用户名: 密码: 验证码:
航弹族低成本捷联惯导系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用GPS/INS制导方式的航空炸弹成本低、精度高,在现代战争中大量使用。但GPS信号易受干扰,实战中仍需要具备纯惯性制导能力。在保证纯惯性制导精度的条件下,实现低成本是制导组件研制的难点。本文对制导组件的重要子系统:低成本捷联惯导系统展开研究,涉及的关键技术包括低成本硬件设计、惯性测量组件的标定与补偿、非线性滤波方法和传递对准技术。
     在硬件方面,设计了以DSP和FPGA为核心的一体化弹上计算机。根据协方差分析得到的惯性器件精度指标,选择了低成本挠性陀螺和石英挠性加速度计。并针对所选器件,设计了高速过采样A/D采集电路,输出数据的频率达到200Hz,有效分辨率达到19位,实现了低成本高精度的数据采集。
     研究了一种利用圆锥误差标定陀螺动态误差(标度因数误差和交叉耦合误差)的方法。利用转台双轴摇摆作圆锥运动,激励陀螺的动态误差产生圆锥误差,圆锥误差会引起姿态漂移;通过测量姿态漂移,来估计并补偿陀螺的动态误差。仿真结果表明,这种标定补偿方法,可将圆锥误差引起的姿态漂移减小一个数量级以上。
     研究了一种利用神经网络标定和补偿陀螺动态误差不对称性的方法。网络的输入为陀螺输出的角速率、输出为陀螺动态误差的补偿量。标定时只要求转台由静止开始作单轴摇摆,停止后回到初始位置,以导航解算的最终姿态漂移率最小作为目标,训练神经网络。由于最终的姿态漂移不是网络的期望输出,无法采用有导师的训练方法,为此采用了微粒群优化算法。仿真结果表明,这种神经网络补偿方法可将陀螺动态误差的不对称性减小一个数量级。实际实验中,利用我们研制的低成本惯导系统进行不同幅度的摇摆试验,经过神经网络补偿后,姿态漂移率平均降低到0.8°/h以下。
     低成本惯性测量组件(IMU)受温度影响大,针对这一问题研究了一种基于神经网络的温度补偿算法。网络的输入是温度测量数据。在静态条件下对IMU的输出作滤波抽取,并去除信号初值,得到随温度变化的IMU零偏误差作为期望输出,来训练网络。实验结果表明,神经网络补偿后惯性测量组件零偏变化的幅度降低了60%。
     低成本捷联惯导系统对准时初始姿态误差的不确定度大,往往不能满足线性化假设条件。为此提出了一种非线性大失准角模型,采用欧拉角表示姿态误差,不对姿态误差作任何小角度假设,可以准确描述惯导系统误差的传播规律。在此基础上设计实现了扩展卡尔曼滤波(EKF)和代表点卡尔曼滤波(SPKF)等非线性滤波算法。针对滤波器在方差更新过程中会出现方差阵负定的问题,采用奇异值分解方法对SPKF算法进行了改进。仿真结果表明,初始姿态误差较大时,基于大失准角模型的非线性滤波算法的对准精度优于传统的线性模型和大方位误差模型。
     将大失准角模型应用于快速传递对准算法中,并针对姿态观测方程复杂的非线性特性,采用无需求导的SPKF算法。建立了传递对准的仿真环境,通过仿真实验比较了基于大失准角模型的非线性滤波算法和传统线性卡尔曼滤波算法的对准精度。仿真结果表明,基于大失准角模型的非线性滤波算法对准精度优于线性卡尔曼滤波算法,尤其是在安装角较大的情况下,方位对准精度提高了一个数量级,受杆臂误差和陀螺动态误差的影响也比较小。最后利用跑车实验验证了快速传递对准算法,五次实验结果表明对准后位置误差由原来的40米下降到10米以内。
The aerial munitions guided by global position system (GPS) and inertial navigation system (INS) have been widely used in modern battles for their low-cost and high accuracy. However, the signal of GPS is easily disturbed and the munitions must have the capacity to maintain the homing accuracy just based on the guidance of INS. The low-cost strapdown inertial navigation system (SINS), which is an important subsystem of guidance assembly, is studied in this dissertation. The key technology of that involved include low-cost hardware design, calibration and compensation of inertial measurement unit (IMU), nonlinear filter and transfer alignment.
     In hardware aspect, an integrative missile-borne computer is designed using DSP + FPGA structure. The low-cost flex gyroscopes and quartz flex accelerometers are chosen for the IMU based on the anticipative precision which was achieved by the analysis of error covariance. Low-cost and highspeed oversample A/D converter is designed for the IMU. This converter can provide 19-bit accuracy at data rate up to 200Hz.
     A novel method of calibrating and compensating gyros dynamic error (scale factor error and misalignment error) based on the coning error is proposed. When the coning motion of the shaking apparatus occurs, the coning error induced by gyros dynamic error may cause attitude drifts. Then the gyros dynamic error can be estimated and compensated by measuring the attitude drifts. The results of the simulation experiments show that this compensation method can reduce the attitude error caused by coning error by 90 percent.
     A method of calibrating and compensating the asymmetry of gyros dynamic errors based on neural network (NN) is presented. The angular rate of gyros output and compensation of gyros dynamic error are the input and output of the neural network respectively. In calibration test, the shaking apparatus was required to do single-axis shake from static, and then stop at the initial position. The terminal attitude drifts were used as the network performance function to train NN. Unlike the supervised training, the terminal attitude drifts were not the target outputs of NN. In this condition, the particle swarm optimization (PSO) algorithm was applied to train the network. The simulation experiment results demonstrate that the asymmetry of gyros dynamic errors reduce to about ten percent of those without the NN compensating. By using the low-cost SINS we designed, the shaking tests of different amplitude are performed. The mean attitude drifts after compensated is less than 0.8°/h.
     As low-cost IMU is sensitive to temperature, a neural network is designed to compensate the influence of temperature. Temperature measurement is used to be the input of NN. In static condition, the bias of the IMU, which is varied by different temperature and can be gotten by filtering the outputs of IMU, extracting and minus the initial value, is used as the anticipative output to train the NN. The results of the experiments show that the bias of IMU can reduce by 60% compared with those without compensation.
     The attitude errors of low-cost SINS may be too large to meet the hypothesis of linear model in initial alignment. A nonlinear model for large angle error was deduced to solve this problem. The Euler angles were introduced to present the attitude errors. To achieve accuracy propagation of SINS error model, none little attitude error hypothesis is made. Based on the large misalignment angle model, the extended Kalman filter (EKF) and the sigma-point Kalman filter (SPKF) are designed. Singular value decomposition (SVD) is used to improve SPKF, in the condition that the updating covariance matrix is negative. The simulation experiments results demonstrate that the filter based on the large misalignment angle model has better accuracy than any other traditional filters based on linear model or large heading uncertainty model, under large attitude error of initial alignment.
     The large misalignment angle model was used in rapid transfer alignment. The SPKF was applied to avoid the derivation calculus of the attitude measurement equations which were with complex nonlinear characteristic. The simulation platform is designed to compare the alignment accuracy of the nonlinear filter based on the large misalignment angle model and conventional Kalman filter. The results of simulation experiments show that the alignment accuracy achieved by the nonlinear Kalman filter base on the large misalignment angle model is higher than that of linear Kalman filter. In large misalignment error condition, the heading alignment accuracy achieved by the nonlinear filter is 10 times higher than that of Kalman filter. The nonlinear filter is not sensitive to the lever arm error and gyros dynamic error. The results of mobile tests validated the alignment algorithm. Five tests results revealed that the position errors were limited up to 10m compared to 40m before alignment.
引文
[1]范金荣.制导炸弹发展综述[J].现代防御技术,2004,32(3):27-31.
    [2]Klotz H A,Derbak C B.GPS-aided navigation and unaided navigation on the Joint Direct Attack Munition[C].IEEE Position Location and Navigation Symposium,Palm Spring,USA,1998:412-419.
    [3]张纯学,晗旭.欧美的自主精确弹药[J].飞航导弹,2006,6:1-6.
    [4]简氏防务周刊:精确制导武器现状与发展,2004.9.8.
    [5]张洋.世界精确制导炸弹现状[J].海陆空天惯性世界,2005,5M:24-49.
    [6]吴思.中国精确制导炸弹的发展与最新动向[J].现代兵器,2006,12:44-49
    [7]Killpatriek J,李菁蕾译.GG1308环形激光陀螺[J].战术导弹控制技术,1993(1):57-61.Symposium Gyro Technology 1989,Stuttgart Germany.
    [8]杨培根,龚智炳,等编着.光电惯性技术[M].北京:兵器工业出版社,1999.
    [9]Gaiffe T.From R&D brassboards to navigation grade FOG-based INS:the experience of Photonetics/Ixsea[A].In Proc.of IEEE 2002:1-4.
    [10]谭健荣,刘永智,黄琳.光纤陀螺的发展现状[J].激光技术,2006,30(5):545-547.
    [11]Hanse J.Honeywell MEMS inertial technology & product status[A].In Proc.of Position Location and Navigation Symposium(PLANS'2004)[C],2004:43-48.
    [12]Karnick D,Ballas G,Koland L,Secord M,Braman T.Honeywell gun-hard inertial measurement unit(IMU) development[A].In Proc.of Position Location and Navigation Symposium(PLANS'2004)[C],2004:49-55.
    [13]王轲,陈效真,杨雨.激光陀螺及其发展[J].导航与控制,2004,3(4):28-31.
    [14]王巍,何胜.微固态惯性器件的研究与发展[J].导航与控制,2003,2(3):73-78.
    [15]贾苹,李志宏.一种新型光纤陀螺仪信号采集方法(IF+AD)[J].中国惯性技术学报,2003,11(2):57-60.
    [16]张晞,王夏霄,许文渊.高精度光纤陀螺过采样技术分析与应用[J].宇航学报,2006,27(5):935-938.
    [17]Gray R M.Quantization noise spectra,IEEE Trans.on Inform.Theory,36(6),1990:1220-1244.
    [18]Candy J C,Benjamin O J.The structure of quantization noise from sigma-delta modulation,IEEE Trans.Commun.,Vol.COM-29,1981,pp.1316-1323.
    [19]高光天,张伦,冯新强,吴常津.传感器与信号调理器件应用技术[M].北京:科学出版社,2002:95-98.
    [20]徐盛友,蒙建波,陈清洪.高精度ADS1256转换器及其在捷联惯导系统中的运用[J].自动化与仪器仪表,2006,2:31-33.
    [21]王涛,范磊.24位高精度A/D芯片ADS1210在一种光纤陀螺SINS信号采集电路中的应用[A].2003年全国单片机及嵌入式系统学术年会论文集[C],北京:中国计算机学会,2003.753-757
    [22]杨胜,房建成,盛蔚.光纤捷联惯性测量单元设计与实现[J].中国惯性技术学报,2006,14(4):77-79.
    [23]陈帅,管雪元,薛晓中,孙瑞胜.航空制导炸弹SINS/GPS组合导航系统的设计[J].航天控制,2007,25(1):13-17.
    [24]于光平,张昕.过采样方法与提高ADC分辨率的研究[J].沈阳工业大学学报,2006,28(2):137-139.
    [25]李国.基于过采样技术提高ADC分辨率的研究与实现[J].计算机工程,2005,31(增刊):244-245.
    [26]喻萍,黄新生.计算机A/D采样的高精度滤波模型[J].华南师范大学学报(自然科学版),1997(4):40-43.
    [27]张开东.激光陀螺捷联惯导系统连续自动标定技术[D].长沙:国防科技大学硕士论文,2002:25.
    [28]梅硕基.惯性仪器测试与数据分析.西安:西北工业大学出版社,1991:82-84.
    [29]Grewal M S,Henderson V D,Miyasako R S.Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems[J].IEEE Trans.on Automatic Control,1991,36(1):4-13.
    [30]Joglekar H K,Venkateswarlu A.Gyro Scale-factor Error and Misalignment Estimation for a Spacecraft[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Providence,Rhode Island,2004.
    [31]Bar-Itzhack Ⅰ Y,Harman R R.Implicit and Explicit Spacecraft Gyro Calibration[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Providence,Rhode Island,2004.
    [32]Lam Q M,Hunt T,Sanneman P,Underwood S.Analysis and Design of a Fifteen State Stellar Inertial Attitude Determination System[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Austin,Texas,2003.
    [33]刘西河.最优试验设计辨识捷联惯性系统的静态误差模型[J].哈尔滨工业大学学报,28(1),1996:54-58.
    [34]姜复兴,王卫阳,吴广玉.辨识捷联陀螺仪动态误差模型速率试验计划的优化设计[J].哈尔滨工业大学学报,1994,26(5):63-67.
    [35]陈熙源,万德钧.捷联陀螺动态误差系数的标定方法研究[J].东南大学学报,1998,28(2):114-119.
    [36]祁家毅,任顺清,王常虹.用三轴转台辨识陀螺仪误差模型系数时的速率试验设计[J].宇航学报,2006,27(3):565-570
    [37]李战,孙枫,高伟,熊芝兰.RBF网络在光纤陀螺动态误差模型辨识中的应用[J].弹箭与制导学报,2005,25(3):135-137.
    [38]Tekinalp O,Ozemre M.Artificial Neural Networks for Transfer Alignment and Calibration of Inertial Navigation Systems[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Montreal,Canada,2001.
    [39]Jiang YF,Lin YP.Improved strap-down coning algorithm[J].IEEE Trans.on Aerospace and Electronic Systems,1992,28(2):484-490.
    [40]薛祖瑞.关于捷联惯导系统圆锥误差的诠释[J].中国惯性技术学报,2000,8(4):46-50.
    [41]练军想,胡德文,胡小平,吴文启.捷联惯导姿态算法中的圆锥误差与量化误差[J].航空学报,2006,27(1):98-103.
    [42]张京妹,郭富强.捷联惯导系统的真锥误差分析[J].西北工业大学学报,2000,18(4):639-643.
    [43]Coffee J R,Saggio F.Strapdown gyro contribution to coning motion errors[C].IEEE International Conference on Systems Engineedng,1989,Mesa,AZ,USA:55-58.
    [44]卞鸿巍,李安,汪人定.用灰色理论和神经网络理论建立陀螺漂移模型初探[J].中国惯性技术学报,1997,5(4):38-41.
    [45]徐丽娜,邓正隆.陀螺仪启动漂移特性的神经网络建模研究[J].中国惯性技术学报,1999,1
    [46]王昊,王俊璞,田蔚风,金志华.梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用[J].中国惯性技术学报,2006,14(4):44-48.
    [47]吴美平.陆用激光陀螺捷惯导系统误差补偿技术研究[D].长沙:国防科学技术大学博士学位论文,2000:47
    [48]Sutton R S,Barto A G,Williams R J.Reinforcement learning is direct adaptive optimal Control[C].Presented at American Control Conference,Boston,MA,1991.IEEE Control Systems Magazine,1992:19-22.
    [49]Hagan M T,Demuth H B,Beale M H,戴葵 等译.神经网络设计(Neural Network Design)[M].北京:机械工业出版社,2002:35.
    [50]Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated annealing[J].Science,220(4589),1983:671-680.
    [51]Aarts E,Korst J M.Simulated annealing and Boltzmann machines:a stochastic approach to combinatorial optimization and neural computing[M].New York:John Wiley,1989.
    [52]Mitchell T M著,曾华军,张银奎等译.机器学习(Machine Learning)[M].北京:机械工业出版社,2003:179.
    [53]Hamm L,Brorsen B W,Hagan M T.Global optimization of neural network weights[C].Proceedings of the 2002 International Joint Conference on Neural Networks.2002:1228-1233.
    [54]陈小平,于盛林.实数遗传算法交叉策略的改进[J].电子学报,2003,31(1):1-4.
    [55]林丹,李敏强,寇纪凇.基于实数编码的遗传算法的收敛性研究[J].计算机研究与发展,2000,37(11):1321-1326.
    [56]Kennedy J,Eberhart R.Particle swarm optimization[A].In Proe.IEEE Int.Conf.on Neural Networks[C],Perth,1995:1942-1948.
    [57]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A].In Proc.6~(th) Int.Symposium on Micro Machine and Human Science[C].Nagoya,1995:39-43.
    [58]Gudise V G,Venayagamoorthy G K.Comparison of Particle Swarm Optimization and Backpropagation as Training Algorithms for Neural Networks[J].IEEE Proceeding of Swarm Intelligence Symposium 2003:110-117.
    [59]Mendes R,Cortez P,Rocha M,Neves J.Particle swarms for feedforward neural network training[A].In Proc.of the 2002 Int.Joint Conference on Neural Networks[C].IJCNN'02,Braga Portugal,vol.2:1895-1899.
    [60]Al-kazemi B,Mohan C.Training feedforward neural networks using multi-phase particle swarm optimization[A].In Proc.9~(th) Int.Conference on Neural Information Processing[C].ICONIP'02,New York USA.Vol.5:2615-2619.
    [61]谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134.
    [62]陆大(纟金).随机过程及其应用[M].北京:清华大学出版社,1986:537.
    [63] Wiener N. Extrapolation, interpolation and smoothing of time series, with engineering applications [M]. New York: Wiley, 1949.
    [64] Kolmogorov A N. Interpolation and extrapolation of stationary random sequences [J]. Izv.Akad. Nauk USSR. Ser. Math., 1941, 5(5): 3-14
    [65] Kalman R E. A new approach to linear filtering and prediction problems [J]. Transactions of the ASME - Journal of Basic Engineering, I960, 82(D): 35-45.
    [66] Kalman R E, Bucy R S. New results in linear filtering and prediction theory [J]. Transactions of the ASME - Journal of Basic Engineering, 1961, 83(D): 95-107.
    [67] Jazwinski A H. Stochastic processes and filtering theory [M]. New York: Academic Press,1970.
    [68] Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems [A]. In Proc. of the American Control Conference [C], Seattle, Washington, 1995:1628-1632.
    [69] Julier S J, Uhlmann JK.A new extension of the Kalman filter to nonlinear systems [C]. In Proc. AeroSense: 11th Int. Symp. Aerospace/Defense Sensing, Simulation and Controls, 1997:182-193.
    [70] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation [J]. Proceeding of the IEEE, 2004, 92(3): 401-422.
    [71] Julier S J, Uhlmann J K. Correction to "Unscented filtering and nonlinear estimation" [J].Proceeding of the IEEE, 2004, 92(12): 1958.
    [72] Julier S J, Uhlmann J K. The scaled unscented transformation [A]. In Proc. Amer. Control Conf. [C], 2002: 4555-4559.
    [73] Julier S J. The spherical simplex unscented transformation [A]. In Proc. Amer. Control Conf.[C], 2003, vol. 3: 2430-2434.
    [74] Kim K, Park C G. In-flight alignment algorithm based on non-symmetric unscented transformation [A]. In Proc. of SICE-ICASE Int. Joint Conference 2006 [C]. Bexco Korea:4916-4920.
    [75] Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems [J]. Automatica, 36(11), 2000: 1627-1638.
    [76] Ito K, Xiong K. Gaussian Filters for Nonlinear Filtering Problems [J]. IEEE Trans. on Automatic Control, vol. 45, 2000: 910-927.
    [77] Van der Merwe. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D]. PhD thesis of OGI School of Science & Engineering at Oregon Health & Science University, Portland, OR, 2004.
    [78] Van der Merwe R, Wan E A, Julier S J. Sigma-point Kalman filters for nonlinear estimation and sensor-fusion - applications to integrated navigation [C]. AIAA Guidance Navigation and Control Conference, Providence, USA. 2004: 1-30.
    [79] Van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation [A]. In Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP) [C], Salt Lake City, USA. vol. 6, 2001: 3461-3464.
    [80] Chen Z. Bayesian filtering: from Kalman filters to particle filters, and beyond [OL].http://soma.crl.mcmaster.ca/~zhechen/, 2003: 17, 58.
    [81] Golub G H, Reinsch C. Singular value decomposition and least squares solutions [J]. Numer.Math. 14, 1970:403-420.
    [82]Anderson B D O,Moore J B.Optimal Filtering[M].Prentice-Hall Inc.New Jersey,1979:147-153,.200-204
    [83]Wan E A,Van der Merwe R.The unscented Kalman filter for nonlinear estimation[A].In Proc.of IEEE Symposium 2000(AS-SPCC)[C]Lake Louise,Canada.2000:153-158.
    [84]Haykin S.Kalman filtering and neural networks[M].John Wiley & Sons,Inc.2001:23,232,230,8.
    [85]Weinred A,Bar-Itzhack Ⅰ Y.The psi-angle error equation in strapdown inertial navigation system[J].IEEE Trans.on AES,14(3),1978:539-542.
    [86]Bar-Itzhack Ⅰ Y,Berman N.Control theoretic approach to inertial navigation systems[J].Journal of Guidance 11(3),1988:1442-1453.
    [87]Shin E-H.Estimation techniques for low-cost inertial navigation[D].PhD thesis of the University of Calgary,Calgary Canada,2005:46-50.
    [88]Benson Jr D O.A comparison of two approaches to pure-inertial and doppler-inertial error analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1975,AES 11(4):447-455.
    [89]Scherzinger B M.Inertial navigator error models for large heading uncertainty[C].PLANS'96,IEEE,1996:477-484.
    [90]Dmitriyev S P,Stepanov O A,Shepel S V.Nonlinear filtering methods application in INS alignment[J].IEEE Trans.AES,33(1),1997:260-271.
    [91]Kong X Y,Nebot E M,D-Whyte H.Development of a nonlinear psi-angle model for large misalignment errors and its application in INS alignment and calibration[C].Proceedings of the 1999 IEEE Int.conf.on Robotics & Automation,Detroit,Michigan.1999:1430-1435.
    [92]魏春岭,张洪钺,郝曙光.捷联惯导系统大方位失准角下的非线性对准[J].航天控制,21(4),2003:25-35.
    [93]Yu M J,Park H W,Jeon C B.Equivalent nonlinear error models of Strapdown inertial navigation system[C].Proceedings of the AIAA GNC conference,New Orleans USA 1997:581-587.
    [94]Yu M J,Lee J G,Park H W.Comparison of SDINS in-flight alignment using equivalent error models[J].IEEE Trans.AES,35(3),1999,1046-1054.
    [95]Kong X Y.Inertial navigation system algorithms for low cost IMU[D].PhD thesis of the University of Sydney,Sydney Australia,2000.8.
    [96]魏春岭.非线性滤波与神经网络在导航系统中的应用[D].北京:北京航空航天大学博士学位论文,2001.
    [97]Shin E H,El-Sheimy N.An unscented Kalman filter for in-motion alignment of low-cost IMUs[A].In Proc.of IEEE Position Location and Navigation Symposium(PLANS'2004)[C],2004:273-279.
    [98]Hong H S,Lee J G,Park C G.Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error[J].IEE Proc.Radar Sonar Navigation,2004,151(1):57-62.
    [99]Xiong Z,Hao Y,Sun F.SINS rapid in-motion alignment based on nonlinear filter[C].Position Location and Navigation Symposium,2006 IEEE/ION:86-93.
    [100]Ross C C,Elbert T F.A transfer alignment algorithm study based on actual flight test data from a tactical air-to-ground weapon launch[A].In Proc.of Position Location and Navigation Symposium[C].1994:431-438.
    [101]Rogers R M.Weapon IMU transfer alignment using aircraft positions from actual flight tests [A].In Proc.of Position Location and Navigation Symposium[C]1996:328-335.
    [102]Kain J E,Cloutier J R.Rapid transfer alignment for tactical weapon applications[A].In Proc.of the AIAA Guidance,Navigation and Control Conference[C].1989:1290-1300.
    [103]Shortelle K J,Graham W R,Rabourn C.F-16 flight tests of a rapid transfer alignment procedure[A].In Proc.of Position Location and Navigation Symposium[C].1998:379-386.
    [104]Spalding K.An efficient rapid transfer alignment filter[A].In Proc.of AIAA Guidance,Navigation and Control Conference[C].1992:1276-1286.
    [105]Wendel J,Metzger J,Trommer G F.Rapid transfer alignment in the presence of time correlated measurement and system noise[A].In Proc.of AIAA Guidance,Navigation and Control Conference and Exhibit[C].2004:1-12.
    [106]陈璞,冯培德.一种快速传递对准改进方案的设计及仿真[J].中国惯性技术学报,9(1),2001:16-19.
    [107]方群,丁滢颍,袁建平.机载导弹捷联惯导系统快速传递对准方法研究[J].飞行力学,2001,19(4):49-52.
    [108]林敏敏,房建成,高国江.一种有效的空-空导弹捷联惯导系统快速精确传递对准方法[J].中国惯性技术学报,2001,9(3):24-28.
    [109]王司,邓正隆.一种新的动基座快速传递对准方案及其仿真研究[J].宇航学报,2005,26(3):321-325.
    [110]岳晓奎,袁建平,卢松华.精确制导炸弹传递对准算法与仿真[J].系统仿真学报,2006,18(6):1419-1421.
    [111]郭创,张宗麟,郭明威.精确制导炸弹传递对准技术研究[J].电光与控,2007,14(1):102-105
    [112]Hao Y,Xiong Z,Wang W,Sun F.Rapid transfer alignment based on unscented Kalman Filter[A].In Proc.of the 2006 American Control Conference[C],Minneapolis,USA.2006:2215-2220.
    [113]陈璞,雷宏杰.弹载捷联惯性制导系统传递对准技术试飞验证[J].中国惯性技术学报,15(1),2007:9-11.
    [114]刘建军.航空炸弹低成本制导组件研究[D].长沙:国防科技大学硕士论文,2004.
    [115]李海平,钟瑞麟,魏岳,全胜.导弹末制导精度分析的协方差方法研究[J].战术导弹技术,2004,(1):49-54.
    [116]张靖男,赵兴锋,郑志强.战术导弹制导控制系统精度统计分析方法研究[J].战术导弹控制技术,2006,(3):13-15.
    [117]方振平,陈万春,张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社,2005:416-418.
    [118]刘新爱,陈勇男,王如根.基于自助法的导弹命中精度评定[J].战术导弹技术,2004(6):32-34.
    [119]张超,冯军.一种0.18μmCMOS6位1.6GHz闪烁型A/D转换器的设计[J].微电子学,35(2),2005:186-188.
    [120]陈征宇,张晓林,张超.1GHz8位闪烁A/D转换器中的比较器设计[J].微电子学,35(4),2005:345-348
    [121]徐江涛,姚素英,李树荣,赵毅强.高分辨率流水线A/D转换器采样电容优化研究[J].微电子学,34(4),2004:436-438.
    [122]Lawrence A.Modern inertial technology:navigation,guidance,and control[M].New York:Springer-Verlag Inc.2~(nd) ed.1998:28.
    [123]Titterton D H,Weston J L.Strapdown Inertial Navigation Technology[M].United Kingdom:Peter Peregrinus Ltd,1997:329-331,45,48,295-297.
    [124]林玉荣,邓正隆.激光陀螺捷联惯导系统中惯性器件误差的系统级标定[J].哈尔滨工业大学学报,33(1),2001:112-115.
    [125]白朝晖,李立新.利用导航信息标定捷联惯导系统误差系数的方法[J].战术导弹控制技术,41(2),2003:20-25.
    [126]刘道静,李立新,纪志农,陈明刚.李萨如图在捷联惯导系统圆锥误差估计中的应用[J].中国惯性技术学报,2005,13(3):61-63.
    [127]胡德文.非线性与多变量系统相关辨识[M].湖南长沙:国防科技大学出版社,2002:218.
    [128]袁信,俞济祥,陈哲.导航系统[M].北京:航空工业出版社,1993:48-50.
    [129]Bellantoni J F,Dodge K W.A square root formulation of the Kalman-Schmidt filter[J].AIAA Journal,1967,5(7):1309-1312.
    [130]Y(u∣¨)ksel Y.Design and analysis of transfer alignment algorithms[D].Master Thesis of Middle East Technical University,2005:161-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700