用户名: 密码: 验证码:
油松冠层辐射特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取黄土地区主要绿化植被—油松为研究对象,采取辐射表野外定点观测的方法,研究了在典型天气条件下油松冠层内的太阳辐射能量日变化、生长季不同生长阶段的日值特征,以及辐射能量在空间和时间上的分布规律,为充分利用太阳辐射能、提高油松植被生产力以及干旱半干旱区特殊环境下的植被恢复提供了理论依据。其主要结论如下:
     (1)在晴朗天气条件下,油松生长季内的冠层总辐射、净辐射日变化为规则的单峰变化规律。具体表现为:在日出、日落时,太阳高度角最小,太阳辐射出现零值;中午13:00左右,太阳高度角最大,出现峰值。晴朗天气下净辐射率的日变化趋势总体上为中午高,早晨和夜晚低,日间净辐射率较为稳定,各生长阶段净辐射变化差异较小,一般保持在77%~84%之间。
     (2)在多云天气条件下,由于受云量等因素的影响,油松生长季内的冠层总辐射、净辐射总体上呈多峰变化规律,变化总趋势为早晚低、中午高。但在不同生长阶段的总辐射、净辐射受天气影响较大,导致辐射峰值出现的时间不同。相对于晴天条件,辐射能的起伏变化更为显著,并且在某些时刻出现了小的辐射峰值。净辐射率变化范围在26%~89%之间。
     (3)总辐射在不同层次表出垂直分层,而且具有一定规律性。太阳总辐射和净辐射随垂直高度的降低总体上表现为显著的递减规律。树冠顶部的太阳辐射强度最大,随着高度的降低,辐射强度随之减弱,且从树冠表面到树冠底部太阳总辐射可递减50%~70%。油松冠层对太阳辐射起到了较为明显的截流和削弱作用。
     (4)冠层内的太阳辐射有着明显的取向规律,并且不同取向表现出明显的分异规律。从每天8:00起,树冠内辐射由东向西呈递减趋势,随着时间的变化,东西向差异明显缩小;中午13:00以后,随着太阳西斜,树冠内辐射分布逐渐转向由西向东逐渐下降的趋势;16:00以后两者差值又逐渐增大。在整个生长季不同的生长阶段表现出相同的规律,且南北向的差异比东西方向的差异要明显的多。
     (5)林分环境对辐射能的分布也有一定影响。由于所测量的油松树冠北边的枝叶密度远小于南边,使得测量出的辐射在一天内大于南边辐射值。当太阳高度角最大时,南北向的差异也达到最大。
     (6)油松冠层红外辐射的日变化趋势和总辐射变化规律相似,呈现出有规律的单峰变化规律。在日出、日落时,太阳辐射值比较小;中午13:00左右时太阳高度角最大,出现峰值。受天气状况和林分环境的影响,数据有一些波动。整个生长季总体上表现为单峰变化规律,只是由于太阳高度角的变化,辐射的峰值大小及其出现的时间有所不同,在生长季中期辐射值最大,末期次之。
In this paper, the Pinus tabulaeformis which is the main afforest vegetation in loess areas are selected for study, the method of field fixed-point observation by radiometer is used , the writer researched on the daily solar radiation energy changes of Pinus tabulaeformis canopy layer on typical weather, the daily value feature in different stages of the growing season, and the distribution of radiation energy in space and time. This paper provided a theoretical basis for making full use of solar radiation energy, improving Pinus tabulaeformis vegetation productivity and restoring the vegetation in the arid and semi-arid areas under special circumstances. Its main conclusions are as follows:
     Firstly, in the sunny weather conditions, the daily changes of the canopy layer’s total radiation and net radiation are regular single peak changes in the growing seasons. For the specific performances: the solar elevating angle is minimum and the solar radiation is in zero when sunrise or sunset; the sun’s elevating angle is maximum and has a value peak around 13:00 at noon. In the sunny weather conditions, the ratio of net radiation’s daily changes trends are as follows: it is high at noon and it is low in the morning and at night, the net radiation during a day is relatively stable, the net radiation changes less differences in different stages of the growing seasons, it generally maintains between 77%~84%.
     Secondly, in the cloudy weather conditions, for the impact of other factors, such as the clouds, the changes of the canopy layer’s total radiation and net radiation are multimodal changes regularity in the growing seasons, the general trend for change is lower in the morning or at night and higher at noon. But the weather has a greater impact on total radiation and net radiation in the different growing seasons; as a result, the peaks of radiation occur at the different time. Comparing with the sunny weather conditions, the change of the radiation is more significant, and it has a small value peak of radiation in some moments. The ratio of the net radiation has changed in the range of 26% to 89%.
     Thirdly, as the vertical height decreases, the changes of the total solar radiation and net radiation are of diminishing significantly. At the top of the canopy, the solar radiation intensity is maximization, the radiation will be weakened with the vertical height decreased, and the total solar radiation can be reduced 50 to 70 percent from the surface of the leaf canopy to the bottom of the leaf canopy. The leaf canopy plays a more significant role in the stop-flow and weakening the solar radiation.
     Fourthly, the solar radiation in the leaf canopy has a clear orientation rule, and different orientations show a law with clear differentiation. Since from the day at 8:00, the solar radiation in the leaf canopy has a descending trend from east to west, the difference between East-West significantly decreases with the time changes; after about 13:00 at noon, the solar radiation in the leaf canopy gradually has a descending trend from west to east at sunset; after 16:00, the margin also gradually increases. During the whole growing seasons, these different stages show some same rules, but the differences between South-North are more clearly than the differences between East-West.
     Fifthly, stand environment affects on the distribution of radiation energy too. Because the branches density at the north side of the test place is much smaller than the south’s, the measuring values of radiation in the north in one day is larger than in the south. North-south differences also reached to the maximum when the solar elevating angle of the sun is maximization.
     Lastly, the daily changes of the infrared radiation in the leaf canopy are similar with its total changes regularity, and it shows a regular single peak change. The solar radiation value is small at sunrise or sunset; the elevating angle of the sun is maximization; and it has a peak value around 13:00 at noon. Dates have some fluctuations because of weather conditions and stand environments. The whole growing seasons show the single peak changes regularity. Just because of the changes of the solar elevating angle, the radiation peak values and the time are different; the value of radiation is the largest in mid-stage of the growing seasons, then the second -largest at the end of the growing seasons.
引文
[1] 王天铎.群体光能利用及其数学模拟.光合作用研究进展(第二集)[M].北京:科学出版社,1980.
    [2] Norman J M. Interfacing leaf and canopy light interception model. In: Hesketh J D, Jones J Wed s Predicting Photosynthesis for Ecosystem Models[C], Vol Ⅱ . Florida: CRC Press,1980:49~68.
    [3] Jack son J E, Palmer J W. Interception of light by model hedgerow orchards in relation to latitude, time of year and hedgerow configuration and orientation[J]. J. Appl Ecol,1972, 9:341~357.
    [4] Allen L H. Model of light penetration in to a wide-row crop[J]. Agron, 1974, 66:41~47.
    [5] Fukai S, Loom is R S. Leaf display and light environments in row-planted cotton communities [J]. Agric Meteorol,1976,17: 353~379.
    [6] Mann J E. Light penetration in a row-grow-crop with random plant spacing [J]. Agron. J., 1980, 72:131~142.
    [7] A cock B, Thornley J H, Wilson J W. Spatial variation of light in the canopy. In: Proceedings of the BP/PP Technical Meeting [C]. W ageningen: Pudoc, 1970:91~102.
    [8] Lemur R,B lad B L. A critical review of light models for estimation the shortwave radiation regime of plant canopies [J].Agric Meteorol,1974,14:255~286.
    [9] Baldocchi D D. Canopy radiative transfer models for spherical and known leaf inclination angle distributions: A test in an oak-hictory forest [J]. Appl. Ecol., 1985,22:539~555.
    [10] Baldocchi D D, Hutchison B A. On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumped foliage[J]. Tree Physiol, 1986, 2:155~165.
    [11] Baldocchi D D. Turbulent transfer in a deciduous forest [J]. Tree Physiol.1989, 5:357~377.
    [12] Myneni R, Ross, Asrar G. A Review on the Theory of Photo Transport in Leaf Canopies [J]. Agric For. Meteorol, 1989, 45:1~153.
    [13] 王信理,李相玺.植物群体结构与太阳辐射的垂直分布及其变化[J].应用气象学报,1992,4 期.
    [14] 张佳华,姚凤梅.影响植被内部辐射状况的冠层结构特征研究[J].气象科学,2000,20(1):15~22.
    [15] Callesen O, Wagenmakers P S. Effects of tree density, tree height and rectangularity on growth, flowering and fruit production[J]. Acta Horticulturae, 1989, 243:141~148.
    [16] 李相玺.茶园太阳辐射特性的研究[J].江西林业科技,1991,6.
    [17] 魏钦平,程述汉.栽植行向、树形和光能截获的数学模型[A].见:张上隆,陈昆松.园艺学进展.北京:农业出版社,1993.
    [18] 季志平,李思锋,李军超等.油茶复合林的功能特征研究-Ⅰ .辐射能量垂直分配[J].经济林研究,1996,14(2):4~6.
    [19] 季劲钧,胡玉春.一个植物冠层物理传输和生理生长过程的多层模式[J].气候与环境研究,1999,4(2):152~164.
    [20] 莫兴国,林忠辉,项月琴,刘苏峡.玉米群体辐射传输特征[J].生态农业研究,2000,8(1):1~4.
    [21] Lewallen K A S. Effects of light availability and canopy position on peach fruit quality [D]. Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Horticulture, Blacksburg Virginia, 2000.
    [22] 赵会杰,李有,邹琦.两种不同穗型小麦品种的冠层辐射和光合特征的比较研究[J].作物学报,2002,5:654~659.
    [23] 赵会杰,邹琦,郭天财,于振文,王永华.密度和追肥时期对重穗型冬小麦品种 L906 群体辐射和光合特性的调控效应[J].作物学报,2002,2:270~277.
    [24] Hampson C, Quamme H, Brownlee R. Tree density or training system-what is important in apple orchard design?[J]Compact Fruit Tree, 2002, 35(2):48~50.
    [25] 曾骧.果树生理学[M].北京:北京农业大学出版社,1992:362~373.
    [26] Szczygiel A, Mika A. Effects of high density planting and two training methods of dwarf apple trees grown in sub-Carpathian region[J]. Journal of Fruit and Ornamental Plant Research, 2003, 11:45~51.
    [27] 王之杰,郭天财,朱云集等.超高产小麦冠层光辐射特征的研究[J].西北植物学报,2003,23(10):1657~1662.
    [28] 金剑.不同产量大豆冠层生理生态特性研究[D].东北农业大学硕士论文.
    [29] 金剑,刘晓冰,王光华等.不同产量类型大豆生殖生长期冠层结构及其与冠层辐射的关系研究[C].第三届全国青年作物栽培、作物生理学术研讨会论文集.350~357.
    [30] 金剑,刘晓冰,王光华等.大豆生殖生长期冠层结构及其与冠层辐射的关系研究[J].东北农业大学学报,2004,4:350~357.
    [31] 张旺锋,王振林,余松烈等. 种植密度对新疆高产棉花群体光合作用冠层结构及产量形成的影响[J]. 植物生态学报,2004,28(2): 164~171.
    [32] 孙宏勇,张喜英,陈素英等.水分胁迫对冬小麦冠层结构及光合特性的研究[J].灌溉排水学报,2005,24(2):31~34.
    [33] 董乔雪,王一鸣,张军.基于番茄结构模型与辐射度算法相结合的冠层光分布模拟[C].中国农业工程学会 2005 年学术年会论文集.410~415.
    [34] 王锡平,李保国,郭焱等.玉米冠层内光合有效辐射三维空间分布的测定和分析[J].作物学报,2004,30(6):568~576.
    [35] 王锡平,郭焱,李保国等.玉米冠层内太阳直接辐射三维空间分布的模拟[J].生态学报,2005,25(1):7~12.
    [36] 谭昌伟,王纪华,黄文江等.不同氮素水平下夏玉米冠层光辐射特征的研究[J].南京农业大学学报,2005,28(2):12~16.
    [37] 刘淑明,孙丙寅,王得祥.不同地面覆盖对花椒冠层光能分布的影响[J].干旱地区农业研究,2005,6:124~127.
    [38] 谢东辉,孙睿,朱启疆等.利用辐射度模型模拟玉米冠层辐射分布[J].作物学报,2006,3:317~323.
    [39] 蒋桂英,刘建国,李英贤等.奶花芸豆群体冠层结构特征及产量性状研究[J].干旱地区农业研究,2006,24(4):211~214.
    [40] 高照全,魏钦平,王小伟等.果树光合作用数学模拟的研究进展[J].果树学报,2003,20(5):338~344.
    [41] 孟平,张劲松,高峻.果树冠层太阳总辐射与净辐射分形特征的相关分析[J].林业科学,2005,1:1~4.
    [42] 高登涛,韩明玉,李丙智等.冠层分析仪在苹果树冠结构光学特性方面的研究[J].西北农业学报,2006,15(3):166~170.
    [43] 高清华,叶正文,章镇.树形对油桃幼树光截获能力和结果的影响[J].中国农业科学,2006,39(6):1294~1298.
    [44] 刘家冈,张文杰.光在林冠中的传播[J].林业科学,1985,21(3):234~240.
    [45] 任海,彭少麟,张祝平等.鼎湖山季风常绿阔叶林林冠结构与冠层辐射研究[J].生态学报,1996,2:175~179.
    [46] 肖文发.杉木人工林单叶至冠层光合作用的扩展与模拟研究[J].生态学报,1998,18(6):621~628.
    [47] 倪穗,周光裕.青冈林能量生态的研究-Ⅰ .青冈林的能量环境[J].宁波大学学报(理工版),1998,11(1):40~46.
    [48] 王锦地,项月琴,李小文.考虑开放度的树冠层辐射传输模型及实验验证[J].遥感学报,1999,4:279~284.
    [49] 张小全, 赵茂盛, 徐德应. 杉木中龄林树冠叶面积密度空间分布及季节变化[J].林业科学研究,1999,12(6):612~619.
    [50] 张小全,徐德应,赵茂盛.林冠结构、辐射传输与冠层光合作用研究综述[J].林业科学研究,1999,12(4):411~421.
    [51] 张小全, 徐德应. 杉木中龄林针叶光合作用对光斑的响应[J].植物生态学报,2000,24(5):534~540.
    [52] 刘晓东,朱春全,雷静品等.杨树人工林冠层光和辐射分布的研究[J].林学科学,2000,3:2~7.
    [53] 马钦彦,刘志刚,潘向丽等.华北落叶松人工林生长季内的林冠结构和光分布[J].北京林业大学学报,2000,4:18~21
    [54] 金昌杰,关德新,朱廷曜.长白山阔叶红松林太阳辐射分光谱特征[J].应用生态学报,2000,11(1):19~22.
    [55] 桑卫国,郑豫,张德全.暖温带落叶阔叶林林冠表面辐射通量动态与特点[J].东北林业大学学报,2001,3:40~43.
    [56] 张小全,徐德应.人工同龄纯林冠层辐射场模拟模型 I.理论计算[J].植物生态学报,2001 , 25 (5): 609~615.
    [57] 张小全,徐德应.人工同龄纯林冠层辐射场模拟模型 II.应用与验证[J].植物生态学报,2002 , 26 (1): 83~88.
    [58] 王得祥,刘淑明,雷瑞德等.秦岭华山松群落能量环境及光能利用率研究[J].西北林学院学报,2003,18(4):5~8.
    [59] 费永俊,王燕,左雪枝等.南方红豆杉冠层光辐射分布及其对单枝结实量的影响[J].河南科技大学学报,2004,2:18~20.
    [60] 张一平,赵双菊,窦军霞等.西双版纳热带季节雨林热力效应时空分布特征初探[J].北京林业大学学报,2004,26(4):1~7.
    [61] 张一平,窦军霞,于贵瑞等.西双版纳热带季节雨林太阳辐射特征研究[J].北京林业大学学报,2005,27(5):17~25.
    [62] 窦军霞,张一平,赵双菊等.西双版纳热带季节雨林辐射垂直分布特征[J].北京林业大学学报,2006,28(2):15~21.
    [63] 余鸽,王得祥,陈书军.秦岭火地塘林区油松林能量环境与热量平衡研究[J].西北林学院学报,2007,22 (3) : 21~24.
    [64] Oker-Blom P,Kellomaki S.Theoretical computations on the role of crown shape in the absorption oflight by forest trees[J].Mathematical Biosciences, 1982, 59:291~311.
    [65] Grace J C,Jarvis P G,Norman J M.Modeling the interception of solar radiant energy in intensively managed stands[J].N.Z.J.For.Sci., 1987, 17:193~209.
    [66] Kuuluvainen T,Pukkala T.Simulation of within-tree and between-tree shading of direct radiation in a forest canopy:Effect of crown shape and sun elevation[J].Ecol.Model., 1989, 49:89~100.
    [67] Pukkala T,Kuuluvainen T.Effect of canopy structure on the diurnal interception of direct solar radiation and photosynthesis in a tree stand[J].Silva Fenn., 1987, 21:237~250.
    [68] Kuuluvainen T,Pukkala T.Effect of crown shape and tree distribution on the spatial distribution of shade[J].Agri.For.Meteorol., 1987, 40:215~231.
    [69] Kellomaki S,Oker-Blom P,Kuuluvainen T.The effect of crown and canopy structure on light interception and distribution in a tree stand[A].In:Tigerstedt P M A ed.Crop Physiology of Forest Trees.Helsinki:Helsinki University Press, 1986:107~115.
    [70] Wang Y P, Jarvis P G. Influence of crown structural properties on PAR absorption, photo synthesis, and transpiration in sitka spruce: application of a model (MA ESTRO) [J]. Tree Physiol., 1990, 7: 297~316.
    [71] 张娜,赵英时.植株冠层几何形状对草地反射率的影响[J].遥感学报,2007,11(1):9~19.
    [72] Lewallen K A S. Effects of light availability and canopy position on peach fruit quality[D]. Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Horticulture, Blacksburg Virginia, 2000.
    [73] Hampson C, Quamme H, Brownlee R. Tree density or training system-what is important in apple orchard design? [J] Compact Fruit Tree, 2002, 35(2): 48~50.
    [74] Szczygiel A, Mika A. Effects of high density planting and two training methods of dwarf apple trees grown in sub-carpathian region[J]. Journal of Fruit and Ornamental Plant Research, 2003, 11: 45~51.
    [75] Jolly W M, Nemani R, Running S W. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest [J]. Tree Physiology, 2004, 24:1069~1071.
    [76] 高清华,叶正文,章镇等.树形对油桃树光截获能力和结果的影响[J].中国农业科学,2006,39(6):1294~1298.
    [77] Grace J C,Rook D A,Lane P M.Modeling canopy photosynthesis in Pinus radiata stands[J].N.Z.J.For. Sci., 1987, 17:210~228.
    [78] Baldocchi D D.Scaling water vapor and carbon dioxide exchange from leaves to a canopy:rules and tools[A].In:Ehleringer J R,Field C B eds.Scaling Physiological Processes:Leaf to Globe.Academic Press,Inc.Harcourt Brace Jovanovich, 1993:77~116.
    [79] Chen S G.Ceulemans R.Impens I.A fractal-based Populus canopy structure model for the calculation of light interception[J].Forest Ecology and Management, 1994, 69:97~110.
    [80] Myneni R B, Asrar G, Gerstl S A W.Radiative transfer in three dimensional leaf canopies[J].Trans.Theory Stat Phys., 1990, 19:205~250.
    [81] 朱劲伟,崔启武.林冠的结构和光的分布—光的吸收理论的探讨[J].林业科学,1982,18(3): 258~265.
    [82] Oker-Blom P,Kellom Nki S.Effect of grouping of foliage on the within-stand and within-crown lightregime:comparison of random and grouping canopy models[J].Agric.Meteorol., 1983, 28:143~155.
    [83] Oker-Blom P.Photosynthetic radiation regime and canopy structure in modeled forest stands[J].Acta Forestalia Fennica, 1986, 197:1~44.
    [84] Renold J F.Modeling the effects of elevated CO2 on plants:extrapolating leaf response to a canopy[J].Agric.For.Meteorol., 1992, 61:69~94.
    [85] 罗俊,张华,邓祖湖等.甘蔗不同叶位叶片形态与冠层特征的关系[J].应用与环境生物学报,2005,11(1):28~31.
    [86] 谭昌伟,王纪华,黄文江等.不同氮素水平下夏玉米冠层光辐射特征的研究[J].南京农业大学学报,2005,28(2):12~16.
    [87] 肖文发.油松林的能量平衡[J].生态学报,1992,1.
    [88] 徐明,贺庆棠.几种植被能量平衡的差异[J].华北农学报,1994,9(2):81~87.
    [89] 杨月琴,易现峰.西宁地区主要针叶树种叶片内紫外线吸收色素含量比较[J].青海农林科技,1999,4:41~42.
    [90] 孙丙寅,刘淑明,孙长忠.油松与侧柏人工幼林热量平衡的研究[J].西北林学院学报,2000,15(4):6~9.
    [91] 郭华,王孝安.黄土高原子午岭人工油松林冠层特征研究[J].西北植物学报,2005,25(7):1335~1339.
    [92] 刘建,何维明,房志玲.东灵山油松林和辽东栋林下土壤资源和光资源的空间特征[J].生态学报,2005,25(11):2954~2960.
    [93] 杨占彪,蒋志荣,柴薇薇等.兰州市南北两山三种绿化树种光合特性研究[J].甘肃农业大学学报,2006,10(5):85~90.
    [94] 张卫强,贺康宁,王正宁,田晶会,尹婧.光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响[J].中国水土保持科学,2006,4(2):108~113.
    [95] 贺康宁,张学培,赵云杰等.晋西黄土残塬沟壑区防护林热收支特性及蒸散研究[J].北京林业大学学报,1998,20(6):7~13.
    [96] 孙鹏森,马履一,王小平等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1~5.
    [97] 马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报,2002,24(3):23~27.
    [98] 王华田,马履一.利用热扩式边材液流探针测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6):661~667.
    [99] 王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31~37.
    [100] 王华田,马履一,徐军亮.油松人工林 SPAC 水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报,2004,28(5):637~643.
    [101] 聂立水,李吉跃.应用 TDP 技术研究油松树干液流流速[J].北京林业大学学报,2004,26(6):49~56.
    [102] 聂立水,李吉跃,翟洪波.油松、栓皮栎树液流速率比较[J].生态学报,2005,25(8):1934~1940.
    [103] 马达,李吉跃,林平.北京山区造林树种耗水规律初探[J].山西农业大学学报,2006,1:48~51.
    [104] 张卫强,贺康宁,朱艳艳等.黄土半干旱区油松苗木蒸腾特性与影响因子的关系[J].中国水土保持科学,2007,5(1):49~54.
    [105] 徐军亮,马履一,阎海平.油松树干液流进程与太阳辐射的关系[J].中国水土保持科学,2006,4(2):103~107.
    [106] 余鸽.秦岭火地塘林区油松林能量环境与热量平衡研究[D].西北农林科技大学硕士论文.
    [107] 陈有民.园林树木学[M].北京:中国林业出版社,1990.
    [108] 章家恩,黄润,饶卫民等.玉米群体内太阳光辐射垂直分布规律研究[J].生态科学,2001,20(4):8~11.
    [109] Stephen S.Mulkey,Kaoru Kitajima and S.Joseph Wright. Plant physiological ecology of tropical forest canopies[J].Tree,1996,11(10):408~412.
    [110] 李云梅.植被辐射传输理论与应用[M].南京:南京大学出版社,2005.
    [111] 吕斯骅.遥感物理基础[M].北京:商务印书馆,1981.
    [112] 国家气象局.农业气象观测规范(上卷)[S].北京:气象出版社,1993.
    [113] Bourages B. Technical note improvement in solar declination computation[J]. Solar Energy,1985,35(40):367~369.
    [114] 刘建栋,郑国生,卢布等.大豆花荚期冠层晴天光谱特征分析[J].中国油料作物学报,1999,21(4):33~36.
    [115] 欧阳海.农业气候学[M].北京:气象出版社,1990.
    [116] 蒙特思.卢其尧译.植被与大气-原理[M].北京:中国农业科学技术出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700