedener B?den; Umweltbundesamt: Berlin, 2000; Forschungsbericht 297 33 911, UBA-FB000074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700