用户名: 密码: 验证码:
Mg~(2+)对好氧颗粒污泥培养的影响及其除磷机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥是近几年发现的在好氧条件下自发形成的细胞自身固定化颗粒。由于其具有规则的、密实的、坚固的微生物结构,良好的沉降性能,较高的微生物量,以及较强的抗冲击负荷能力,能够实现同步脱氮除磷等优点,具有较好的研究价值和应用前景,受到了国内外学者的广泛关注。
     本课题立足于国内外好氧颗粒污泥的培养的最新研究成果,在三个SBR系统中分别投加0、10和100 mg/L的镁离子,以研究镁离子对好氧颗粒污泥形成的影响。在成功培养出具有同步除磷脱氮功效的好氧颗粒污泥后,研究了其对氮、磷及有机物的去除效果,探讨稳定运行阶段好氧颗粒污泥实现同步除磷脱氮的微生物机理。
     结果表明,镁离子的添加有利于颗粒污泥的形成,促进了各种微生物的生长,使得污泥浓度比未添加的要高,并且促进了胞外多糖的生成。10 mg/L的Mg~(2+)更有利于颗粒污泥的形成和成长,其颗粒化程度高且平均粒径大,使颗粒污泥的启动时间从32天缩短到18天,而100 mg/L的Mg~(2+)对颗粒污泥的促进不如10 mg/L的明显。
     为实现同步除磷脱氮,以好氧颗粒污泥为研究对象,通过对SBR反应系统运行参数进行调控,在温度为25℃、pH值为7~8,厌氧反应90 min、好氧反应240 min的运行条件下进行了研究。该系统连续运行85天的结果表明,系统处于稳态时,好氧颗粒污泥对氮、磷和有机碳具有非常稳定的去除效果。当进水氨氮、磷和COD浓度分别为25~50 mg/L,5~25 mg/L和370~500 mg/L时,经颗粒污泥系统处理后,颗粒污泥对总无机氮、磷、COD的平均去除率分别达到91%、94%和90%。同时大量反硝化聚磷菌与硝化菌在颗粒污泥中共存并富集,反硝化聚磷菌占全部聚磷菌的比率达到83.3%。更为重要的是反硝化聚磷菌在吸磷的同时可以进行反硝化脱氮,利用其体内PHB的“一碳两用”来实现同步除磷脱氮,不仅解决了反硝化细菌和聚磷菌对碳源需要的矛盾,达到了节省废水中的有机碳源和节省能源的双重目的,而且减少了剩余污泥量,这对低C/N比废水的同步除磷脱氮是非常有利的,无疑会对污水生物除磷脱氮的工程实践产生深远影响。
Aerobic granular sludge is a kind of self-immobilized sludge, which is found recently under the aerobic condition. In recent years, researchers have given more interests in it because of its advantages such as regular, dense and strong microbial structure, good settling ability, and high biomass retention, tolerance to high organic loading rate/toxic shocks and synchronous nitrogen and phosphorus removal.
     Based on the latest research findings on aerobic granular sludge in both domestic and abroad, three sequencing batch reactors were concurrently operated to examine the effect of Mg~(2+) augmentation on aerobic granulation. When simultaneous nitrogen and phosphorus removal was achieved by aerobic granular sludge, the characteristic and mechanism of nitrogen and phosphorus removal were explored.
     The experimental results demonstrated that Mg~(2+) enhanced the sludge granulation process in the sequencing batch reactor. Mg~(2+)-fed granules had a higher biomass concentration and higher polysaccharide contents. It was found that augmentation with 10 mg/L Mg~(2+) benefited granular sludge formation and growth and significantly decreased the sludge granulation from 32 d to 18 d. The average size of granules with the addition of 10 mg/L Mg~(2+) were larger than that of the other two concentrations. However, the effect of Mg~(2+) at the concentration of 100 mg/L was not obvious as that of 10 mg/L Mg~(2+).
     Simultaneous phosphorus and nitrogen removal was achieved by aerobic granular sludge in single SBR system under the conditions of temperature 25℃, pH 7-8, anaerobic reaction time 90 min, and aerobic reaction 240 min. At steady operation, the anaerobic/aerobic single SBR system showed a very stable phosphorus, nitrogen and organic carbon removal performance. The average removal rate for total inorganic nitrogen, phosphorus and COD reached 91%, 94% and 90%, respectively at the influent concentration of NH_4~+-N 25~50 mg/L, PO_4~(3-)-P 5~25 mg/L and COD 370~500 mg/L. Significant amounts of phosphorus-accumulating organisms (PAOs) capable of denitrification can be accumulated and enriched in the aerobic granular sludge coexisting with nitrifiers under appropriate operational conditions, and denitrifying PAOs accounted for 83.3% of total PAOs. What is more important, the denitrifying PAOs take up and store phosphate using nitrate as electron acceptor, then the organic carbon substrate can be used simultaneously for both phosphorus and nitrogen removal. This is of significance since organic carbon content in most municipal wastewaters is too limited in order to achieve both phosphorus and nitrogen removal. Employing denitrifying PAOs in the biological nutrient processes also makes it possible to reduce sludge production and aeration demand and this will make a significant impact on the engineering practice of phosphorus and nitrogen removal process from wastewater.
引文
[1] Grolenhuis J T C, Smit M, van Lammeren A A M, et al. Localization and quantification of extracellular polymers in methanogenic granular sludge. Appl. Microbiol. Biotechnol.,1991,36(1): 115-119.
    [2] Mamouni R, Leduc R, Costerton J W, et al. Influence of the microbial content of different precursory nuclei on anaerobic granulation dynamics. J. Biotechl.,1995,39(3): 239-249.
    [3] Benu J J, van Loosdrecht M C M, Heijnen J J. Aerobic granulation in a sequencing batch airlift reactor. Wat. Res.,2002,36(3): 702-712.
    [4] Benu J J, van Loosdrecht M C M, Heijnen JJ. Aerobic granulation. Wat. Sci. Technol.,2000,41(4-5): 41-48.
    [5] Morgenroth E, Sherden T, van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reactor, Wat. Res.,1997,31(12): 3191-3194.
    [6] Andreadakis A D. Physical and chemical properties of activated sludge floc. Wat. Res.,1993,27(12): 1707-1714.
    [7] Lettinga G. Use of the upflow sludge blanket reactor concept for biological wastewater treatment especially for anaerobic treatment. Biotechnol. Bioeng.,1980,(22): 699-734.
    [8] Yu Liu, Joo-Hua Tay. State of the art of biogranulation technology for wastewater treatment. Biothcenol. Advan.,2004(22): 533-563.
    [9] Irvine R L. Controlled unsteady state processes and technologies anovervies. Wat. Sci. Technol.,1997,35(1): 1-10.
    [10] Tijhui S L,Van Loosdrecht M C M, Heijinen J J. Formation and growth of heterophic aerobic biofilms on small suspended particles in airlift reactors Biotechnol. Bioeng.,1994,44: 595-608.
    [11] Van Benthumw A J, Darrido Fernandez J M, Tijhui S L, et al. Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor. Biotechnol. Prog.,1996,12(6): 764-772.
    [12] Shine S, Limk H, Parkh S. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors. Wat. Sci. Tech.,1992,26(34): 601-605.
    [13] Mishim A K, Makaur A M. Selfimmobilization of aerobic activated sludge apilot study of the aerobic upflow sludge blanket process in municipa sewage treatment. Wat. Sci. Technol.,1991,23: 981-990.
    [14] Beun J J, Hendrik S A. Aerobic granulation in a sequencing batch reactor. Wat. Res,1999,33(10): 2283-2290.
    [15] Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology,2001(91): 168-175.
    [16] Tay J H, Tay S T L, Ivanov V. Biomass and porosity profiles in microbialules used aerobic wastewater treatment. Let. App. Microbio.,2003,36(5): 297-301.
    [17] Liu Y, Xu H, Yang S F, Tay J H. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules.Journal of Biotechnology,2003,102(3): 233-239.
    [18] Lin Y M, Liu Y, Tay J H. Development and characteristics of phosphorus accumulating microbial granules in sequencing batch reactors. Applied Microblogy and Biotechnology,2003,62(4): 430-435.
    [19] Tsuneda S, Nagano T, Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Wat. Res.,2003,37(20): 4965-4973.
    [20] Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering Joumal,2004,17(1): 41-48.
    [21] Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry,2004,39(5): 579-584.
    [22] Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Applied Microbiology and Biotechnology,2005,66(6): 711-718.
    [23]管运涛,吴晓磊,钱易,等.生物钙法好氧污泥颗粒化条件研究.给水排水, 1996,(11): 28-30.
    [24]竺建荣,刘纯新,何建中,等.厌-好氧交替工艺的生物除磷特性研究.环境科学学报,1999,19(4): 394-398.
    [25]卢然超,张晓健,张悦,等. SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,(2): 90-93.
    [26]白晓慧.利用好氧颗粒污泥实现硝化反硝化.中国给水排水,2002,18(2): 26-28.
    [27]杨麒,李小明,曾光明,等.好氧颗粒污泥实现同步硝化反硝化.城市环境与城市生态,2003,(01): 43-45.
    [28]王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥形成机理.中国给水排水,2004,(03): 8-11.
    [29]蓝惠霞,陈中豪,陈彩.采用好氧颗粒污泥工艺处理亚铵法制浆中段废水.中国造纸,2004,(05): 53-55.
    [30]王芳,杨凤林,张兴文等. SBAR中培养条件对好氧颗粒污泥特性影响.大连理工大学学报,2005,11,45(6): 808-813.
    [31] Grotenhuis J T C, Kisselsup M J C, Plugge C M, et al. Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors. Wat. Res.,1991,25(1): 21-27.
    [32]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究.环境科学,1999,20(2): 38-41.
    [33] Andrews G F. Fluidized bed fermenters a steady state analysis. Biotechnol. Bioeng.,1982,24(9): 2013-2030.
    [34] Tobat, Hatasakai, Taguchi, et al. A new method for manufacture of lactose hydrolysed fermented milk. Sci. Food Agric.,1990,52(3): 403-407.
    [35] Thomas B J, Mcintosh D, Taylor S R, et al. Effect of low dose ultrasonic treatment on growth rates and biomass yield of Anabaena flos aquae and Selenastrum capricornutum. Biotechnol. Tech.,1989,3(6): 389-392.
    [36] Am Jang, Young Han Yoon, In S Kim, et al. Characterization and evaluation of aerobic granules in sequencing batch reactor. Biotechnology,2003,105(1-2): 71-82.
    [37]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [38]黄钧,李毅军,刘东渝,等.三种工业废水颗粒污泥的化学及微生物学相组成.应用与环境生物学报,1995,1(3): 252-259.
    [39] Peng D C, Nicola S B, Jean Philipped, et al. Aerobic granular sludge: A case report. Wat. Res.,1999,33(3): 890-893.
    [40] Etterer T, Wilderer P A. Generation and properties of aerobic granular sludge. Wat. Sci. Tech.,2001,43(7): 19.
    [41]崔成武,纪树兰,任海燕,吴之丽.好氧颗粒污泥形成的影响因素及应用.中国给水排水,2005,20(10): 31-34.
    [42] Tuba H, Erguder, Goksel N, et al. Investigation of granulation of a mixture of suspended anaerobic and aerobic cultures under a ternating anaerobic microaerobic aerobic conditions. Process Biochemistry,2005,40(2):3732-3741.
    [43]卢然超,张晓健,张悦,等. SBR工艺污泥颗粒化对生物脱氮除磷特性的研究.环境科学学报,2001,21(5): 577-581.
    [44] Moy B Y P, Tay J H, Toh S K, et al. High organic loading influences thephysical characteristics of aerobic sludge granules. Lett. Appl. Microbioi.,2002,34: 407-412.
    [45] Liu Q S, Tay J H, Liu Y. Substrate concentration independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ. Technol.,2003,24: 1235-1243.
    [46] Zheng Y M, Yu H Q, Liu S J, et al. Formation and instability of aerobic granu les under high organic loading conditions. Chemosphere,2006,63: 1791-1800.
    [47]卢刚,郑平.废水生物处理中的污泥颗粒化.东北农业大学学报,2005,35(2): 129-134.
    [48] Tay J H, Liu Y Q, Liu Y. The effect of shear force on the formation, structure and metabolism of aerobic granules. Microbial Biotechnol,2001(57): 227-233.
    [49]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展.微生物学通报,2001,28(4):88-91.
    [50]王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥形成机理.中国给水排水,2004,20(3): 5-8.
    [51] Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering Journal,2004(21): 47-52.
    [52]王芳,杨凤林,张兴文,等.好氧颗粒污泥稳定性影响因素分析.环境科学与技术,2006,29(1): 47-49.
    [53]王强,陈坚,堵国成.选择压法培育好氧颗粒污泥的试验.环境科学,2003,24(4): 100-104.
    [54] Li Z H, T kuba, T kusuda. Selective force and mature phase affect the stability of aerobic granules an experimental study by applying different removal methods of sludge. Enzyme and Microbial Technology,2006,39(5): 976-981.
    [55] Jiang H L, Tay J H, Liu Y, et al. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol Let.,2003,25(5): 95-99.
    [56] Yang S F, Liu Q S, Tay J H, et al. Growth kinetics of aerobic granules developed in sequencing batch reactors. Lett Appl Microbiol,2004,106: 77-86.
    [57] Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules. Biochem Eng,2004,17: 41-48.
    [58] Jiang H L, Tay J H, Tay S T. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol,2004,63: 602-608.
    [59] Dang cong P, Bernet N, Delgnes J P, et al. Aerobic granular sludge-a casereport. Wat Res,1999,133: 890-893.
    [60] Tay J H, Liu Q S, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ Tech,2002,23: 931-936.
    [61] Van de Hock J P. Granulation of denitrifying sludge. In: Lettinga G, Zehnder A J B, Grotenhuis J T C, HulshofPol L W, editors. Granular Aerobic Sludge. Pudoc: W ageningen, The Netherlands,1988: 203-210.
    [62] Heijnen J J, Van Loosdrent M C M, Mulder R, et al. Development and scale-up of an aerobic biofilm air-lift suspension reactor. Wat Sci Tech,1993,27: 23-26.
    [63] Ross W. The phenomenon of sludge pelletization in the anaerobic treatment of amaize processing plant. Wat. SA,1984,10(4): 197-204.
    [64] Schmidt J E, et al. Granular Formation in Upflow Anaerobic Sludge Bed (UASB) Reactors. Biotech Bioeng.,1996,49: 229-246.
    [65] Wang F, Yang F L, Zhang X W, et al. Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors. World Journal of Microbiology &Biotechnology,2005,21: 1379-1384.
    [66] Andrew J, Feitz T, Waite D, et al. Photocatalytic degradation of the blue green algal toxin Mierocystin-LR in a natural organic-aqueous matrix. Environ. Sci Teehno1.,1999,33: 243-249.
    [67]李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002.
    [68]娄玉生,谢水波,何少华.废水生物脱氮除磷原理与应用.长沙:国防科技大学出版社,2002.
    [69]李军,彭永臻,杨秀山等.序批式生物膜法反硝化除磷特性及其机理.中国环境科学,2004,24(2): 219-223.
    [70] Kortstee G J J, Appeldoorn K J, Bonting C F C, et al. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. FEMS Microbiology Reviews,1994,15: 137-153.
    [71] Louie T M, Mah T J, Oldham W, et al. Use of metabolic inhibitors and gas chromatography/mass spectrometry to study poly-β-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems. Wat. Res.,2000,34(5): 1507-1514.
    [72]周群英,高廷耀.环境工程微生物学.第二版.北京:高等教育出版社,2000.
    [73]徐亚同.废水生物除磷系统的运行与管理.给水排水,1994,(6): 20-22.
    [74]沈耀良,王宝贞.废水生物处理新技术理论与应用.北京:中国环境科学出版社,1999.
    [75] Kuba T, Wschameister A, van Loosdrecht M C M. Effect of nitrate on phosphorus release in biological phosphorus removal system. Wat. Sci. Tech.,1994,30(6): 263-269.
    [76] Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifying phosphate-accumulating organism cultivated under different electron acceptor conditions using polymerase reaction denaturing gradient gel electrophoresis assay. Wat. Res.,2002,36(2): 403-412.
    [77] Hu J Y, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Wat. Res.,2003,37(3): 3463-3471.
    [78]沈耀良,王宝贞.废水生物除磷工艺中聚磷菌的作用机制及运行控制要点.环境科学与技术,1995,18(2): 11-16.
    [79] Meinhold J, Amold E, Isaacs S. Effect of nitrite on anoxic phosphorus uptake in biological phosphorous removal activated sludge. Wat. Res.,1999,33(8): 1871-1883.
    [80] Saito T, Brdjanovic D, van Loosdrecht M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Wat. Res.,2004,38(7): 3760-3768.
    [81]李勇,黄勇,潘杨.泥龄对生物除磷效率影响的分析.苏州城建环保学院学报,2001,14(1): 16-21.
    [82]耿朝安,张洪林.废水生物处理发展与实践.第一版.沈阳:东北大学出版社,1997.
    [83] Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus removal in activated sludge systems. Wat. Res.,1996,30: 769-780.
    [84] Kuba T, van Loosdrecht M C M, Heijnen J J. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full scale wastewater treatment plant. Wat. Sci. Tech.,1997,36(12): 75-82.
    [85] Tian Shu yuan. The effects of short chain fatty acidon biological phosphat release and PHB synthesis under anaerobic condition. Transactions of Tianjin University,1996,2(2): 87-91.
    [86]邓荣森,郎建.城市污水生物除磷脱氮机理研究探讨.重庆建筑大学学报,2002,4(3):106-111.
    [87]郭夏丽,郑平,梅玲玲.厌氧除磷种源的筛选与厌氧除磷条件的研究.环境科学学报,2005,25(2): 238-241.
    [88]张诚,于清江,王艳秋.生物除磷工艺的探讨.高师理科学刊,2002,22(1):37-39.
    [89]刘智晓,秦姝兰,杨蛟云,等.污水处理厂/工艺设计及除磷效能.中国给水排水,2005,21(9): 80-82.
    [90] Murakami Jakao, Miyairi Atsushi, Tanaka Kazuhiro. Full scale study of biological phosphorus removal processes. Wat. Sci. Technol.,1984,17: 297-298.
    [91]尹军,王建辉,王雪峰.污水生物除磷若干影响因素分析.环境工程学报,2007,1(4): 6-11.
    [92]张波.倒置A2/O工艺的氮磷脱除功能.环境工程,1999,7(2): 7-10.
    [93]李根东,刁树申.废水生物除磷技术探讨.环境技术,2005,1: 37-38.
    [94]上海市环境保护局.废水生化处理.上海:同济大学出版社,1999.
    [95] Jones P H, Tasfi L. Effect of applied direct current on biological phosphorus uptake. Wat. Res.,1987,25(6): 723-729.
    [96] Kuba T, smolders G J F, Van Loosdrecht M C M, et al. Biological phosphorus removal from wastewater by anaerobic–anoxic sequencing batch reactor. Wat. Sci. Tech.,1993,27(5-6): 241-252.
    [97]徐伟锋,顾国维,张芳.活性污泥法脱氮除磷数学模型的发展.工业用水与废水,2004,35(2): 1-4.
    [98]黄健,张华,杨伟伟.碳源对反硝化除磷的影响.合肥工业大学学报,2006,29(12): 1588-1591.
    [99] Wang Ya yi, Peng Yong zhen, Wang Shuying, et al. Efect of carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge. Journal of Environmenta1 science,2004,16(4): 548-552.
    [100]王亚宜,王淑莹,彭永臻. MLSS、pH及NO2--N对反硝化除磷的影响.中国给水排水,2005,21(7): 47-51.
    [101] Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorous removal activated sludge. Wat. Res.,1999,33(8): 1871-1883.
    [102] Hu J Y, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorous removal bacteria by using three different types of electron acceptors. Wat. Res.,2003,37: 3463-3471.
    [103]张小玲.短程硝化-反硝化生物脱氮与反硝化聚磷基础研究.西安:西安建筑大学,2004,85-90.
    [104]李勇智,彭永臻,张艳萍等.硝酸盐浓度及投加方式对反硝化除磷的影响.环境污染与防治,2003,25(6): 323-325.
    [105] Rodrigo M A. Influence of sludge age on enhanced phosphorus removal in biological systems. Wat. Sci. Tech.,1996,34(2): 41-48.
    [106]许劲,孙勤亚,张业健.生物除磷脱氮系统工程设计中的污泥龄.重庆建筑大学学报,2005,27(5): 83-86.
    [107]周海东,刘勤亚,张业健.泥龄应用中有关问题的探讨.污染防治技术,2003,13(6): 13-15.
    [108] Merzouki M, Bernet N, Delgenes J P, et al. Biological denitrifying phosphorus removal in SBR: Effect of added nitrate concentration and sludge retention time. Wat. Sci. Tech.,2001,43(3): 191-194.
    [109]黄翔峰,李春鞠,陈树斌.城市污水生物脱氮除磷技术的发展中国沼气,2000,18(4): 9-15.
    [110] Grady C P, Jr & Glen T Daigger著.张锡辉,刘勇弟译.废水生物处理.北京:化学工业出版社,2003.
    [111] Dulekgurgen E, Ovez S, Artan N, et al. Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor. Biotechnol. Let.,2003,25: 687-693.
    [112]李勇智,彭永臻,王淑滢等.强化生物除磷体系中的反硝化除磷,中国环境科学,2003,23(5): 543-546.
    [113]杨国靖,李小明,曾光明等.利用好氧颗粒污泥实现同时除磷脱氮.中国给水排水,2005,21(2): 18-22.
    [114]肖本益,王瑞明,贾士儒.二价金属离子对UASB颗粒污泥的影响.中国给水排水,2002,18(6): 26-28.
    [115] Chang Y. High rate performance and characterization of granular methanogenic reactors fed with various defined substrates. J Ferment Technol.,1995,79(2): 354-359.
    [116] Schmidt E J, Alberto J. Effects of magmesium on methanogenic subpopulations in a thermophic a acetate-degrading granular consortium. Appl. Environ. Microbiol.,1992,58(3): 862-868.
    [117]郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理.中国给水排水,2000,26(1): 33-40.
    [118] H Q YU, J H Tayand, Herberth P FANG. The roles of Calcium in sludge granulatiaon duing UASB reactor start-up. Wat. Res.,2001,35(4): 1052-1060.
    [119] Yu H Q, Fang H H, Tay J H. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors. Wat. Sci. Tech.,2000,41(12): 199-205.
    [120] Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflowanaerobic sludge blanket (UASB) reactors by aluminum chloride. Phemosphere,2001,44: 31-36.
    [121]国家环保局编委会.水和废水监测分析方法.北京:中国环境科学出版社,1989,125-145.
    [122] Azeredo J, Oliverira R, Lazarova V. A new method for extraction of exopolymers form activated sludges. Wat. Sci. Technol.,1998,37: 367-370.
    [123] Wang Q, Du G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochemistry,2004,39: 557-563.
    [124] Kerrn-Jesperson J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res.,1993,27(4): 617-624.
    [125] Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Wat. Res.,1996,30(7): 1701-1710.
    [126]王冬波,李小明,曾光明等.内循环SBR反应器无厌氧段实现同步脱氮除磷,环境科学,2007,28(3): 74-79.
    [127] Chang C H, Hao O J. Sequencing batch reactor system for nutrient removal: ORP and pH profiles. Chem. Tech. Biotechn.,1996,67: 27-38.
    [128] Jonsson K, Johansson P, Christensson M, et al. Operational factors affecting enhanced biological phosphorus removal at the wastewater treatment plant in Helsingborg, Sweden. Wat. Sci. Technol.,1996,34(3): 67-74.
    [129]李勇智,王淑滢,吴凡松等.强化生物除磷体系中反硝化聚磷菌的选择与富集.环境科学学报,2004,24(1): 485-497.
    [130]国家环保局编委会.水和废水监测分析方法.第三版.北京:中国环境科学出版社,1997.
    [131] Meinhold J, Filipe C D M, Heijnen J J. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal process. Wat. Sci. Tech.,1999,39(1): 31-42.
    [132] Lee D S, Jeon C O, Park J M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Wat. Res.,2001,35(16): 3968-3976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700