用户名: 密码: 验证码:
厌氧/好氧交替式SBR处理城市污水的生产性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以生产性规模的厌氧/好氧交替式SBR反应池为主体,以城市污水为处理对象,研究其在不同的运行参数下,对污染物的去除效果,同时进行SBR同步脱氮除磷理论和影响因素的分析,并进一步探讨系统的反硝化除磷脱氮现象。
     根据周期运行参数和系统状态特点,厌氧/好氧交替式SBR系统的运行分为三个阶段。各阶段COD、SS的去除效果都保持良好,但是氮、磷的去除效果存在差异。第一阶段,周期总时长为6h,SBR厌氧/好氧交替式运行,氨氮去除率高,但反硝化不完全,因此TN去除效果差,TP的去除率也较低;第二阶段,周期总时长延至12h,运行方式不变,各种污染物去除效果最好,COD、氨氮、TN、TP、SS的去除率分别为92.07%、96.69%、71.98%、95.16%、96.31%。;第三阶段,周期总时长为8h,运行期间发生轻微污泥膨胀,氨氮的去除较差,但TN、TP去除率较高。
     温度对SBR系统中氮的去除影响很大,温度降低至15℃左右时,氨氮去除效果开始变差,降到13.6℃时,氨氮去除率降到50%以下;温度降低至11.9℃时,反硝化速率也明显降低。提高好氧段溶解氧浓度和延长厌/氧段和好氧段时间能够在低温环境中提高氮、磷的去除率。硝酸盐的浓度大小对厌/氧段释磷速率和释磷总量产生一定影响。
     研究发现:SBR采用厌氧/好氧交替的运行方式能够富集大量反硝化除磷菌,有效提高TN的去除率。试验中,活性污泥中具有反硝化能力的聚磷菌(DPAOs)在所有聚磷菌(PAOs)中所占比例(η_(NO_3))为0.67,说明系统中反硝化聚磷菌对氮、磷的同步去除有重要贡献。
In this paper, a full-scale anaerobic/aerobic SBR system was used to treat municipal wastewater. The mechanism of simultaneous nitrogen and phosphorus removal and denitrifying phosphorus removal was also analyzed.
     According to the period operating parameters and characteristics of the system state, anaerobic / aerobic SBR systems were divided into three stages. In different stages, the removal of COD, SS was good, but for nitrogen and phosphorus is different. The period of the first stage was 6h and SBR operated under anaerobic/aerobic alternation mode, removal of ammonia nitrogen in this phase was good, but TN, TP removal efficiency is poor; The period time was extended to 12h in the second stage, and all pollutants could be removed effectively, the average removal efficiencies of COD, NH 3-N, TN, TP, SS were 92.07%,96.69%,71.98%,95.16%,96.31% respectively; The period of single anaerobic/aerobic SBR was 8h in the third stage, slight sludge bulking induce poor ammonia nitrogen removal efficiency but good TN, TP removal efficiency.
     Temperature had significant impact on the nitrogen removal in anaerobic/aerobic SBR system. The nitrogen removal rate began to decrease when the temperature fell to 15℃; as the temperature fell to 13.6℃, the nitrogen removal rate was below 50%. And denitrification could also be influenced when the temperature fell to 11.9℃. The removal of nitrogen and phosphorus could be enhanced by increase the concentration of dissolved oxygen and extend the time of anaerobic / anoxic stage when temperature was low. Presence of nitrate could inhibit the phosphorus release rate and phosphorus release capacity in anaerobic / anoxic stage.
     Furthermore, it was observed that anaerobic/aerobic SBR can enrich denitrifying phosphorus removal bacteria and enhance the removal rate of nitrogen. The percent of DPAOs in PAOs (η_(NO_3)) is 0.67 in active sludge, which reveal that denitrifying phosphate removal bacteria has an important contribution to simultaneous nitrogen and phosphorus removal.
引文
[1]肖锦.城市污水处理及回用技术[M].北京:化学工业出版社,2002, 1~5.
    [2]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003, 27~44.
    [3]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002
    [4]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [5]秦麟源.废水生物处理[M].上海:同济大学出版社,1998
    [6]张自杰.环境工程手册—水污染防治篇[M].北京:高等教育出版社,1997
    [7]朱亮.水体氮磷营养源控制对策研究[J].给水排水, 1998, 24(1): 23~25.
    [8]韩继刚,孟颂东等.藻类污染生物防治新策略[J].微生物学报, 2001, 41(3): 381~384.
    [9]徐亚同,史家棵,张明.污染控制微生物工程[M].北京:化学工业出版社,2002
    [10] D Barnes,P J Bliss. Biological control of nitrogen in wastewater treatment[M]. Great Britain at the University Press Cambridge,1983
    [11]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用[M].北京:化学工业出版社, 2005: 97-126.
    [12]任延丽,靖元孝.反硝化细菌在污水处理作用中的研究[J].微生物学杂志, 2005,25(2):88~92.
    [13]徐亚同.废水反硝化除氮工艺及其设计[J].环境与开发,1994,9(2):241~247.
    [14] Smoladers. G. J. F.,vander Meij. J,van Loosdrecht. M. C. M., etal. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process[J]. Biotechnology and Bioengineering, 1995, 47: 277~287.
    [15]李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [16]李健政.环境工程微生物学[M].北京:化学工业出版社,2004
    [17]邵林广,游映玖,陶惠芳等.控磷除磷在水体富营养化控制中的作用[J].环境与开发, 1999,14(2):19~20.
    [18]汪大翠,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001
    [19]胡国杰,张靓丽. 21世纪中国水环境保护面临挑战[J].工业技术经济, 2002,6:34~35.
    [20]吉芳英,罗固源等.活性污泥外循环SBR系统的生物除磷能力[J].中国给水排水, 2002,18(5):1~5.
    [21]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999,157~159.
    [22] Ketchum L.First cost analysis of sequencing batch biological reactors [J]. WPCF, 1985, 57(8):173~185.
    [23] Irvine R L.Controlled unsteady state processes and technologies an overview [J]. Wat. Sci. Tech, 1997, 35(1):1~10.
    [24]彭永臻. SBR法的五大优点[J].中国给水排水, 1993, 9(2):29~31.
    [25]李健,陈双星,石凤林等.大型SBR工艺启动特点及活性污泥培养驯化[J].给水排水,2001, 27(5):30~33.
    [26]周雹. SBR工艺的分类和特点[J].给水排水,2001,27(2):31~33.
    [27]王福珍.污泥膨胀问题与序列间歇式活性污泥法[J].中国环境科学,1959, (4):131~134.
    [28] Hao O J, Huang J. Alternating aerobic-anoxic process for nitrogen removal process evaluation[J]. Water Environment Resea rch, 1996, 38(1): 83~93.
    [29] Kim H, Hao O J. pH and oxidation-reduction potential control strategy for optimization of nitrogen removal in an alternating aerobic-anoxic system[J]. Water Environment Research, 2001, 73(1): 95~102.
    [30] Lefebvre F, Audic J M, Bujon B. Automatic regulation of activated sludge aeration-single-tank nitrification denitrification[J]. Water Science & Technology, 1993, 28(10): 289~298.
    [31] Rordrigues A C, Brito A G, Melo L F. Posttreatment of a brewery wastewater using a sequencing batch reactor [J]. Water Environment Research, 2001, 73(1): 45~51.
    [32]李亚峰,王文光,房安富等.低水温、低有机负荷条件下CAST工艺城市污水处理厂的启动调试及活性污泥培养[J].沈阳建筑大学学报:自然科学版, 2006, 22(5): 795~797.
    [33] Pierson J A, Pavlostathis S G. Real-time monitoring and control of sequencing batch reactors for secondary treatment of a poultry processing wastewater[J]. Water Environment Research, 2000, 72(5): 585~592.
    [34]熊红权,李文彬. CASS工艺在国内的应用现状[J].中国给水排水2003,19(2):34~35.
    [35]任洁,顾国维. MSBR系统的特点及其除磷脱氮的机理分析[J].给水排水. 2002, 28(1):22 ~24.
    [36]李飞,胡燕.新型SBR工艺同步硝化反硝化的研究[J].贵州环保科技,2006, (4); 17~19.
    [37] Elsabeth V. M. etal. Simultaneous nitrification and de nitrification in bench-scale sequencing batch reactor[J]. Water Res., 1996, 30(2): 277~284.
    [38]吕锡武等.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境与城市生态, 2001, 14(1): 33~35.
    [39]李峰等.氨氮废水处理过程中的好氧反硝化研究[J].给水排水, 2000, 26(4):17~20.
    [40] Peter J., Jespersen K., Henze M., etal. Biological phosphorus release and uptake under alternation anaerobic and anoxic conditions in a fixed-film reactor[J]. Wat. Res., 1993, 27(4): 617~624.
    [41] Kuba T.,van Loosdrecht M C M. Phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Wat. Sci. Tech., 1993, 27(5-6): 241~252.
    [42] Wachtmeister A. Kuba T. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Wat. Res., 1997, 31(3): 471~478.
    [43] Kuba T., van Loosdrecht M. C. M, Heiinen J. J. A metabolic model for the biological phosphorus removal by denitrifying organisms[J]. Biotechnol. Bioeng, 1996, 52(6): 685~695.
    [44]严煦世等.水和废水技术研究[M].中国建筑工业出版社,1992
    [45] Smolders G. J. F., van der Meij. J., van Loosdrecht M. C. M., etal. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and PH influence[J]. Biotechnol. Bioeng, 1994, 43(6):461~470.
    [46] Smolders G. J. F., van der Meij. J., van Loosdrecht M. C. M., etal. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnol. Bioeng., 1994, 44(7):837~848.
    [47] Mino T., Van Loosdercht M. C. M., Heijnen J. J. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Wat. Res.,1998, 32(11):3193~3207.
    [48] Mumleimer E., Kuba T., van Loosdercht M. C. M., etal. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J]. Biotechnol. Bioeng., 1997, 54(5):434~450.
    [49]李成江,郑兴灿.污水生物除磷脱氮技术[M].北京:中国建筑工业出版社,1992
    [50]李勇智,王淑莹,吴凡松.强化生物除磷体系中反硝化聚磷菌的筛选与富集[J].环境科学学报,2004,24(1): 45~49.
    [51]林燕,杨永哲,王志盈.硝酸盐浓度及氧好氧时段对反硝化聚磷诱导过程的影响[J].给水排水,2003,29(4):36~39.
    [52]李勇智,彭永臻,王淑谨.厌氧/好氧SBR反硝化除磷效能的研究[J].唐山学院学报,2003,16(1):24~25.
    [53] Merzouki M, Bernet N. Biological denitrifying phosphorus removal in SBR: effect of added nitrate concentration and sludge retention time[J]. Wat. Sci. Tech., 2001,43(3):191~194.
    [54] Falkentoft C. The significance of zonation in a denitrifying phosphorus removaling biofilm[J]. Wat. Res., 1999, 33(15):3303~3310.
    [55] Lee D. E., Jeon C. O. and Park J. M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Wat. Res., 2001, 16(3): 3968~3976.
    [56] Tsuneda S.,Ohno T., Soejima K., etal. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal, 2006, 27(3): 191~196.
    [57]杨国靖,李小明,曾光明等.利用好氧颗粒污泥实现同时除磷脱氮[J].中国给水排水,2005,21(2): 18~22.
    [58] Sezgin M., Jenkins D., and Parker D. S. A unified theory of filamentous activated sludge bulking[J]. Wat. Poll. Control, 1978, 50: 362~368.
    [59]王淑莹,白璐,宋乾武等.低氧丝状菌污泥微膨胀节能方法[J].北京工业大学学报,2006,32(12): 1083~1086.
    [60]李亚新.活性污泥法理论与技术[M].中国建筑工业出版社,2007
    [61] Henze M., Gujer W., Mino T., etal. Activated sludge model no. 2d, ASM2D[J].Wat. Sci. Tech., 1999, 39(l): 165~182.
    [62] Wachtmeister A., Kuba T., van Loosdercht M.C.M., etal. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Wat. Res., 1997, 31(3):471~ 478.
    [63] Meinhold J., C. D. M.Filipe, G. T. Daigger., etal. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal[J]. Wat. Sci. Tech., 1999, 39(1): 31~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700