用户名: 密码: 验证码:
长江口及邻近海域浮游植物生长的光照效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋赤潮问题已经成为困扰世界沿海国家的重要环境问题之一。本论文针对长江口及邻近海域赤潮发生机制研究,为阐述光照效应在该海域赤潮发生中的作用,应用现场培养实验与模拟计算相结合的方法,着重研究了该海域典型赤潮生物[中肋骨条藻(Skeletonema Costatum Cleve)和东海原甲藻(Prorocentrum donghaiense Lu)]生长的光照效应。应用现场培养实验方法,测定了该海域主要赤潮生物中肋骨条藻、东海原甲藻等7种浮游植物生长的最适光照及相关温度效应,并在浮游植物生长光照模型的基础上,改进了水生生态系统浮游植物生物量分布光照效应的半定量评价方法,并据此对长江口及邻近海域2种重要赤潮藻(东海原甲藻和中肋骨条藻)生物量的垂直分布、平面分布与光照的关系进行了研究;进一步利用长期序列资料,探讨了近50a来光照效应与长江口及邻近海域浮游植物生物量年代变化规律的关系。主要得出如下结论:
     1)改进的水生生态系统浮游植物生长光照效应分析法是建立在浮游植物光照效应模型的基础上,综合反映了浮游植物生长特性和海水中的光照特性。“浮游植物生长光效水柱累积指数”指标可以用于半定量分析浮游植物平面分布的光照效应;生长的“最适光效深度”指标,辅以浮游植物生长光效指数的断面分布可以用于半定量分析浮游植物垂直分布的光照效应。
     2)证实了在长江口及邻近海域,在营养盐、温度等环境因子适宜的情况下,海水中的光照强度是限制赤潮进一步向近岸方向扩展的关键因素。
     用生长光照效应分析法,结合现场培养实验得到的生长参数进行的模拟计算发现,浮游植物生长光效水柱累积指数由近岸向远岸逐渐增加,与调查结果的比较表明,光照是限制长江口及邻近海域浮游植物生物量高值区向近岸方向扩展的关键因素。赤潮在“赤潮高发区”这个特定海域发生是水体光照和营养盐权衡的结果。
     3)光照的适宜性是中肋骨条藻(Skeletonema Costatum Cleve)和东海原甲藻(Prorocentrum donghaiense Lu)分别在表层和次表层大量繁殖,形成高密度区进而发展成为赤潮的重要原因之一。
     用生长光照效应分析法,结合现场培养实验得到的生长参数进行的模拟计算发现,中肋骨条藻生长的最适光效深度位于0.4m左右的表层,东海原甲藻的位于水深4m左右(春夏季节)的次表层;这与调查中发现的中肋骨条藻的高密度区经常在表层,东海原甲藻的高密度区经常在次表层一致。这表明在营养盐等其它因子适宜时,光照的适宜性是中肋骨条藻和东海原甲藻分别在表层和次表层大量繁殖,形成高密度区进而发展为赤潮的重要原因之一。
     4)自20世纪50年代末至21世纪初,长江口及邻近海域海面太阳辐射与浮游植物生物量的年代变化规律有一定的相关性,光照效应对浮游植物生物量的长期波动规律有一定影响。
     长江口及邻近海域CDNet-PPT、Chl-aSur、Chl-aEu、PP的年代变化规律与海面太阳辐射之间存在相关性,特别是年均Chl-aSur、Chl-aEu、PP三者与海面太阳辐射之间具有显著或极显著的线性相关关系(依次为p<0.01,p<0.05,p<0.05);而且年均CDNet-PPT、Chl-aSur、Chl-aEu、PP与海面太阳辐射波动规律存在一定的相似性,根据夹角余弦计算的相似性系数分别为0.53、0.66、0.81、0.57。这种高相关性在一定程度上说明,光照效应对浮游植物生物量长期波动规律有一定影响。
     总之,通过综合分析长江口及邻近海域浮游植物生物量平面分布、垂直分布和年代变化的光照效应,证明光照是影响该海域赤潮发生的重要因素。改进的“浮游植物生长光照效应分析法”可以用于海洋、湖泊浮游植物生态学研究,对水生生态系统中浮游植物生长光照效应研究具有重要意义。论文所得到的研究结果,对深入认识该海域赤潮发生机制有重要学术价值,对该海域赤潮发生控制过程研究有重要意义。
Harmful algal blooms (HAB) has been one of the important environmental problems worry the coastal countries. Aimed at the HAB mechanisms study and in order to expatiate effects of irradiance on HAB occurrences in the Changjiang Estuary and Adjacent Coastal Waters, with field culture experiments and model calculations, effects of irradiance on growth of 2 species of importance harmful algae (Skeletonema Costatum Cleve and Prorocentrum donghaiense Lu) were studied. Firstly, the optimal light intensity (Iopt) of 7 species of harmful algae and the relative temperature effects were measured with field culture experiments. Then, a method analyzing the effects of irradiance on phytoplankton growth was improved on based on the light-growth model of phytoplankton. Using this method, the relationship between irradiance and vertical and horizontal distribution of Skeletonema Costatum Cleve and Prorocentrum donghaiense Lu were analyzed. Finally, the relationship between irradiance and phytoplankton biomass during the last nearly 50 years was discussed by use of long-term series data. The main results are as the following:
     1.“Phytoplankton growth light-effect analysis method”is modified based on phytoplankton growth-light model, which combines phytoplankton growth characteristics and irradiance characteristics under sea water. With this modified method, light effects on horizontal distribution of phytoplankton can be measured using the so-called“phytoplankton-growth light-effect water-column-accumulation index”; and light effects on vertical distribution of phytoplankton can be measured using the index“optimal light-effect depth”.
     2. It is confirmed that irradiance in sea water, without the limiting of nutrition, temperature, and other environmental factors, is the key factor to prevent red tides from extending more to the inshore area in the Changjiang Estuary and Adjacent Coastal Waters.
     By the phytoplankton growth light-effect analysis method, with growth parameters obtained from field culture experiments, light effects on phytoplankton horizontal distribution were measured. It is indicated that irradiance in sea water, without the limiting of nutrition, temperature, and other environmental factors, is the key factor to prevent red tides from extending more to the inshore area in the Changjiang Estuary and Adjacent Coastal Waters, by comparing the calculated growth light-effect, which is that“phytoplankton-growth light-effect water-column-accumulation index”increases from inshore to offshore, with the vessel investigation results carried out in this sea area. In fact, it is the trade-off of light and nutrient fitness that results in blooms in the so called red tide area.
     3. Light-optimum characteristics in surface and subsurface water is an important factor for S. Costatum and P. donghaiense to reproduce so rapidly in surface and subsurface water, respectively, as to blooms occurring.
     By the phytoplankton growth light-effect analysis method, with growth parameters obtained from field culture experiments, light effects on phytoplankton vertical distribution were measured. The calculated results show that the optimal light-effect depth for S. Costatum is about 0.4m in the surface water and 4m or so (in spring and summer) in the subsurface water for P. donghaiense, which is consistent with the vessel investigation results that S. Costatum usually blooms in the surface water and P. donghaiense in the subsurface water. The consistency of the calculated light-effect with the investigated data indicates that light-optimum characteristics in surface and subsurface water, without the limitation of nutrition, temperature, and other environmental factors, is an important factor for S. Costatum and P. donghaiense to reproduce rapidly and bloom in surface and subsurface water, respectively.
     4. From late 1950s to early 2000s, irradiance above sea surface was correlated in some degree with annual phytoplankton biomass in the Changjiang Estuary and Adjacent Coastal Waters.
     By collecting and analyzing phytoplankton investigation data from late 1950s, especially from 1980s, to early 2000s in this sea area, it is found that phytoplankton biomass (CDNet-PPT, Chl-aSur, Chl-aEu and PP) fluctuated as an“N shape”with a cycle of about 20a, which were correlated with irradiance above sea surface, especially, Chl-aSur, Chl-aEu and PP were closely correlated (p<0.01, p<0.05 and p<0.05, respectively)with irradiance.
     The author believes that the modified“phytoplankton growth light-effect analysis method”can be applied in marine and lake phytoplankton ecosystem, the above results are of significance for understanding the mechanisms of HAB occurrence in the Changjiang Estuary and Adjacent Coastal Waters, as well as for the prevention and control of HABs in this sea area.
引文
[1] Aarup T. 2002. Transparency of the North Sea and Baltic Sea-a Secchi depth data mining study. OCEANOLOGIA, 44(3):323-337.
    [2] Abreu PC, Odebrecht C, Gonzale A. 1994. Particulate and dissolved phytoplankton production of the Patos Lagoon Estuary, southern Brazil: Comparison of methods and influencing factors. Journal of Plankton Research, 16(7):737-753.
    [3] Akiyama T, Tazaki TA, Takahashi R, Yagi J, Morel A, Antoine D, Babin M, Dandonneau Y. 1996. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill. Deep Sea Research Part I: Oceanographic Research Papers, 43(8):1273-1304.
    [4] Ali EM. 2003. Processes and Conditions Influencing Phytoplankton Growth and Bloom Iniation in a Macrotidal Estuary, Southampton Water [PhD thesis]. Southampton: University of Southampton. 221 p.
    [5] Altisan IAR. 2006. Effects of light and nutrient gradients on the taxonomic composition, size structure and physiological status of the phytoplankton community within a temperate eutrophic estuary [PhD Thesis]. Southampton (UK): University of Southampton. 205,http://eprints.soton.ac.uk/45996/ p.
    [6] Alvial A, Avaria S. 1981. Spring Phytoplankton Bloom in Valparaiso Bay. I. Meteorological and Oceanographic Conditions. Revista de Biologia Marina, 17(2):197-227.
    [7] Alvial MA, Avaria PS. 1982. Phytoplankton bloom during the spring of 1977 in Valparaiso Bay. 2: Community dynamics. Revista de biologia marina, 18(1):1-56.
    [8] Anderson DM, Garrison DJ. 1997. The Ecology and Oceanography of Harmful Algal Blooms. Limnology and Oceanography, 42:1009-1305.
    [9] Andersson A, Hajdu S, Haecky P, Kuparinen J, Wikner J. 1996. Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biology, 126(4):791-801.
    [10] Baker KS, Smith RC. 1982. Bio-Optical Classification and Model of Natural Waters. 2. Limnology and Oceanography, 27(3):500-509.
    [11] Blanchard GF, Guarini JM, Richard P, Gros P, Mornet F. 1996. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar Ecol Prog Ser, 134:309-313.
    [12] Bleiker W, Schanz F. 1989. Influence of environmental factors on the phytoplankton spring bloom in Lake Zuerich. Aquatic Sciences, 51(1):47-58.
    [13] Cabecadas L. 1999. Phytoplankton production in the Tagus estuary (Portugal). Oceanol. Acta., 22(2):205-214.
    [14] Cadée G. 1978. Primary production and chlorophyll in the Zaire river estuary and plume. Neth. J. Sea Res, 12(3-4):368-381.
    [15] Campbell EE, Bate GC. 1987. Factors influencing the magnitude of phytoplankton primary production in a high-energy surf zone. Estuarine, Coastal and Shelf Science, 24(6):741-750.
    [1] Aarup T. 2002. Transparency of the North Sea and Baltic Sea-a Secchi depth data mining study. OCEANOLOGIA, 44(3):323-337.
    [2] Abreu PC, Odebrecht C, Gonzale A. 1994. Particulate and dissolved phytoplankton production of the Patos Lagoon Estuary, southern Brazil: Comparison of methods and influencing factors. Journal of Plankton Research, 16(7):737-753.
    [3] Akiyama T, Tazaki TA, Takahashi R, Yagi J, Morel A, Antoine D, Babin M, Dandonneau Y. 1996. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill. Deep Sea Research Part I: Oceanographic Research Papers, 43(8):1273-1304.
    [4] Ali EM. 2003. Processes and Conditions Influencing Phytoplankton Growth and Bloom Iniation in a Macrotidal Estuary, Southampton Water [PhD thesis]. Southampton: University of Southampton. 221 p.
    [5] Altisan IAR. 2006. Effects of light and nutrient gradients on the taxonomic composition, size structure and physiological status of the phytoplankton community within a temperate eutrophic estuary [PhD Thesis]. Southampton (UK): University of Southampton. 205,http://eprints.soton.ac.uk/45996/ p.
    [6] Alvial A, Avaria S. 1981. Spring Phytoplankton Bloom in Valparaiso Bay. I. Meteorological and Oceanographic Conditions. Revista de Biologia Marina, 17(2):197-227.
    [7] Alvial MA, Avaria PS. 1982. Phytoplankton bloom during the spring of 1977 in Valparaiso Bay. 2: Community dynamics. Revista de biologia marina, 18(1):1-56.
    [8] Anderson DM, Garrison DJ. 1997. The Ecology and Oceanography of Harmful Algal Blooms. Limnology and Oceanography, 42:1009-1305.
    [9] Andersson A, Hajdu S, Haecky P, Kuparinen J, Wikner J. 1996. Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biology, 126(4):791-801.
    [10] Baker KS, Smith RC. 1982. Bio-Optical Classification and Model of Natural Waters. 2. Limnology and Oceanography, 27(3):500-509.
    [11] Blanchard GF, Guarini JM, Richard P, Gros P, Mornet F. 1996. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar Ecol Prog Ser, 134:309-313.
    [12] Bleiker W, Schanz F. 1989. Influence of environmental factors on the phytoplankton spring bloom in Lake Zuerich. Aquatic Sciences, 51(1):47-58.
    [13] Cabecadas L. 1999. Phytoplankton production in the Tagus estuary (Portugal). Oceanol. Acta., 22(2):205-214.
    [14] Cadée G. 1978. Primary production and chlorophyll in the Zaire river estuary and plume. Neth. J. Sea Res, 12(3-4):368-381.
    [15] Campbell EE, Bate GC. 1987. Factors influencing the magnitude of phytoplankton primary production in a high-energy surf zone. Estuarine, Coastal and Shelf Science, 24(6):741-750.East China Sea and its adjacent waters. Journal of Oceanography, 53(1):41-51.
    [35] Harding Jr LW, Meeson BW, Fisher Jr TR. 1985. Photosynthesis patterns in Chesapeake Bay phytoplankton: Short-and long-term responses of PI curve parameters to light. Mar. Ecol. Prog. Ser, 26:99-111.
    [36] Harding LWJ. 1988. The time-course of photoadaptation to low-light in Prorocentrum mariae-lebouriae (Dinophyceae) Journal of Phycology, 24(2):274~281.
    [37] Harrison PJ, Hu MH, Yang YP, Lu X. 1990. Phosphate limitation in estuarine and coastal waters of China. Journal of Experimental Marine Biology and Ecology, 140(1):79-87.
    [38] Hegarty SG, Villareal TA. 1998. Effects of light level and N:P supply ratio on the competition between Phaeocystis cf. Pouchetii(Hariot) Lagerheim (Prymnesiophyceae) and five diatom species. Journal of Experimental Marine Biology and Ecology, 226:241-258.
    [39] Heil CA, Glibert PM, Fan CL. 2005. Prorocentrum minimum (Pavillard) Schiller - A review of a harmful algal bloom species of growing worldwide importance. HARMFUL ALGAE, 4(3):449-470.
    [40] Heip C, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K. 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanography and marine Biology: An annual review 30:1-149.
    [41] Horner RA. 1994. Limnology. New York: McGraw-Hill.
    [42] Iriarte A, Purdie DA. 2004. Factors controlling the timing of major spring bloom events in an UK south coast estuary. Estuarine, Coastal and Shelf Science, 61:679-690.
    [43] Jerlov NG. 1976. Marine Optics. Amsterdam: Elsevier Scientific Publishing Company. 231 p.
    [44] Kalnay E, Kanamitsua M, Kistlera R, al. e. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3):437~471.
    [45] Kelble CR, Ortner PB, Hitchcock GL, Boyer JN. 2005. Attenuation of photosynthetically available radiation (PAR) in Florida Bay: Potential for light limitation of primary producers. Estuaries and Coasts, 28(4):560-571.
    [46] Keller CF. 2004. 1000 Years of climate change. Advances in Space Research,(34):315-322.
    [47] Kifle D. 1992. Seasonal and Spatial Variations in Species Composition, Abundance, Biomass and Primary Production of Phytoplankton in Southampton Water, UK [PhD thesis]. Southampton: University of Southampton.
    [48] Kim DI, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon YH, Oshima Y, Imada N, Honjo T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). Journal of Plankton Research, 26(1):61-66.
    [49] Kirk JTO. 1980. Spectral absorption properties of natural waters: Contribution of the soluble and particulate fractions to light absorption in some inland waters of south-eastern Australia. Aust. J. Mar. Freshwater Res, 31:287–296.
    [50] Kirk JTO. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press. 219~253 p.
    [51] Kirk JTO. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press. 47~144 p.
    [52] Kocum E, Underwood GJC, Nedwell DB. 2002. Simultaneous measurement of phytoplanktonic primary production, nutrient and light availability along a turbid, eutrophicUK east coast estuary(the Colne Estuary). Marine Ecology Progress Series, 231:1-12.
    [53] Kodera K. 2002. Solar cycle modulation of the North Atlantic oscillation: implication in the spatial structure of the NAO. Geophysical Research Letters, 29(8):1029-1038.
    [54] Kudela RM, Dugdale RC. 2000. Nutrient regulation of phytoplankton productivity in Monterey Bay, California. Deep-Sea Res. II, 47:1023-1053.
    [55] Labry C, Herbland A, Delmas D, Laborde P, Lazure P, Froidefond JM, Jegou AM, Sautour B. 2001. Initiation of winter phytoplankton blooms within the Gironde plume waters in the Bay of Biscay. MARINE ECOLOGY PROGRESS SERIES, 212:117-130.
    [56] Lean J, Beer J, Bradley R. 1995. Reconstruction of solar irradiance since 1610: Implications for climate change. Geophysical Research Letters, 22(23):3195-3198.
    [57] Li Y, Smayda TJ. 1998. Temporal variability of chlorophyll in Narragansett Bay, 1973-1990. ICES Journal of Marine Science: Journal du Conseil, 55(4):661.
    [58] Li Z, Lin H. 1997. The niche-fitness model of crop population and its application. Ecological modelling, 104(2-3):199-203.
    [59] Litaker RW, Warner VE, Rhyne C, Duke CS, Kenney BE, Ramus J, Tester PA. 2002. Effect of diel and interday variations in light on the cell division pattern and in situ growth rates of the bloom-forming dinoflagellate Heterocapsa triquetra. Mar Ecol Prog Ser, 232(63-74).
    [60] Lohrenz SE, Dagg MJ, Whitledge TE. 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River. Continental Shelf Research, 10(7):639–664.
    [61] Lohrenz SE, Fahnenstiel GL, Redalje DG, Lang GA, Dagg MJ, Whitledge TE, Dortch Q. 1999. Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Continental Shelf Research, 19(9):1113-1141.
    [62] Luan QS, Sun J, Shen ZL, Song SQ, Wang M. 2006. Phytoplankton Assemblage of Yangtze River Estuary and the Adjacent East China Sea in Summer, 2004. Journal of Ocean University of China, 5(2):123-131.
    [63] MacIntyre HL, Lomas MW, Cornwell J, Suggett DJ, Gobler CJ, Koch EW, Kana TM. 2004. Mediation of benthic-pelagic coupling by microphytobenthos: an energy- and material-based model for initiation of blooms of Aureococcus anophagefferens. HARMFUL ALGAE, 3(4):403-437.
    [64] McPherson BF, Miller RL. 1987. Vertical Attenuation of Light in Charlotte Harbor, a Shallow, Subtropical Estuary, South-Western Florida. Estuarine Coastal and Shelf Science ECSSD 3, 25(6).
    [65] Moll A. 1998. Regional distribution of primary production in the North Sea simulated by a three-dimensional model. Journal of Marine Systems, 16:151-170.
    [66] Morel A, Prieur L. 1977. Analysis of Variations in Ocean Color. Limnology and Oceanography, 22(4):709-722.
    [67] Morton SL, Bomber JW, Tindall PM. 1994. Environmental effects on the production of okadaic acid from Prorocentrum hoffmannianum Faust I. temperature, light, and salinity. Journal of Experimental Marine Biology and Ecology, 178(1):67~77.
    [68] Morton SL, Norris DR, W BJ. 1992. Effect of temperature, salinity and light intensity on the growth and seasonality of toxic dinoflagellates associated with ciguatera. Journal of Experimental Marine Biology and Ecology, 157(1):79~90.
    [69] Nagasoe S, Kim DI, Shimasaki Y, al. e. 2006. Effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee. Harmful Algae, 5:20~25.
    [70] NAKATA K, DOI T, TAGUCHI K, AOKI S. 2004. Characterization of Ocean Productivity Using a New Physical-Biological Coupled Ocean Model Global. In: Shiyomi M, Kawahata H, Koizumi H, al. e, editors. Environmental Change in the Ocean and on Land. Tokyo: Terrapub. p 1~44.
    [71] Nedwell DB, Jickells TD, Trimmer M, Sanders R. 1999. Nutrients in estuaries. Advances in Ecological Research, 29:43-92.
    [72] Neilsen ES. 1975. Marine photosynthesis:with special emphasis on the ecological aspects. Amsterdam: Elsevier Scientific Publishing Company.
    [73] Ning X, Daniel V, Liu Z, Liu Z. 1988. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtse River) and the adjacent East China Sea. MARINE ECOLOGY PROGRESS SERIES, 49:141-150.
    [74] Nishikawa T. 2002. Effects of temperature, salinity and irradiance on the growth of the diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi, 68(3):356~361.
    [75] Nomura H, Yoshida M. 1997. Recent occurrence of phytoplankton in the hyper-eutrophicated inlet, Tokyo Bay, central Japan. La mer, Bull. Soc. fr. jap. oceanogr., 35:107-121.
    [76] Oliver R L, Whittington J, Lorenz Z, al. e. 2003. The influence of verti-cal mixing on the photoinhibition of variable chlorophyll a fluo-rescence and its inclusion in a model of phytoplankton photosyn-thesis. Journal of Plankton Research, 25(9):1107~1129.
    [77] Pennock JR, Sharp JH. 1994. Temporal alternation between light- and nutrient-limitation of phytoplankton production in a coastal plain estuary. Marine ecology progress series, 111(3):275-288.
    [78] Pennock JR. 1985. Chlorophyll distributions in the Delaware Estuary: Regulation by light-limitation. Estuarine, Coastal and Shelf Science, 21(5):711-725.
    [79] Peterson DH, Scheniel LE, Smith RE, Harmon DD, Hager SW. 1987. The flux of particulate organic carbon in estuaries: Phytoplankton productibity and oxygen consumption. U.S. Geological Survey Water Supply Series. Selected papers in the Hydrologic Science:41-49.
    [80] Platt T, Gallegos CL, Harrison WG. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res, 38(4):687–701.
    [81] Reinart A, Arst H, Erm A, al. e. 2001. Optical and biological properties of Lakeülemiste, water reservoir of the city of Tallinn II: Light climate in Lakeülemiste. Lakes & Reservoirs: Research and Management, 6:75~84.
    [82] Reinart A, Herlevi A, Arst H, Sipelgas L. 2003. Preliminary optical classification of lakes and coastal waters in Estonia and south Finland. Journal of Sea Research, 49(4):357-366.
    [83] Riley GA. 1957. Phytoplankton of the North Central Sargasso Sea, 1950-52. Limnol Oceanogr, 2:252-270.
    [84] Rita BD, Ana B, Helena G. 2005. Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuar Coast Shelf Sci, 64:249-260.
    [85] Rusin V, Rybansky M, Minarovjech M. 2004. The 530.3 nm corona irradiance from 1939 to 2001. Advances in Space Research,(34):251-255.
    [86] Ryther JH, Menzel DW. 1959. Light Adaptation by Marine Phytoplankton. Limnology and Oceanography, 4(4):492-497.
    [87] Sarangi RK, Chauhan P, Nayak SR. 2002. Vertical diffuse attenuation coefficient(Kd) based optical classification of IRS-P 3 MOS-B satellite ocean colour data. Proceedings of the Indian Academy of Sciences. Earth and planetary sciences, 111(3):237-245.
    [88] Soetaert K, Herman PMJ, Kromkamp J. 1994. Living in the twilight: Estimating net phytoplankton growth in the Westerschelde Estuary(The Netherlands) by means of an ecosystem model(MOSES). Journal of Plankton Research, 16(10):1277-1301.
    [89] Steele JH. 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr., 7:137-150.
    [90] Suh Y-S, Jang L-H, Lee N-K. 2004. Detection of Low Salinity Water in the Northern East China Sea During Summer using Ocean Color Remote Sensing. Korean Journal of Remote Sensing, 20(3):153-162.
    [91] Townsend DW, Cammen L, Holligan PM, et al. 1994. Causes and consequences of variability in the timing of spring phytoplankton blooms. Deep-Sea ResearchⅠ, 41:747-765.
    [92] Townsend DW, Pettigrew NR, Thomas AC. 2001. Offshore blooms of the red tide dinoflagellate, Alexandrium sp., in the Gulf of Maine. CONTINENTAL SHELF RESEARCH, 21(4):347-369.
    [93] Vant WN. 1990. Causes of Light Attenuation in Nine New Zealand Estuaries. Estuarine, Coastal and Shelf Science ECSSD 3, 31(2).
    [94] Vichi M, Pinardi N, Zavatarelli M, Matteucci G, Marcaccio M, Bergamini MC, Frascari F. 1998. One-dimensional ecosystem model tests in the Po Prodelta area (Northern Adriatic Sea). Environmental Modelling and Software, 13(5):471-481.
    [95] Wang C-C, Nie D-S. 1932. A survey of the marine protozoa of Amoy. Contr Biol Lab Sci Soc China Zoological Series, 8:285-385.
    [96] Wehde H, Backhaus JO. 2000. The fate of Lagrangian tracers in oceanic convective conditions: on the influence of oceanic convection in primary production. Nonlinear Analysis: Real World Applications, 1:3-21.
    [97] Wofsy SC. 1983. A Simple Model to Predict Extinction Coefficients and Phytoplankton Biomass in Eutrophic Waters. Limnology and Oceanography, 28(6):1144-1155.
    [98] Yan T, Zhou M, Qian P. 2002. Combined effects of temperature, irradiance and salinity on growth of diatom Skeletonema Costatum. Chinese Journal of Oceanology and Limnology, 20(3):237~243.
    [99] Zhu JR. 2005. Distribution of chlorophyll-a off the Changjiang River and its dynamic cause interpretation. SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 48(7):950-956.
    [100]蔡学湛. 1987.台湾海峡及其邻近海区海面辐射平衡的时空分布.台湾海峡, 6(1):6-12.
    [101]柴心玉. 1986.叶绿素-a含量的分布和初级生产力的估算.山东海洋学院学报, 16(2):1-26.
    [102]陈翰林,吕颂辉,张传松,朱德弟. 2006. 2004年东海原甲藻赤潮爆发的现场调查和分析.生态科学, 25(3):226-230.
    [103]陈乾金,张秀芝. 1990.我国东部邻海总云量时空分布特征.东海海洋, 8(3):18-25.
    [104]丁守国,石广玉,赵春生. 2004.利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响.科学通报, 49(11):1105-1111.
    [105]杜庆红,冯季芳. 1996.南日岛周围海域浮游植物的分布.台湾海峡, 15(3):280-285.
    [106]费尊乐,毛兴华,吕瑞华,李冰,管永红,李宝华,张新胜,牟敦彩. 1987.东海黑潮区叶绿素a和初级生产力的分布特征. In:孙湘平, editor.黑潮调查研究论文集.北京:海洋出版社. p 256-265.
    [107]费尊乐. 1984.近海水域漫衰减系数的估算.黄渤海海洋, 2(1):26-29.
    [108]费尊乐. 1986.渤海海水透明度与水色的研究.黄渤海海洋, 4(1):33-40.
    [109]冯士筰,李凤崎,李少菁. 1999.海洋科学导论.北京:高等教育出版社. 503 p.
    [110]高亚辉,虞秋波,齐雨藻,邹景忠,陆斗定,李扬,陈长平. 2003.长江口附近海域春季浮游硅藻的种类组成和生态分布.应用生态学报, 14(7):1044-1048.
    [111]顾新根,袁骐,沈焕庭,周月琴. 1995a.长江口最大浑浊带浮游植物的生态研究.中国水产科学, 2(2):16-27.
    [112]顾新根,袁骐,杨蕉文,华棣. 1995b.长江口外水域浮游植物垂直分布研究.中国水产科学, 2(1):28-38.
    [113]顾新根,袁骐,杨蕉文,华棣. 1995c.长江口羽状锋海区浮游植物的生态研究.中国水产科学, 2(1):1-15.
    [114]顾新根. 1985.东海区大陆架渔业环境调查报告:《东海区大陆架渔业环境调查报告》编委会. 240 p.
    [115]郭伟其,沙伟,沈红梅,韦应新. 2005.东海沿岸海水表层温度的变化特征及变化趋势.海洋学报, 27(5):1-8.
    [116]郭玉洁,潘友联. 1992.长江口区初级生产力的研究.海洋科学集刊, 33:191-199.
    [117]郭玉洁,杨则禹. 1982. 1976年夏季东海陆架区浮游植物生态的研究.海洋科学集刊, 19:11-31.
    [118]郭玉洁,杨则禹. 1992.长江口区浮游植物的数量变动及生态分析.海洋科学集刊, 33:167-189.
    [119]国家海洋局. 1991.海洋监测规范.北京:海洋出版社.
    [120]国家海洋局科技司. 1995.黑潮调查研究综合报告.北京:海洋出版社.
    [121]海洋图集编委会. 1991a.渤,黄,东海海洋图集(生物分册).张金标,宁修仁,江锦祥, editors:北京:海洋出版社.
    [122]海洋图集编委会. 1991b.渤海黄海东海海洋图集(水文分册).北京:海洋出版社.
    [123]韩博平,韩志国,付翔. 2003.藻类光合作用机理与模型.北京:科学出版社. 180~181 p.
    [124]韩秀荣,王修林,孙霞,石晓勇,祝陈坚,张传松,陆茸. 2003.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报, 14(007):1097-1101.
    [125]韩志国,雷腊梅,韩博平. 2006.角毛藻光合作用对连续强光照射的动态响应.热带亚热带植物学报, 14(1):7-13.
    [126]何贤强,潘德炉,黄二辉,赵艳玲. 2004.中国海透明度卫星遥感监测.中国工程科学, 6(9):33~37.
    [127]胡敦欣,杨作升. 2001.东海海洋通量关键过程.北京:海洋出版社. 3~13 p.
    [128]黄小平,黄良民,谭烨辉,朱良生. 2002.近海赤潮发生与环境条件之间的关系.海洋环境科学, 21(4):63-69.
    [129]焦念志,王荣. 1998.东海春季初级生产力与新生产力的研究.海洋与湖沼, 29(002):135-140.
    [130]金德祥. 1951.厦门的海产浮游硅藻.厦门水产学报, 1(6):145-230.
    [131]李国胜,梁强,李柏良. 2003.东海真光层深度的遥感反演与影响机理研究.自然科学进展, 13(1):90-94.
    [132]李军,高抒,曾志刚,贾建军. 2003.长江口悬浮体粒度特征及其季节性差异.海洋与湖沼, 34(005):499-510.
    [133]李维亮,李月洪,刘四臣,等. 1986.西太平洋热带地区总辐射概况-中美西太平洋海-合作考察观测事实之一.气象, 12(6):19-22.
    [134]李云,李道季,唐静亮,王益鸣,刘志刚,丁平兴,何松琴. 2007.长江口及毗邻海域浮游植物的分布与变化.环境科学, 28(4):719-729.
    [135]林金美. 1995.大嵛山岛海域浮游植物的生态.台湾海峡, 14(1):57-61.
    [136]林金美. 1996.东山湾浮游植物的分布.台湾海峡, 15(4):357-362.
    [137]刘瑞玉,罗秉征,崔玉珩,郭玉洁. 1987.三峡工程对河口生物及渔业资源的影响. In:中国科学院三峡工程与环境科研项目领导小组, editor.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社. p 403-446.
    [138]刘子琳,宁修仁,蔡昱明. 2001.杭州湾-舟山渔场秋季浮游植物现存量和初级生产力.海洋学报, 23(2):93-99.
    [139]刘子琳,宁修仁. 1994.杭州湾锋区浮游植物现存量和初级生产力.东海海洋, 12(004):58-66.
    [140]刘子琳,宁修仁. 1997.浙江海岛邻近海域叶绿素a和初级生产力的分布.东海海洋, 15(003):21-28.
    [141]刘子琳. 1989.浙江潮下带海域秋季初级生产力和叶绿素a的分布.东海海洋, 7(1):57-65.
    [142]柳丽华,左涛,陈瑞盛,王俊. 2007. 2004年秋季长江口海域浮游植物的群落结构和多样性.海洋水产研究, 28(3):112-119.
    [143]鲁北伟,王荣. 1996.春季东海表层水叶绿素a含量分布特征.海洋与湖沼, 27(5):487-492.
    [144]陆斗定,张志道,楼毅,朱根海. 1995.浙江近海浮游植物与赤潮生物研究Ⅲ.台州列岛附近海域.海洋环境科学, 14(1):32-37.
    [145]陆斗定,张志道. 1996.浙江马鞍列岛附近海域浮游植物与赤潮生物研究.东海海洋, 14(1):44-51.
    [146]马知恩. 1996.种群生态学的数学建模与研究.合肥:安徽教育出版社. 5-25 p.
    [147]毛兴华,李瑞香. 1984.东海北部陆架区浮游甲藻的分布及其生态特征.海洋学报, 6(5):672-677.
    [148]宁修仁,刘子琳,胡钦贤. 1985.浙江沿岸上升流区叶绿素a和初级生产力的分布特征.海洋学报, 7(6):751-762.
    [149]宁修仁,刘子琳. 1995.渤,黄,东海初级生产力和潜在渔业生物量的评估.海洋学报, 17(003):72-84.
    [150]宁修仁,史君贤,蔡昱明,刘诚刚. 2004.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报, 26(006):96-106.
    [151]宁修仁,史君贤,刘子琳. 1986.长江口及浙江近海夏季叶绿素a和ATP的分布特征.海洋学报, 8(5):603-610.
    [152]农牧渔业部水产局,农牧渔业部东海区渔业指挥部. 1987.东海区渔业资源调查和区划.上海:华东师范大学出版社. 661 p.
    [153]潘玉球,浅沼市男,甲斐源太郎,黑山顺二. 1993a.台湾及北陆架环流的季节特征. In:国家海洋局科技司, editor.黑潮调查研究论文选(五).北京:海洋出版社. p 201-213.
    [154]潘玉球,苏纪兰,苏玉纷. 1993b.东海南部水文的季节特征. In:国家海洋局科技司, editor.黑潮调查研究论文选(五).北京:海洋出版社. p 196-199.
    [155]庞重光,王凡. 2004.东海悬浮体的分布特征及其演变.海洋科学集刊, 46(22-31).
    [156]蒲新明,吴玉霖,张永山. 2001.长江口区浮游植物营养限制因子的研究Ⅱ.春季的营养限制情况.海洋学报, 23(3):57-65.
    [157]蒲新明. 2000.长江口区浮游植物营养限制因子的研究[硕士论文].青岛:中国科学院海洋研究所. 71 p.
    [158]钱树本. 1986.长江口及济州岛邻近海域综合调查研究报告:浮游植物生态.山东海洋学院学报, 16(2):26-54.
    [159]乔方利,袁业立,朱明远,赵伟,季如宝,潘增弟,陈尚,万振文. 2000.长江口海域赤潮生态动力学模型及赤潮控制因子研究.海洋与湖沼, 31(1):93-100.
    [160]曲维政. 2006.影响东海气候的太阳活动信息分析.海洋学报, 28(2):39-45.
    [161]阮雪琴,马福慧. 1995.太阳活动,黑潮海温年季变化与长江中游旱涝灾害.空间科学学报, 15(004):326-332.
    [162]沈国英,施并章. 2002.海洋生态学(第二版).北京:科学出版社.
    [163]沈竑,徐韧,王桂兰. 1995.上海市海岛周围水域浮游植物的调查研究.海洋通报, 14(4):26-37.
    [164]沈新强,胡方西. 1995.长江口外水域叶绿素a分布的基本特征.中国水产科学, 2(1):71-80.
    [165]沈志良. 1993.长江口海区理化环境对初级生产力的影响.海洋湖沼通报, 1:47-51.
    [166]石岩峻. 2004.赤潮藻对营养盐的吸收及生长和相关特性研究[dissertation].北京:北京化工大学.
    [167]宋书群,孙军,沈志良,栾青杉,于子山. 2006.三峡库区蓄水后夏季长江口及其邻近水域粒级叶绿素a.中国海洋大学学报(自然科学版), 36(增刊):114-120.
    [168]孙百晔,王修林,李雁宾,王长友,王爱军,梁生康,张传松. 2008.光照在东海近海东海原甲藻赤潮发生中的作用.环境科学, 29(2):362-367.
    [169]孙霞. 2005.光照对东海赤潮高发区赤潮藻类生长的影响[博士论文].青岛:中国海洋大学.
    [170]孙效功,方明. 2000.黄,东海陆架区悬浮体输运的时空变化规律.海洋与湖沼, 31(006):581-587.
    [171]王爱军,王修林,王江涛,李雁宾,韩秀荣,唐洪杰. 2006.光照对东海赤潮高发区春季硅藻生长的影响.中国海洋大学学报, 36(B05):173-178.
    [172]王宝山. 2004.植物生理学.北京:科学出版社. 333 p.
    [173]王炳忠,汤洁. 2002.用Lowtran7进行分光辐射的计算研究(Ⅰ)—不同波段分光总日射比较份额的计算研究.太阳能学报, 23(004):504-508.
    [174]王长友. 2008.东海Cu、Pb、Zn、Cd重金属环境生态效应评价及环境容量估算研究[博士论文].青岛:中国海洋大学.
    [175]王金辉,黄秀清,刘阿成,张有份. 2004.长江口及邻近水域的生物多样性变化趋势分析.海洋通报, 23(1):32-39.
    [176]王金辉,徐韧,秦玉涛,孙亚伟,刘材材. 2006.长江口基础生物资源现状及年际变化趋势分析.中国海洋大学学报, 36(005):821-828.
    [177]王金辉. 2002a.长江口3个不同生态系的浮游植物群落.青岛海洋大学学报, 32(3):422-428.
    [178]王金辉. 2002b.长江口邻近水域的赤潮生物.海洋环境科学, 21(2):37~41.
    [179]王举,姚华栋,蒋国荣,等. 2005.南海北部海区太阳辐射观测分析与计算方法研究.海洋与湖沼, 36(5):385-393.
    [180]王荣,焦念志,李超伦,沈志良,吉鹏. 1995.胶州湾的初级生产力和新生产力.海洋科学集刊, 36:181-194.
    [181]王宪,李文权. 1993.福建3个港湾和闽南-台湾浅滩海域光学参数的研究.台湾海峡, 12(2):124-129.
    [182]王修林,邓宁宁,祝陈坚,韩秀荣,李克强,辛宇,陈莉莉. 2004.磷酸盐,硝酸盐组成对海洋赤潮藻生长的影响.中国海洋大学学报(自然科学版), 34(3):453~460.
    [183]王修林,李克强,石晓勇. 2006.胶州湾主要化学污染物海洋环境容量.北京:科学出版社.
    [184]王修林,李克强. 2006.渤海主要化学污染物海洋环境容量.北京:科学出版社. 318 p.
    [185]王云龙,袁骐,沈新强. 2005.长江口及邻近水域春季浮游植物的生态特征.中国水产科学, 12(3):300-306.
    [186]吴玉霖,傅月娜,张永山,蒲新明,周成旭. 2004.长江口海域浮游植物分布及其与径流的关系.海洋与湖沼, 3:56-61.
    [187]徐兆礼,白雪梅. 1999.长江口浮游植物生态研究.中国水产科学, 6(005):52-54.
    [188]徐芝敏,蒋加伦,陆斗定. 1990. 1986年春季东海黑潮区及其邻近海域浮游植物现存量和种类组成.黑潮调查研究论文选(一).北京:海洋出版社. p 215-227.
    [189]阎俊岳,陈乾金,张秀芝,黄爱芬. 1993.中国近海气候.北京:科学出版社.
    [190]杨蕉文,华棣,顾新根. 1994.长江口羽状锋海区浮游植物的生态研究--昼夜分布动态.东海海洋, 12(1):47-57.
    [191]杨生光. 1992.千里崖海域真光层光衰减.海洋与湖沼, 23(3):245-251.
    [192]于萍,张前前,王修林,祝陈坚,韩秀荣,王磊. 2006.温度和光照对两株赤潮硅藻生长的影响.海洋环境科学, 25(001):38-40.
    [193]余立华. 2006.秋季长江口不同辐照和氮、磷浓度水平下浮游植物营养盐吸收动力学及生长变化研究[硕士论文].上海:华东师范大学. 71 p.
    [194]俞建銮,李瑞香. 1990.黑潮及其邻近海域浮游硅藻的种类组成及其数量分布.黑潮调查研究论文选(一).北京:海洋出版社. p 57-66.
    [195]俞建銮,张子云,程兆第. 1983.东海大陆架浮游硅藻的分布.海洋学报, 5(4):519-525.
    [196]翟盘茂. 1990.中国近海海面太阳辐射分布的计算分析.海洋通报, 9(3):15-22.
    [197]翟盘茂. 1992.中国海面的辐射收支.应用气象学报, 3(增刊):107-113.
    [198]翟世奎,张怀静,范德江,杨荣民,曹立华, Shikui Z, Huaijing Z, Dejiang FAN, Rongmin Y, Lihua CAO. 2005.长江口及其邻近海域悬浮物浓度和浊度的对应关系.环境科学学报, 25(5).
    [199]张怀静,翟世奎,范德江,郭志刚,于增慧,曹立华,杨荣民,张晓东. 2007.三峡工程一期蓄水后长江口及其邻近海域悬浮物浓度分布特征.环境科学:08.
    [200]张金标,宁修仁,江锦祥. 1991.渤,黄,东海海洋图集(生物分册).北京:海洋出版社.
    [201]张蕾,王修林. 2002.石油烃污染物对海洋浮游植物生长的影响——实验与模型.青岛海洋大学学报:自然科学版, 32(005):804-810.
    [202]张新玲,郭心顺,吴增茂,等. 2001.渤海海面太阳辐照强度的观测分析与计算方法研究.海洋学报, 23(2):46-51.
    [203]张绪琴. 1983.东中国海海水透明度分布特征.海洋通报, 2(6):21-23.
    [204]张志道,陆斗定. 1996.南麂列岛附近海域的浮游植物和赤潮生物.东海海洋, 14(3):13-20.
    [205]赵保仁,胡郭欣,熊庆成. 1986.秋末南黄海的透光度及其与环流的关系.海洋科学集刊, 27:97-105.
    [206]赵亮. 2002.渤海浮游植物生态系统动力学模型研究[博士学位论文].青岛:中国海洋大学海洋系. 128 p.
    [207]赵卫红,王江涛,李金涛,崔鑫,吴玉霖,苗辉. 2006.长江口及邻近海域冬夏季浮游植物营养限制及其比较.海洋学报, 28(3):119-126.
    [208]赵振国. 1999.中国夏季旱涝及环境场.北京:气象出版社. 297 p.
    [209]郑元甲,陈雪忠,程家骅,王云龙,沈新强,陈卫忠,李长松. 2003.东海大陆架生物资源与环境.上海:上海科学技术出版社.
    [210]郑执中,郭玉洁,王容,虞研原. 1964.浙江近海浮游生物的生态调查研究. 237-266 p.
    [211]中国海岸带生物编写组. 1996.中国海岸带生物.北京:海洋出版社. 445 p.
    [212]中国科委海洋综合调查办公室, editor. 1964.中国近海浮游生物的研究. 1-159 p.
    [213]中国科委海综办. 1964.全国海洋综合调查报告(第八册):中国近海浮游生物的研究. 1-159 p.
    [214]中国科学院海洋研究所浮游生物组. 1964.中国近海浮游生物的研究. 1-159 p.
    [215]中华人民共和国科学技术委员会海洋组海洋综合调查办公室编. 1964.全国海洋综合调查报告(第八册):中国近海浮游生物的研究. 1-159 p.
    [216]周名江,朱明远,张经. 2001.中国赤潮的发生趋势和研究进展.生命科学, 13(2):54-59.
    [217]周名江,朱明远. 2006.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展, 21(7):673-679.
    [218]周伟华,霍文毅,袁翔城,殷克东. 2003.东海赤潮高发区春季叶绿素a和初级生产力的分布特征.应用生态学报, 14(7):1055-1059.
    [219]周伟华,殷克东,朱德弟. 2006.舟山海域春季浮游植物生物量及东海原甲藻赤潮频发机制初探.应用生态学报, 17(5):887-893.
    [220]周伟华,袁翔城,霍文毅,殷克东. 2004.长江口邻域叶绿素a和初级生产力的分布.海洋学报, 26(3):143-150.
    [221]周雅静,林建国,俞慕耕. 1999.东海透明度特征探讨.东海海洋, 17(3):67-72.
    [222]朱根海,许卫忆,朱德第,施青松,张健;. 2003.长江口赤潮高发区浮游植物与水动力环境因子的分布特征.应用生态学报, 14(7):1135-1139.
    [223]朱兰部,赵保仁. 1991.渤、黄东海透明度的分布与变化.海洋湖沼通报, 3(1-11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700