用户名: 密码: 验证码:
模板介入法制备纳米氧化铝及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米Al2O3由于具有良好的耐磨性、抗腐蚀性、光学稳定性、电学性、催化性以及良好的生物相容性,在耐磨、绝缘、阻燃、催化、微电子元件等领域具有特殊的用途,成为一种应用最广、需求最迫切的纳米材料。目前制备性能优越的纳米γ-Al2O3粉体已经有比较成熟的工艺,但要想制备小粒径、窄分布的纳米α-Al2O3却比较困难,其原因在于γ-Al2O3必需在高温下才能转变为α相,在转相过程中颗粒极易发生硬团聚,因此很难得到分布窄的纳米α-Al2O3粉体,而纳米粒子的均一性正是良好应用性能的关键。如何制备小粒径、窄分布、分散性好、无团聚的纳米α-Al2O3一直是世界范围内科研工作者努力的目标。
    本论文首先在传统结晶理论的基础上探讨了纳米晶核生长的特殊性。与常规定向有序结晶相比,纳米氧化铝前驱体的成核阶段,由于凝结速度远大于定向速度,因而分子或离子以无序或近无序的方式堆积;胶核生长阶段,一方面存在着扩散控制的生长模式, 另一方面无规则的布朗运动使两个或多个胶核碰撞产生堆垛式无序凝并,无序乱堆使部分晶核发生紧密接触,晶界曲率半径引起的化学位梯度使晶界两侧原子发生迁移, 在晶界面及周围其它原子或分子的扰动下发生结构层堆垛次序的错排,即形成堆垛层错,由此造成晶体表面原子呈一维无序及亚晶界结构。纳米粒子的壳层结构、原子排列的无序性以及材料表面固有的堆积产生的间隙微孔为这一生长模式提供了有利的佐证。
    通过对已有的团聚机理的分析,系统深入地探讨了影响团聚的主要因素。研究结果表明:颗粒团聚的主要驱动力是晶粒长大前后的界面能差,而氢键、范德华力和毛细管效应则是促进粉体团聚的外界因素,团聚是内因和外因共同作用的结果,颗粒间的接触是作用的前提。因此,理想的阻隔是控制粉体团聚、获得窄分布颗粒的有效手段,微元环境的一致性是实现晶体均匀生长、粉体粒度窄分布的根本保证。
    在上述理论研究的基础上,首次设计了以固态介质炭黑为模板的微元反应器, 通过模板介质、溶剂及分散方式的选择,使该反应场具有全程性的功能:在前驱体制备中模板介质控制粒子成核和长大;在后处理高温转相过程中起阻隔作用,抑制颗粒的生长。并探讨了微元反应器的作用机理,主要探讨了超声波的空化作用和模板介质的
    
    
    全程阻隔作用。超声波的空化作用在前驱体制备中具有加速成核和控制晶核生长的作用,保证晶核生长的同步性,并使得生成的晶体彼此分散,避免硬团聚的发生;模板介质由于自身的结构优势在微元反应场中发挥全程阻隔作用,它是粉体均匀一致性的保证,另外模板介质的表面特性又促使超声波的空化作用得到增强,模板介质的可去除性保证了最终产品的纯度。
    利用设计的微元反应场,在一定的工艺条件下合成出了尺寸可控、粒度分布均匀、晶相完整的纳米α-氧化铝粉体,并对前驱体的制备工艺和后处理工艺进行了优化,优化后的工艺参数为:超声波频率30KHz,超声波功率160W,模板介质用量20g/L, Al(NO3)3溶液浓度0.5mol.L-1,滴加速度20ml/min,溶剂为含醇60%的水,在氮气中转相,转相温度1100℃,转相时间2h,在600℃空气中煅烧1h。并采用透射电镜、红外光谱、激光粒度分析仪、X衍射仪、DSC差热分析仪等手段对合成纳米粉体性能进行了表征,结果表明:采用模板介入法可以合成出粒径小(40~50nm)、分布窄(±1.2nm)、晶相纯的纳米α-氧化铝粉体,而且工艺简单、反应条件温和、原材料价廉易得,适宜工业化生产。
    论文最后对所合成的纳米氧化铝粉体的应用性能进行了初步研究,首次将纳米技术同炸药钝感技术相结合,通过安全性实验,研究了纳米氧化铝对炸药性能的影响,结果表明:纳米氧化铝较常规氧化铝能降低混合炸药的撞击感度和冲击波感度,而且对HMX热分解具有一定催化特性,使混合炸药的热分解的自加速温度有所降低,并能略微提高混合炸药的能量输出和爆速。
    本课题的创新点主要表现在如下几方面:
    1. 在传统结晶理论的基础上系统研究了前驱体制备过程中成核和生长机制,建立了纳米晶体生长模型,为获得窄分布纳米粉体提供了理论基础。
    2. 在理论研究的基础上首次设计了以超声波、模板介质、溶剂为主体的微元反应场,并通过各项参数的优化使得该微元反应场能充分发挥全程化功能:在前驱体制备中控制粒子成核和长大;在后处理中起阻隔作用,防止颗粒的不正常生长,解决了α-氧化铝的团聚问题,保证了最终粒子的均匀一致性,并探讨了微元反应场的作用机理。
    3. 首次将纳米技术同炸药钝感技术相结合,通过实验研究了纳米氧化铝对炸药撞击感度、冲击波感度以及能量输出等性能的影响。
Nano-sized alpha alumina power, which has a very high surface or interfacial area, exhibits dramatic properties, such as enhanced sinterability at low temperatures, improved UV scattering, very high hardness, smaller particle suspensions, superior optoelectronic properties, has become a kind of favorable material in applications such as high insulation material, high performance cutting tools, micro-electronics and fine porcelain.
    There are a number of techniques presently available for the synthesis of nano-sized gamma alumina power, while it is relatively difficult to make perfect nano-sized alpha alumina particle with fine size, narrow distribution and high purity. The main fact is because of that the transformation process of crystal phase from gamma to alpha must be performed under high temperature above 1200-Celsius degree, at which it is very easy for nano-sized particle to agglomerate and grow. Maintaining a narrow size distribution without obvious agglomeration in the power, which is important in many applications, is not possible with a majority of conventional techniques and has become a world aim that many scientists are going in for.
    In this paper, the particularity of nano-crystal growing was discussed firstly on the base of traditional crystal theory. Comparing with general directional and regular crystallization, during the nucleating of nano-alumina precursor, molecule or ion takes on out-of-order stacking structure because of the higher concreting rate; during the growing of crystal nucleus, out-of-order stacking makes most of crystal nucleus contact closely and stacking fault is formed as a result of Brown movement and chemistry potential difference among crystal interfaces, which makes atoms in crystal take on out-of-order or sub-boundary structure. This kind of special crystal growing model can also be proved by shell structure, out-of-order property of atom array and porous surface structure of nano-particles.
    Through analyzing existent agglomeration mechanisms, the main effect factors on agglomeration of nano-particles were discussed systematically and thoroughly. The results
    
    
    show that the interface energy difference is the main driving force and hydrogen bond, chemical bond and capillary action force can improve the grow of the particles. The common action of intrinsic factor and exterior factor results in agglomeration. What’s more, contact among particles is the precondition of above various actions. Therefore, preventing direct contact among particles is the effective way to restrain agglomeration and grow of particles and the uniformity of microenvironment is also very important for attaining nano-sized power with narrow distribution.
    On base of above theory studies, the micro-reaction unit, including mainly template medium, solvent and ultrasonic, was built in order to attain uniform nano-sized powder through combining soft-chemistry and template-chemistry technique. The micro-reaction unit has the following double functions: the one is controlling the nucleation and grow of particles during preparing process of the precursor; the other is preventing agglomeration and abnormal grow of particles during the subsequent heat-treating process acting as a kind of obstruct. Furthermore, the action mechanism of micro-reaction unit was also studied, especially on the cavitations action of ultrasonic and obstruct action of template medium .the former can accelerate nucleating and control growing of nucleus, which assures the uniformity of grow and prevent the form of hard agglomerates during preparing process of the precursor; the later exerts entire obstruct action during the whole reaction process in the advantage of its special structure, which assures the uniformity of the last nano-sized powder. What’s more, the surface characteristic of template medium also enhances the cavitations action of ultrasonic and the eliminable property of template medium also ensures the purity of final product.
    Thereafter, the nano-sized alpha alumina powder with controllable size, narrow distrib
引文
[1] John J.Gilman.Nanotechnology.Mat. Res. Innovat.2001, 5:12~14
    [2] 高濂,李蔚 编著.纳米陶瓷.北京:化学工业出版社,2002:1~9
    [3] J.Briatico,J.L.Maurice,etal.Structure of cobalt cluster films obtained by sputter deposition on alumina.Eur.Phys.J..1999,9:517~521
    [4] 李凤生,杨毅等编著. 纳米/微米复合技术及其应用.北京:国防工业出版社,2002
    [5]Shanlin Pan,LewisJ.,Rothberg.Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates.Nano Letters,2003,3.6:811~814
    [6]C.M.Mo,L.Zhang,Z.Yuan.Optical absorption of nanostructured Al2O3.Nanostructured Materials.1995,5.1:95~99
    [7] 张立德, 牟季美. 纳米材料科学. 辽宁:科学技术出版社.1994
    [8] 张立德.纳米材料研究的现状和发展趋势. 96中国材料研讨会.功能材料.1~2
    [9] J.Bujdak,B.M.Rode.Activated alumina as an energy source for peptide bond formation:Consequences for mineral-mediated prebiotic processs.Amino Acids.2001,21:281~291
    [10] Mo CM,Zhang LD,Yuan Z,etal. Nanostruct Mater. 1995,5.5: 951~954
    [11] 朱屯,王福明,王习东等编著.国外纳米材料技术进展与应用.北京:化学工业出版社,2002
    [12] National nanotechnology investment in the FY 2002 Budget Request by the presiden. http://www. Nano. Gov/2002buget.html
    [13] Making it in Miniature-Nanotechnology. UK Science and its Applications. http://www.parliament.uk/post/pn086.pdf
    [14] 唐芳琼等.纳米Al2O3粒子的制备.感光科学与光化学 .2001,8:198~201
    [15] 唐海红,焦淑红,杨红菊等. 纳米氧化铝的制备及其应用.中国粉体技术.2002, 12.6:37~39
    [16] 张永刚,闫裴. 纳米氧化铝的制备及应用. 无机盐工业. 2001, 3: 21~25
    
    [17] 丁星兆,柳襄怀. 纳米材料的结构、性能及应用. 材料导报. 1997, 11.4: 1~12
    [18] CN 1079718A,尺寸可控微米、亚微米级氧化铝粉的制备方法
    [19] 王志强,马铁成等. 超细α-氧化铝的低温燃烧合成及其烧结特性的研究.硅酸盐通报.2000, 5: 28~30
    [20] 李汶霞,殷声等. 低温燃烧合成氧化铝超细粉体的工艺与特性. 现代技术陶瓷.1998年增刊: 26~29
    [21] Jun Ding, Taknya, Tsuzuki, etal. Ultra fine Aluminum Particles Prepared by mechanochemical/Thermal Processing. J. Am. Ceramic.Soc.. 1996, 79.11: 2956~2958
    [22] Mo CM, Zhang LD, Xie CY, etal. J.App.Phys. 1993,73.10: 5185~5188
    [23] Yu-ichi Yoshizawa, Motohiro Toriyama, Shuzo Kanzaki . Fabrication of Textured Alumina by High-Temperature Deformation. American Ceramic Society .2001,84.6:1392~1394
    [24] Wolfgang M. Sigmund, Nelson S. Bell, Lennart Bergstrom. Novel Powder-Processing Methods for Advanced Ceramics. American Ceramic Society. 2000,83.7: 1557~1574
    [25] 张长栓,赵峰,张继军等.不同制备因素对超细氧化铝结构的影响.化学物理学报.1999,12.3:321~325
    [26] Imbusch GF, Kopelman R.. Optical Spectroscopy of Electronic Center sin Solidsin:Yen W M, Selzer P M(Edns). Laser Spectroscopy of Solids. NewYork, Springer-Verlag Berlin Heideberg.1981, 49:118~120
    [27]L.D.Zhang,C.M.Mo,etal.Characterizations of optical absorption in porousAl2O3-Cr2O3Nanocomposites.NanostructuredMaterials.1997,9:563~566
    [28] 卢金山,高濂等. Al2O3/Ni包裹粉体的制备、烧结行为及其显微结构的研究. 无机材料学报. 2001,16. 2:277~279
    [29] Andreas Krell, Paul Blank, Hongwei Ma, Thomas Hutzler, Manfred Nebelung.
    
    
    Processing of High-Density Submicrometer Al2O3 for New Applications. American Ceramic Society. 2003, 86. 4: 546~553
    [30] Sylvie Lartigue Korinek , Jacques Castaing. Slip and Twinning in Polycrystalline Alumina (agr-Al2O3) Deformed under Hydrostatic Pressure between 600deg and 1000degC . American Ceramic Society . 2003,86.4:566~573
    [31] Dirk Godlinski, Meinhard Kuntz,Georg Grathwohl. Transparent Alumina with Submicrometer Grains by Float Packing and Sintering. American Ceramic Society. 2002,85.10:2449~2456
    [32] Bhaduri H. Auto ignition synthesis and consolidation of nanocrystaline a-Al2O3 . High-Temp, Synth. 1998,7.4: 413~421
    [33] Huang Xuening, Patrick, S. Nicholson. Mechnical Properties and fracture toughness of alpha alumina-platelet-reinforced Y-PS2 composites at room and high temperature . J. Am. Soc.. 1993, 76. 5: 294~299
    [34] 李民乾, 要小未. 扫描隧道显微镜及其在生命科学中的应用, 物理. 1995, 20.4:207~210
    [35] 彭文世,刘高魁. 矿物红外光谱图集. 北京: 科学出版社,1982
    [36] 徐跃萍, 黄雪梅, 郭景坤. 碘吸附法表征纳米粉末活性. 无机材料学报. 1992,7.3:25~29
    [37] Kimoto K etal. An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure. Jpn. J.app.phys.1993, 2:702~705
    [38] Yong Men,Huber Gnaser,Christiane Ziegler.Adsorption/desorption studies on nanocrystalline alumina surfaces.Anal Bioanal Chem.2003,375:912~916
    [39] Ep1262457. A method for manufacturing alpha-alumina powder comprising.
    [40] 唐海红,焦淑红,杨红菊,张爱贤.纳米氧化铝的制备及应用.中国粉体技术.2002,8.6:37~39
    
    [41] V.R.Palkar.Efficiency of Pd impregnated sol-gel derived γ-alumina porous spheres as catalyst.Eur.Phys. J.2001,16:253~255
    [42] M.Luisa Cervera,M.Carmen Arnal,etal.Removal of heavy metals by using adsorption on alumina or chitosan.Anal Bioanal Chem.2003,375:820~825
    [43] 梁淑华,范志康. 超细氧化铝颗粒增强铜基复合材料的研究. 复合材料学报.1998,15.3:44~48
    [44] Anderson C E, Morris B L. The ballistic performance of confined Al2O3 ceramic tiles. International journal of impact engineering. 1992,12.20: 167~187
    [45] Anderson C E Jr, Royal-Timmons S A. Ballistic performance of confined 99.5%-Al2O3 ceramic tiles. International journal of impact engineering. 1997,19.8: 703~713
    [46] G. Skandan, Y-J. Chen, N.Glumae, B.H.Kear. Synthesis of oxide nanoparticles in low pressure flames . Nanostructured materials.1990, 11.2:149~158
    [47] Kingsley j j, Patil K C.. A novel combustion process for the synthesis of fine particle-aluminum and related oxide materials .Mater. Lett.. 1988, 6.11/12:427~432
    [48] JP-A-03-080106, 一种氯化铝高温煅烧法制备纳米氧化铝
    [49] EP1262457A2. A method for manufacturing alpha -alumina powder comprising
    [50] US 2003054957. A process for the preparation of nanoscale particulate material
    [51] 李继光,孙旭东等.碳酸铝铵热分解制备α-Al2O3超细粉.无机材料学报.1998,13.6:803~805
    [52] 李汶霞,殷声等. 低温燃烧合成陶瓷微粉. 硅酸盐学报.1999,27.1: 71~76
    [53] 英宏,李继光等.沉淀法制备单分散纳米Al(OH)3先驱沉淀物.东北大学学报.1999,20.5:515~517
    
    [54] Park H N.Preparation of high purity of α-alumina by an aluminum isopyrolysis process.Yoop Hauhocki. 1989,26.3: 445~251
    [55] 陈彩凤,陈志刚等. 化学沉淀法制备纳米氧化铝粉体中的反团聚研究. 机械工程材料.2000,24.5:26~28
    [56] 李继光,孙旭东等.湿化学法合成α-氧化铝纳米粉体.材料研究学报.1998,12.1:105~107
    [57] 陈志刚,陈彩凤,刘苏.超声场中湿法制备Al2O3纳米工艺研究.硅酸盐学报.2003,31.2:213~215
    [58]A.J.Perrotta.Nanosizedcorundumsymthesis.Mat.Res.Innovat.1998,2:33~38
    [59] 林永禄. 冷冻干燥法制备超细氧化铝粉体. 硅酸盐通报.1987,6. 3: 1~4
    [60] 余家国,朱颉安等.Sol-gel工艺制备氧化铝超微细粉及其机理的研究.武汉工业大学学报.1991,13.3:40~43
    [61] 唐浩林,潘牧,赵修建.溶胶凝胶制备α-Al2O3纳米材料团聚控制研究新进展.材料导报.2002,16.9:44~46
    [62] 吴义权,张玉峰,黄校先等. 低温制备纳米α-氧化铝粉体.无机材料学报.2001,16.2:349~351
    [63] 吴洁华,李包顺,郭景坤.二步煅烧法制备超细α-氧化铝粉体.无机材料学报.1999,14.4:662~664
    [64] 王宏志,高濂等.高分子网络凝胶法制备纳米α-Al2O3粉体.无机材料学报.2000,15.2:356~360
    [65] 施尔畏,仲维卓等. 水热法制备α-氧化铝微粉中氢氧化铝转变成氧化铝的过程.无机材料学报.1992,7.3:300~304
    [66] 张立德,牟季美 编著.纳米材料和纳米结构,北京:科学出版社.2001:133~135
    [67] Tarar S. S., Gunay V.. Sol-gel processing of alkoxide-drived αAl2O3 powders . Interceram. 1996, 45. 4:258~260
    [68] 程志林,晁自胜,万惠霖.发泡法合成纳米氧化铝.应用化学.2002,19.11:1032~1035
    
    [69] Vogel R F, Marcelin G.The preparation of controlled pore alumina. Applied Catelysis. 1984,12:237~248
    [70] Shi Liyi, Hua bin, Zhang Jianping. Preparation of γ-Al2O3 ultrafine particles in non-ionic water in oil microemulsion. J. Of shanghai University.1997,1.12: 163~165
    [71] Pati R K, Ray J C, Pramanik P. nanocryst alumina powder prepn chem. Route . Mater. Lett.2000,44.5: 299~303
    [72] Fengsheng Li. Dispersity of stability of Ultra-fine Ammonium perchlorate particles in Liquid media. Advances in measurement and control of colloidal processes. butter-worth-heinemineman Ltd. Oxford. 1991:77~85
    [73] Feng sheng Li.Surface modification of ultra-fine ammonium perchlorate and its influence or propellant properties. advances in measurement and control of colloidal processes. butter-worth-heinemineman Ltd. Oxford. 1991:211~223
    [74]D.Quattrini,D.Serrano,S,Perez Catan.Modifications in the microstructure of alumina porous materials by hydrothermal treatment.Granular Matter.2001,3:125~130
    [75] Kydros K A etal. Modification of pyrites and sphalerite flotation by dextrin. Separation Sci. and Technology. 1994,29.17: 2263~2275
    [76] Lamer V K,Dineger R H.J Am Ceram. Soc. 1950,72:4847~4851
    [77]华东理工大学技术物理研究所编.超细颗粒制备科学与技术.上海:华东理工大学出版社.1996:113~115
    [78] 曹茂盛 著. 超微颗粒制备科学与技术.哈尔滨工业大学出版社.1995:138~139
    [79] 张克从等. 晶体生长.北京:科学出版社,1981
    [80] 闵乃本. 晶体生长的物理基础. 上海,上海科学技术出版社,1982
    [81] [美]Anthony R.West著,苏勉曾等译. 复旦大学出版社, 1989,7:105~106
    [82] Sugimoto T. Advance in Colloid and Interface Sci.. 1987,28:65-108
    [83] 李继光,孙旭东等.湿化学法合成分散陶瓷超微粉体的基本原理.功能材
    
    
    料.1997,28.4:333~335
    [84] D.Clemens,K.Bongartz,etal.Determination of lattice and grain boundary diffusion coefficients in protective alumina scales on high temperature alloys using SEM,TEM and STMS.Fresenius J Anal Chem.1995,353:267~270
    [85] 近拊正敏,金泽孝文. 粒子间的相互作用. 粉体工学会志,1985,22.70:468~474
    [86] 仲维卓,华素坤 著.晶体生长形态学.科学出版社,1999:197~202
    [87] Barton A F M.CRC Handbooks of solubility parameters and other cohesion parameters. CRC Press, Boca Raton, Fle.1983
    [88] 杨咏来,宁桂玲等.加压干燥法制备无硬团聚氧化铝纳米粉.材料研究学报.1999,13.1:63~65
    [89] 彭天右,杜平武等.共沸蒸馏法制备超细氧化铝粉体及其表征.无机材料学报.2000,15.6:1098~1100
    [90] Winkler J, Klinke E etal. Theory for the deagglomeration of pigments clusters in dispersion machinery by mechanical force Ⅱ.Journal of coating technology. 1987,59.754: 45~48
    [91]M.Goto,J.Murakami,Y.Tai,etal.Formation of alumina fine particles by a magnetron sputtering-gas aggregation method.Z. Phys..1997,40:115~118
    [92] Ko Higashitani etal. Effect of particle size on coagulation rate of ultra colloidal particles. Journal of colloid interface science. 1997,182:204~213
    [93]HiemenzPC.著. 胶体与表面化学原理, 周祖康等译. 北京:北京大学出版社,1986:249~25
    [94] 王相田. 超细粒子分散过程分析.化学通报,1995,5:13~17
    [95] Xue L. a. Chen I.W. Low-temperature sintering of alumina with liquid-forming additives. J. Ceram.soc. 1991,74.4: 2011~2013
    [96] Ko Higashitani etal. Effect of particle size on coagulation rate of ultra colloidal particles. Journal of colloid interface
    
    
    science.1997,182:204~213
    [97] P. M. Sheedy,H. S. Caram, H. M. Chan,etal. Effects of zirconium oxide on the reaction bonding of aluminum oxide. J. Am. Ceram.oc, 2001,84.5: 986~990
    [98] 顾燕芳等.冷冻干燥法制备高活性的氧化铝超细粒子.硅酸盐通报.1994, 1:21~25
    [99] M. Alonzo. The effect of random positioning on the packing of particles adhering to the surface of a central particle. powder technology. 1990,62: 35~40
    [100] Fowke F M. Enhancing mechanical properties of polymer composites by modification of surface acidity and basicity of filers . MRD Symp Proc. Materials research society. 1988,119:2130
    [101] 崔正刚,殷福珊.微乳化技术与应用,北京:中国轻工业出版社,1999
    [102] Huang J M, Yang Y,Yang B etal. Polymer Bulletin.1996, 36:337
    [103] Malini K A, Anantharaman M R, Sindhu S. Journal of Materials Science. 2001,36:821
    [104] 李炳炎. 碳黑生产和应用. 北京:化学工业出版社,2000
    [105] M.Mirada-hernandez.J.A.Ayala Marina E.Rincon Electronchemical storage of hydrogen in nanocarbon materials:electrochemical characterization of carbon black matrices.J Solid State Electrochem.2003,7:264~270
    [106]Z.Wang,F.Zhu,W.Wang,G.Yu,M.Ruan.“Sputtered-atomassembly”ofcarbonnanostructuresduringionbombardment.Appl.Phys.A,2000,71:353~355
    [107] 郑敏,聚酯纤维高温高压染色中低聚物问题的研究.东华大学博士学位论文.东华大学,2003
    [108] 林元华等.前躯体热解法制备高纯超细α-Al2O3粉体.硅酸盐学报.2000,6,28.3:268~271
    [109] Tonejc. C. Kosanoria, M. stubicar. A. M.. Tonejc.Equivalence of ball billing and thermal treatment for phase transitions in Al2o3system. J.
    
    
    Alloys Compd. 1994, 20: 204~208
    [110] Linder J, Mason T J. Sonochemistry part 2—synthesise application. Chem Soc Rev. 1987,16:275~279
    [111] 陈志刚,陈彩凤,刘苏.超声场中湿法制备Al2O3纳米工艺研究.硅酸盐学报.2003,31.2:213~215
    [112] F. A. Mauer. An ultrasonic method for reconstructing the two-dimensional liquid/solid interface in solidifying bodies. Metallurgical Transaction. 1991,22B.8: 467
    [113] 袁易全,陈思忠等.近代超声原理及应用.南京:南京大学出版社,1996:116~119
    [114] Zhao YY, Bao CG, Mason TJ. The study of isolation of effective compositions from traditional Chinese medicines by ultrasound. Ultrasonic International 91 Conference Proceeding, 87
    [115] Bo J, Chen X. Modification of polystyrene by ultrasonic irritation for immobilizing trypsin.14th international conference of acoustics proceedsings, 1992,CP-31
    [116] Suslick K S, Choe S B, Cichowlas A A ,etal, Sonochemical synthesise of amorphous iron.Nature.1991,353.6343:414~420
    [117] 顾惕人等 编著.表面化学.北京:科学出版社,2001:346~352
    [118] 李凤生 等编著. 超细粉体技术. 北京:国防工业出版社,2000,3:308~311
    [119] 张熙和,云主惠编.爆炸化学.北京:国防工业出版社,1989,5:290~294
    [120] 王作山,刘玉存,张景林. 爆轰冲击波在有机隔板中衰减模型的研究.应用基础与工程科学学报.2001,4:316~319
    [121] 刘玉存,炸药粒度及粒度级配对冲击波感度和输出的影响研究,北京理工大学博士论文.北京理工大学, 2000
    [122] 陈福梅.火工品原理与设计.北京:兵器工业出版社,1990,1:3~6
    [123]Brill T B,Reese C O.Annlysis of Intra- and Intermolecular Interactions Relating to Thermophysical Behavior of α-,β-,and δ-HMX.J. Phys.chem.1980, 84:1376~1380

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700