用户名: 密码: 验证码:
聚磷菌多聚磷酸盐激酶的分子生物学研究及高效除磷工程菌的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化是全球十大环境问题之一,氮磷尤其是磷的输入是引起水体富营养化的关键因素。为解决磷污染所带来的危害,在污水进入水体前进行有效处理,降低排放污水的磷浓度十分必要。强化生物除磷工艺(Enhancedbiological phosphorus removal,EBPR)是目前世界各国普遍使用的方法,该工艺具有污泥产生量少、不使用化学物质和运行经济等特点。EBPR系统中聚磷茵在磷的去除过程中起着至关重要的作用。为此,加大对聚磷菌的聚磷特性、聚磷相关基因及聚磷菌的工程化应用进行研究十分必要。
     本文以高效聚磷菌聚磷机理研究为主线,以一株高效聚磷茵GM6为研究材料,一方面系统研究了ppk1编码的多聚磷酸盐激酶被敲除后对菌体生理生化性质的影响,另一方面通过强化表达ppk1编码的多聚磷酸盐激酶和PHA操纵元(phaC1-phaZ-phaC2)构建了两株高效除磷工程菌并结合本实验室已获得的phaZ突变株对EBPR系统中碳磷循环代谢进行研究。
     1.ppk1突变对Pseudomonas putida GM6特性的影响及ppk2基因的克隆
     ppk基因编码多聚磷酸盐激酶,主要负责多聚磷酸盐(Poly-P)的合成。大多数微生物体内编码PPK的基因都有ppk1和ppk2两类。通过同源重组敲除ppk1后,突变株在菌体形态,生理生化等方面发生显著变化:通过扫描电镜观察发现突变株较之原始菌株表面粗糙有凹凸不平感,且部分细胞一端或两端同时有凹陷,生长速度变慢,代时增加25%,生物膜形成能力下降50%,游动性与抗逆能力与原始菌株相比显著降低,这都可能是由于菌体多聚磷酸盐激酶活性的丧失,使细胞内Poly-P水平降低或是Poly-P链长组成发生变化,从而引发细胞功能的降低或失。而突变株与原始菌株相比在除磷能力上并没有显著变化,这可能是由于GM6中还存在着另一个编码多聚磷酸盐激酶的基因(ppk2)。根据种属间的同源性,利用快速染色体步移方法克隆了ppk2基因,并将其定向克隆到pET29a载体上进行表达,为进一步研究多聚磷酸盐激酶的功能打下了基础。
     2.高效聚磷基因工程茵的构建
     通过PCR方法从高效聚磷菌株GM6总DNA中扩增得到了ppk1、PHA及其自带的启动子,并定向克隆到pBBR1MCS-5载体上,构建了重组质粒pMEPE-PPK和pMEPE-PHA,在辅助质粒pRK2013的帮助下,通过三亲接合将pMEPE-PPK及pMEPE-PHA转移到原始菌株GM6中,获得的工程菌P.putidaGM6-PPK1和GM6-PHA。两株工程菌除磷能力较原始菌株GM6和对照菌株GM6-P5有了显著提高,而且在无抗性条件下质粒稳定,因此有着潜在的应用前景。通过模拟EBPR工艺,发现GM6-PPK1和GM6-PHA在厌氧/好氧交替的环境条件下强化表达不但提高了菌体好氧段的吸磷能力,而且厌氧段磷的释放和PHA的合成较之原始菌株也有显著增加,这说明ppk1和PHA的强化表达,不但增强了菌体的除磷能力,也在一定程度上提升了碳磷循环代谢的能力,使得菌体有更好的除磷和除COD的能力。
Eutrophication of water bodies is one of the ten serious global environmental problems. Nitrogen and phosphate, especially phosphate is the key contributor to eutrophication of water bodies. Discharge of untreated domestic sewage is one of the major sources of the phosphorus in the water bodies. In order to eliminate the phosphorus pollution, it is essential to treat the sewage to reduce its P concentration before it is discharged into rivers. Currently most large scale wastewater treatment plants use enhanced biological phosphorus removal (EBPR) process characterized by less sludge generation, free of chemicals and economical operation, which is extensively used in countries all over the world. PAOs play key roles in EBPR system to remove phosphorus. Therefore, it is quite necessary to characterize the regulation of related genes in PAOs.
     This paper systematically studied the molecular mechanism of Poly-P accumulation in Pseudomonas putida GM6, the effects ppk1 mutation on the physiology of GM6. Two genetically engineered strains were constructed to improve the phosphate removal ability of GM6.
     1. The effects of Poly-Phosphate kinase 1 (ppk1) mutation on Pseudomonas putida GM6 and Cloning of the Poly-Phosphate kinase 2 gene
     The Poly-Phosphate kinase responsible for Poly-Phosphate (Poly-P) synthesis is encoded by ppk genes, which consists of ppk1 and ppk2. Pseudomonas putida GM6 is an efficient phosphate accumulating strain isolated from the enhanced biological phosphorus removal (EBPR) system in the activated sludge aerobic pond, and ppk1 was cloned and characterized from it previously. By Homologous recombination the ppk1 was knockout from the strain, characteristic of physiological and biochemical aspects of the mutant strain and the wild type GM6 was compared: the mutant grows much slower the generation time was elongated by 25%, while the biofilm formation ability and the motility decreased by 50%, resilience decreased significantly. Loss of Poly-Phosphate kinase activity might lead to the lower level of intracellular Poly-P concentration and the change of Poly-P chain length or composition, which may trigger reduction or loss of cell function and caused all above phenomenon. However, no significant difference was found between the mutant and the wild type GM6 in the removal of phosphate, this may be due to the existence of another ppk gene (ppk2 ) in the strain. Accordance to the homology of ppk2 between species ppk2 was cloned by rapid chromosome walking and expressed, this will lay the foundation for further study.
     2. Construction of genetic engineered Poly-P accumulation strains
     ppk1 gene and PHA operon with their promoter were amplified from the genomic DNA of GM6 by PCR. Recombinant plasmids pMEPE-PPK and pMEPE -PHA were constructed by ligating t ppk1 gene and PHA operon into broad host vector pBBR1MCS-5. With the help of plasmid pRK2013 , pMEPE-PPK and pMEPE -PHA were transferred into the strain GM6 to construct GM6-PPK1 and GM6-PHA. The Poly-Phosphate removal ability of GM6-PPK1 and GM6-PHA were increased compared with the original strain GM6. In order to stimulate the EBPR technique, the strains were grown under anaerobic and aerobic conditions. Results showed that GM6-PPK1 has stronger phosphate absorption ability in aerobic condition and it releases more phosphate and syntheses more PHA in anaerobic condition. The results show that the strengthened expression of ppk1 d PHA not only enhanced the dephosphate ability of the strain but improved the carbon and phosphate cycling metabolism, the above character made the strain a better one for dephosphate and remove COD.
引文
[1]国家环境保护总局,2004年中国环境状况公报,北京,2005
    [2]董镇,唐俊芳.营养化水体的生态危害及防治措施与修复技术.江西化工[J],2005,2,22-25
    [3]Seviour R J,Mino T,Onuki M.The microbiology of biological phosphorus removal inactivated sludge systems[J].FEMS Microbiology Reviews,2003,27:99-127.
    [4]张伟,杨秀山.水体的富营养化及其治理[J].生物学通报,2001,36(11):20-22
    [5]罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[D].重庆,重庆大学,2004
    [6]孟德良,李明延,张萍平.生物除磷的几种常见工艺流程[J].给水排水 2001,26(3):6-12.
    [7]田淑媛,杨睿等.生物除磷工艺技术发展[J].城市环境与城市生态,2000,13(4):45-47.
    [8]吴燕,安树林.废水除磷方法的现状与展望[J].天津工业大学学报,2001,20(1):74-77.
    [9]徐亚同.废水的生物除磷[J].环境科学研究,1994,7(5):1-6.
    [10]陈贻龙.污水生物除磷影响因素及其对策[J].中国市政工程,2001,2:58-60.
    [11]张春阳,刘建广,王爱华.结晶法除磷技术的发展与应用节能技术[J].,2006,24(1):63-66.
    [12]Codd G.A.Cyanobacterial toxins:occurrence,properties and biological significance[J].Water Sci.Technol.1995,32:149-156.
    [13]Linda L,Blackalll,Gregory R,et al.A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants[J].Antonie van Leeuwenhoek.2002,81:681-691.
    [14]Schlegel H G.General Microbiology[M].Cambridge.Cambridge University Press,1993.
    [15]Crocetti G R.,Hugenholtz P,Bond P L,et al.Identification of Poly-Phosphateaccumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J].Appl.Environ.Microbiol.2000,66:1175-1182.
    [16]Comeau H,Hall K J,Hancock R E W,et al.Biological model for enhanced biological phosphorus removal[J].Water Res.1986,20:1511-1521.
    [17]Onuki M,Satoh H,Mino T.Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate[J].Water Sci.Technol.2002,46:145-154.
    [18]Mino T,van Loosdrecht M C M,Heijnen J J.Microbiology and biochemistry of the enhanced biological phosphate removal process[J].Water Res.1998,32:3193-3207.
    [19]Mino T.Microbial Selection of Poly-Phosphate-Accumulating Bacteria in Activated Sludge Wastewater Treatment Processes for Enhanced Biological Phosphate Removal [J].Biochemistry(Moscow).2000,65(3):341-348.
    [20] Fuhs G W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater [J]. Microb. Ecol. 1975,2: 119-138.
    [21] Nakamura K, Hiraishi A, Yoshimi Y, et al. Microlunatus phosphovorus gen.nov., sp. nov., a new gram-positive Poly-Phosphate-accumulating bacterium isolated from activated sludge[J]. Int. J. Syst. Bacteriol. 1995,45: 17-22.
    [22] Luz E B, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003) [M]. Water Res.. 2004: 384222-384246.
    [23] H. W. V. Veen, T. Abee, G. J. J. Kortstee et al. Generation of A Proton Motive Force by the Excretion of Metal-Phosphate in the Poly-Phosphate-Accumulating Acinetobacter Johnsonii Strain 210A. [J] J. Biol. Chem.2000, 269: 29509 — 29514
    [24] C. Schoonborn, H. D. Bauer and I. Rooske. Stability of enhanced biological phosphorus removal and composition of Poly-Phosphate grnules. [J] Water Res. 2001,35:3190 — 3196
    [25] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters[J]. Prog. Polym. Sci. 2000, 25: 1503-1555.
    [26] W. T. Liu, T. Mino, K. Nakamura et al. Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic- Aerobic Activated Sludgewithout Biological Phosphorus Removal. [J] Water Res. 2003, 30: 75 — 82
    [27] van Aalst-van Leeuwen M A, Pot M A, van Loosdrecht M C M, et al. Kinetic modeling of poly(β-hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply. [J] Biotechnol Bioeng, 1997, 55(5): 773-782
    [28] Satoh H, Ramey W D, Koch F A, et al. Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage. [J] Water Sci Technol, 1996, 34(1-2): 9-16
    [29] P. C. Lemos, C. Viana, E. N. Salgueiro et al. Effect of Carbon Source on the Formation of Polyhydroxyalkanoates (PHA) by A Phosphate-Accumulating Mixed Culture. Enzyme [J] Microbiol. Technol. 1998,22: 662-671
    [30] H. Satoh, T. Mino, T. Matsuo. Uptake of Organic Substrates and Accumulation of Polyhydroxyalkanoates Linked with Glycolysis of Intracellular Carbohydrates under Anaerobic Conditions in the Biological Excess Phosphate Removal Processes. [J] Water Sci. Technol. 1992,26:933-942
    [31] Wentzel M C, Lotter L H, Loewenthal R E, et al. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal - a biochemical model [J]. Water SA. 1986, 12: 209-224.
    [32] Mino T, van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Res. 1998, 32: 3193-3207.
    [33]Smolders G J F,van der Meij J,van Loosdrecht M C M,et al.Model of the anaerobic metabolism of the biological phosphorus removal process-stoichiometry and pH influence[J].Biotechnol.Bioeng.1994,43:461-470.
    [34]van Loosdrecht M C M,Pot M A,Heijnen J J.Importance of bacterial storage polymers in bioprocesses[J].Water Sci.Technol.1997,35:41-47.
    [35]Majone M,Dirks K,Beun J J.Aerobic storage under dynamic conditions in activated sludge process[J].Water Res.1999,39:61-73.
    [36]Wentzel M C,Lotter L H,Ekama G A,et al.Evaluation of biochemical models for biological excess phosphorus removal[J].Water Sci.Technol.1991,23:567-576.
    [37]Pereira H,Lemos P C,Reis M A M,et al.Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labeling experiments[J].Water Res.1996,30:2128-2138.
    [38]Hesselmann R P X,von Rummel R,Resnick S M,et al.Anaerobic metabolism of bacteria performing enhanced biological phosphate removal.Water Res[J].2000,34:3487-3494.
    [39]Maurer M,Gujer W,Hany R,et al.Intracellular carbon low in phosphorus accumulating organisms from activated sludge systems[J].Water Res.1997,31:907-917.
    [40]Kaewpipat K,Grady C P L.Microbial population dynamics in laboratory-scale activated sludge reactors[J].Water Sci.Technol.2002,46:19-27.
    [41]Gerber A,Mostert E S,Winter C T,et al.The effect of acetate and ther short-chain carbon compounds on the kinetics of biological nutrient removal[J].Water SA.1986,12:7- 12.
    [42]Tasli R,Artan N,Orhon D.The influence of different substmtes on enhanced biological phosphorus removal in a sequencing batch reactor[J].Water Sci.Technol.1997,35:75-80.
    [43]Randall A A,Liu Y H.Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal[J].Water Res.2002,36:3473-3478.
    [44]Cech J S,Hartman P.Glucose induced breakdown of enhanced biological phosphate removal[J].Environ.Technol.1990,11:651-656.
    [45]Cech J S,Hartman P.Competition between Poly-Phosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J].Water Res.1993,27:1219-1225.
    [46]Carucci A,Majone M,Ramadori R,et al.Dynamics of phosphorus and organic substmtes in anaerobic and aerobic phases of a sequencing batch reactor[J].Water Sci.Technol.1994,30:237-246.
    [47]Nakamura K,Dazai M.Growth characteristics of batchcultured activated sludge and its phosphate elimination capacity[J].J.Ferment.Technol.1986,64:433-439.
    [48] Sudiana I M, Mino T, Satoh H, et al. Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source[J]. Water Sci. Technol. 1999, 39: 29-35.
    [49] Jeon C O, Park J M. Enhanced biological phosphorous removal in a sequencing batch reactor fed with glucose as a sole carbon source [J]. Water Res. 2000, 34: 2160-2170.
    [50] Wang N, Peng J, Hill G Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition [J]. Water Res. 2002, 36: 49-58.
    [51] Satoh H, Mino T, Matsuo T. Biochemical mechanism of anaerobic glutamate uptake in the enhanced biological phosphorus removal process[M]. In: Proc. IAWPRC Biennial Conf. Kyoto, pp. 1990:531-534.
    [52] Satoh H, Mino T, Matsuo T. Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge[J]. Water Sci. Technol. 1998, 37: 579-582.
    [53] Carucci A, Lindrea K C, Majone M, et al. Different mechanisms for the anaerobic storage of organic substrates and their elect on enhanced biological phosphate removal (EBPR) [J]. Water Sci. Technol. 1999, 39: 21-28.
    [54] Carucci A, Kunhi M, Brian R, et al. Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing carbon feed[J]. Water Sci. Technol. 1999, 39: 75-85.
    [55] Schonborn C, Bauer H D, Roske I. Stability of enhanced biological phosphorus removal and composition of Poly-Phosphate granules [J]. Water Res. 2001, 35: 3190-3196.
    [56] Roske I, Schonborn C, Bauer H D. Influence of the addition of different metals to an activated sludge system on the enhanced biological phosphorus removal [J]. Int. Rev. Ges. Hydrobiol. 1995, 80: 1-17.
    [57] G J. J. Kortsteel, K. J. Appeldoorn,C. F. C. Bonting, et al. Recent Developments in the Biochemistry and Ecology of Enhanced Biological Phosphorus Removal [J] Biochemistry (Moscow), 2000, 65( 3), 332-340.
    [58] McMahon K D, Dojka M A, Pace N R, et al. Poly-Phosphate kinase from activated sludge performing enhanced biological phosphorus removal. [J] Appl Environ Microbiol. 2002, 68(10): 4971-4978.
    [59] Rao N N, Wang E, Yashphe J, et al. Nucleotide pool in pho regulon mutants and alkaline phosphatase synthesis in Escherichia coli. [J] J Bacteriol. 1986, 166(1): 205-211.
    [60] Morohoshi T, Yamashita T, Kato J, et al. A method for screening Poly-Phosphate- accumulating mutants which remove phosphate efficiently from synthetic wastewater. [J] Biosci Bioeng. 2003, 95(6): 637-640.
    
    [61] Cresson D. Fraley, M. Harunur Rashid, Sam S. K. Lee. A Poly-Phosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects [J].Proc Natl Acad Sci U S A.,2007,104(9),3526-3531.
    [62]Haiyu Zhang,Kazuya Ishige,and Arthur Komberg.A Poly-Phosphate kinase(PPK2) widely conserved in bacteria.[J]Proc Natl Acad Sci U S A.,2002,99,(26),16678-16683.
    [63]Shumin Tan,Cresson D.Fraley,Maojun Zhang,et al.Diverse Phenotypes Resulting from Poly-Phosphate Kinase Gene(ppkl) Inactivation in Different Strains of Helicobacter pylori.[J]JOURNAL OF BACTERIOLOGY,Nov.2005,7687-7695.
    [64]Xiaobing Shi,Narayana N.Rao,and Arthur Komberg.Inorganic Poly-Phosphate in Bacillus cereus:Motility,biofilm formation,and sporulation.[J]Proc Natl Acad Sci U S A.2004,101(49),17061-17065.
    [65]Michael R.W.Brown and Arthur Kornberg.Inorganic Poly-Phosphate in the origin and survival of species.[J]Proc Natl Acad Sci U S A.2004,101(46),16085-16087.
    [66]Kwang-Seo Kim,Narayana N.Rao,Cresson D.Fraley,and Arthur Komberg.Inorganic Poly-Phosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp.[J]Proc Natl Aead Sci U S A.2002,99(11),7675-7680.
    [67]Sarah Ayraud,Blandine Janvier,Laurence Salaun,and Jean-Louis Fauche're Modification in the ppk Gene of Helicobacter pylori during Single and Multiple Experimental Murine Infections[J].INFECTION AND IMMUNITY.2003.1733-1739.
    [68]Toshikazu Shiba,Hiromichi Itoh,Atsushi Karneda,Poly-Phosphate:AMP Phosphotransferase as a Poly-Phosphate-Dependent Nucleoside Monophosphate Kinase in Acinetobacter johnsonii 210A.[J]J Bacteriol.,2005,1859-1865.
    [69]Kazuya Ishige,Haiyu Zhang,and Arthur Komberg.Poly-Phosphate kinase(PPK2),a potent,Poly-Phosphate-driven generator of GTP.[J]Proc Natl Acad Sci U S A.2002,99(26),16684-16688.
    [70]Hiromichi Itoh and Toshikazu Shiba Poly-Phosphate Synthetic Activity of Poly-Phosphate:AMP Phosphotransferase in Acinetobacter johnsonii 210A.[J]J Bacteriol.,2004,5178-5181.
    [71]Neil Renninger,Roger Knopp,Heino Nitsche,et al.Uranyl Precipitation by Pseudomonas aeruginosa via Controlled Poly-Phosphate Metabolism.[J]Appl Environ Microbiol,2004,7404-7412.
    [72]Keasling JD and Hupf GA.Genetic manipulation of Poly-Phosphate metabolism affects cadmium tolerance in Escherichia coli.Appl Environ Microbiol.[J]1996,62(2):743-746.
    [73]Takeshi NAGATA,Chihiro ISHIKAWA,Masako KIYONO,et al.Accumulation of Mercury in Transgenic Tobacco Expressing Bacterial Poly-Phosphate Biol.Pharm.Bull.2006,29(12)2350-2353.
    [74]Takeshi Nagata.Masako Kiyono,Hidemitsu Pan-Hou,et al.Engineering expression of bacterial Poly-Phosphate kinase in tobacco for mercury remediation[J]Appl Microbiol Biotechnol,2006,72:777-782.
    [75]M.Kiyono ·H.Omura.T.Omura ·S.Murata ·H.Pan-Hou.Removal of inorganic and organic mercurials by immobilized bacteria having mer-ppk fusion plasmids.[J]Appl Microbiol Biotechnol,2003,62:274-278.
    [76]Sudesh K,Abe H,Doi Y.Process in Polymer Science[M].2000,25:1503-1555.
    [77]Lee S Y,Bioteclmol Bioeng[M].1996,49:1-14.
    [78]丘远征,张广,季星来,陈国强.假单胞菌中聚羟基脂肪酸酯合成酶基因的克隆与分析[J].无锡轻工大学学报.2002,21(6):549-553.
    [79]Du G C,Yu J.Proc Biochem[M].2002,38:325-332.
    [80]徐军,贺文楠,郭宝华,等.高等学校化学学报[J].2002,23:71-74.
    [81]Ramachander T V N,Rohini D,Belhekar A,et al.Int J Biol Macromol[M].2002,31:63-69.
    [82]Hezayen F F,Steinb(u|¨)chel A,Rehm B H A.Archives of Biochemistry and Biophysics[M].2002,403:284-291.
    [83]Rehm B H A,Antonio R V,Spiekermann P,et al.Biochimica et Biophysica Acta[M].2002,1594:178-190.
    [84]Ren Q,van Beilen J B,Sierro N,et al.Expression of PHA polymerase genes of Pseudomonas putida in Escherichia coli and its effect on PHA formation[J].Antonie van Leeuwenhoek.2005,87:91-100.
    [85]Delamarre S C,Chang H J,Batt C A.Identification and characterization of two polyhydroxyalkanoate biosynthesis loci in Pseudomonas sp.strain 3Y2[J].Appl Microbiol Biotechnol.2005,69:293-303.
    [86]Solaiman D K Y,Ashby R D,Foglia T A.Effect of inactivation of poly(hydroxyalkanoates)depolymerase gene on the properties of poly(hydroxyalkanoates) in Pseudomonas resinovorans[J].Appl Microbiol Biotechnol.2003,62:536-543.
    [87]Jiang Y Q,Ye J,Wu H Z,et al.Cloning and expression of the polyhydroxyalkanote depolymerase gene from Pseudomonas putida,and characterization of the gene product[J].Biotechnology Letters.2004,26:1585-1588.
    [88]Hoffmann N,Rehm B H A.Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa[J].FEMS Microbiology Letters.2004,237(1):1-7.
    [89]Hang X M,Lin Z X,Chen J Y,et al.Polyhydroxyalkanoate biosynthesis in Pseudomonas pseudoalcaligenes YS1[J].FEMS Microbiology Letters.2002,212:71-75.
    [1]Gavigan J A,Leonard M M,Alan D WD.Regulation of Poly-Phosphate kinase gene expression in Acinetobacter baumannii 252.[J]Microbiology,1999,145:2 931-2 937
    [2]Geibdorfer W,Ratajczak A,Hillen W.Transcription of ppk from Acinetobacter sp.Strain ADP1,encoding a putative Poly-Phosphate kinase,is induced by phosphate starvation.[J]Applied and Environmental Microbiology,1998,64(3):896-901
    [3]Mcmahon K D,Dojka M A,Pace N R,et al.Poly-Phosphate kinase from activated sludge performing enhanced biological phosphorus removal.[J]Appl Environ Microbiol.2002,68(10):4971-4978.
    [4]Schonbom C,Bauer H D,Roske I.Stability of enhanced biological phosphorus removal and composition of Poly-Phosphate granules[J].Water Res.2001,35:3190-3196.
    [5]Cresson D.Fraley,M.Harunur Rashid,Sam S.K.Lee.A Poly-Phosphate kinase 1(ppkl)mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects.[J]Proc Natl Acad Sci U S A.,2007,104(9),3526-3531.
    [6]Shumin Tan,Cresson D.Finley,Maojun Zhang,et al.Diverse Phenotypes Resulting from Poly-Phosphate Kinase Gene(ppkl) Inactivation in Different Strains of Helicobacterpylori.[J]JOURNAL OF BACTERIOLOGY,Nov.2005,7687-7695.
    [7]Xiaobing Shi,Narayana N.Rao,and Arthur Komberg.Inorganic Poly-Phosphate in Bacillus cereus:motility,biofilm formation,and spomlation.[J]Proe Natl Acad Sei U S A.2004,101(49),17061-17065.
    [8]Sambrook J,Fritsch EF,Maniatis T.Molecular Cloning:A Laboratory Manual.2nd ed.New York:Cold Spring Harbor Laboratory Press,[M]1999
    [9]Morohoshi T,Yamashita T,Kato J,et al.A method for screening Poly-Phosphate accumulating mutants which remove phosphate efficiently from synthetic wastewater[J].J.Biosei Bioeng.2003,95:637-640.
    [10]中华人民共和国国家标准.水质总磷的测定.钼酸铵分光光度法[M].GB/T 11893-1989.
    [11]Komberg,A.,1995.Inorganic Poly-Phosphate:toward making a forgotten polymer unforgettable.[J]J Bacteriol.177,491-496.
    [12]Michael R.W.Brown and Arthur Komberg.Inorganic Poly-Phosphate in the origin and survival of species.[J]Proc Natl Acad Sci U S A.2004,101(46),16085-16087.
    [13]Watnick,EKolter,R.Biofilm,City of Microbes.[J]J.Bacteriol.(2000).182:2675-2679
    [14]Zhang,H.,Ishige,K.& Komberg,A.A Poly-Phosphate kinase(PPK2) widely conserved in bacteria.[J]Prec.Natl.Acad.Sci.USA,2002,99(26),16678-16683.
    [15]Kazuya Ishige,Haiyu Zhang,and Arthur Kornberg.Poly-Phosphate kinase(PPK2),a potent,Poly-Phosphate-driven generator of GTP.[J]Proc.Natl.Acad.Sci.U S A.2002,99(26),16684-16688.
    [1]Cresson D.Finley,M.Harunur Rashid,SaM S.K.Lee.A Poly-Phosphate kinase 1(ppkl)mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects [J].Proc Natl Acad Sci U S A.,2007,104(9),3526-3531.
    [2]Mcmahon K D,Dojka M A,Pace N R,et al.Poly-Phosphate kinase from activated sludge performing enhanced biological phosphorus reMoval.[J]Appl Environ Microbiol.2002,68(10):4971-4978.
    [3]Zhang,H.,Ishige,K.& Komberg,A.A Poly-Phosphate kinase(PPK2) widely conserved in bacteria[J]Proc.Natl.Acad.Sci.USA 2002,99(26),16678-16683.
    [4]Kazuya Ishige,Haiyu Zhang,and Arthur Komberg.Poly-Phosphate kinase(PPK2),a potent,Poly-Phosphate-driven generator of GTP.[J]Proc.Natl.Acad.Sci.USA.2002,99(26),16684-16688.
    [5]SaMbrook J,Fritsch E F,Maniatis T.分子克隆实验克隆[M].第二版.北京:科学出版社,1999.
    [6]Shiming Wang,Jian He,Zhongli Cui,and Shunpeng Li Self-Formed Adaptor PCR:a Simple and Efficient Method for Chromosome Walking[J]Appl Environ Microbiol,.2007,73(15)5048-5051
    [7]SURINDER MOHAN SINGH1 AND AMULYA KUMAR PANDA1 Solubilization and Refolding of Bacterial Inclusion Body Proteins[J]JOURNAL OF BIOSCIENCE AND BIOENGINEERING Vol.2005,99(4),303-310.
    [8]M.M.Carrio',A.Villaverde Construction and deconstruction of bacterial inclusion bodies[J]Journal of Biotechnology 2002,96,3-12
    [1]Linda L,Blackalll,Gregory R,et al.A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants[J].Antonie van Leeuwenhoek.2002,81:681-691.
    [2]Comeau H,Hall K J,Hancock R E W,et al.Biological model for enhanced biological phosphorus removal[J].Water Res.1986,20:1511-1521.
    [3]Smolders G J F,van der Meij J,van Loosdrecht M C M,et al.Stoichiometric model of the aerobic metabolism of the BPR process[J].Biotechnol Bioeng,1994,44:837-848.
    [4]Gavigan J A,Leonard M M,Alan D WD.Regulation of Poly-Phosphate kinase gene expression in Acinetobacter baumannii 252[J].Microbiology,1999,145:2 931-2 937.
    [5]Geibdorfer W,Ratajczak A,Hillen W.Transcription of ppk from Acinetobacter sp.Strain ADP1,encoding a putative Poly-Phosphate kinase,is induced by phosphate starvation[J].Appl Environ Microbiol.1998,64:896-901.
    [6]Mcmahon K D,Dojka M A,Pace N R,et al.Poly-Phosphate kinase from activated sludge performing enhanced biological phosphorus removal[J].Appl Environ Microbiol.2002,68(10):4971-4978.
    [7]蔡天明,管莉菠,崔中利等 恶臭假单胞(PseudoMonas putida)GM6的聚磷特性研究[J].土壤学报,2006,43(1):117-122
    [8]Schonbom C,Bauer H D,Roske I.Stability of enhanced biological phosphorus removal and composition of Poly-Phosphatc granules[J].Water Res.2001,35:3190-3196.
    [9]管莉菠,李波,蔡天明等.Pseudomonas putida GM6多聚磷酸盐激酶(ppk)基因的克隆及表达.土壤学报.2007,44(4):158-164.
    [10]Michael E.Kovach,Philip H.Elzer,D.Stevcn Hill,et al.Four new derivatives of the broad-host-range cloning vector pBBR1MCS,carrying different antibiotic-resistance cassettes [J]. Gene. 1995, 166: 175-176
    [11] Fuhs G W and Chen M. Microbiological basis for Phosphate removal in the activated sludge process for the treatment of wastewater [J]. Microbiol Ecol, 1975,2:86-101.
    [12]Lidia S, Francesco Z G Seasonal phosphorus removal in a phostrip process-II. Phosphorus fraction and sludge microbiology during start-up [J]. Water Res. 1996 29:2327-2338.
    [13] SolaiMan D K Y, Ashby R D, Foglia T A. Effect of inactivation of poly(hydroxyalkanoates) depolymerase gene on the properties of poly(hydroxyalkanoates) in Pseudomonas resinovorans [J]. Appl Microbiol Biotechnol. 2003, 62: 536-543.
    [14] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters [J]. Prog Polym Sci. 2000, 25: 1503-1555.
    [1]Comeau H,Hall K J,Hancock R E W,et al.Biological model for enhanced biological phosphorus removal[J].Water Res.1986,20:1511-1521.
    [2]Smolders G J F,van der Meij J,van Loosdrecht M C M,et al.Stoichiometric model of the aerobic metabolism of the BPR process[J].Biotechnol Bioeng,1994,44:837-848.
    [3]Ren Q,van Beilen J B,Sierro N,et al.Expression ofPHA polymerase genes of PseudoMonas putida in Escherichia coli and its effect on PHA formation[J].Antonie van Leeuwenhoek.2005,87:91-100.
    [4]DelaMarre S C,Chang H J,Batt C A.Identification and characterization of two polyhydroxyalkanoate biosynthesis loci in Pseudomonas sp.strain 3Y2[J].Appl Microbiol Biotechnol.2005,69:293-303.
    [5]Jiang Y Q,Ye J,Wu H Z,et al.Cloning and expression of the polyhydroxyalkanote depolymerase gene from Pseudomonas putida,and characterization of the gene product[J].Biotechnology Letters.2004,26:1585-1588.
    [6]蔡天明,管莉菠,崔中利等 恶臭假单胞(PseudoMonas putida)GM6的聚磷特性研究.土壤学报[J],2006,43(1):117-122
    [7]Michael E.Kovach,Philip H.Elzer,D.Steven Hill,et al.Four new derivatives of the broad-host-range cloning vector pBBR1MCS,carrying different antibiotic-resistance cassettes [J].Gene.1995,166:175-176
    [8]Kornberg,A.,1995.Inorganie Poly-Phosphate:toward making a forgotten polymer unforgettable[J].J Bacteriol.177,491-496.
    [9]Xiaobing Shi,Narayana N.Rao,and Arthur Komberg.Inorganic Poly-Phosphate in Bacillus cereus: motility, biofilm formation, and sporulation. [J] Proc Natl Acad Sci U S A. 2004,101(49), 17061-17065.
    
    [10] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters [J]. Prog Polym Sci. 2000, 25: 1503-1555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700