用户名: 密码: 验证码:
脊柱外科手术导航关键技术的研究与系统建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊柱手术是一类风险较大且病例较多的外科手术,在手术导航技术问世之前,医生在手术中主要是依靠病人术前CT断层图像或术中X射线透视获得病人的解剖信息。虽然这些方法对手术起到了一定的辅助指导作用,但是,医生需要通过这些影像在自己头脑中构建人体器官的三维形态与手术过程,手术质量很大程度上依赖于医生的临床经验,而对术中操作是否正确缺少科学依据。并且,应用术中X射线透视会使医生与病人受到较大剂量的辐射,增加了手术的时间和感染的风险。手术导航技术正是为解决上述问题而产生的,它以医学影像数据为基础,通过建立虚拟现实空间,结合三维可视化技术模拟手术中的关键步骤,借助空间定位仪跟踪手术器械相对于病变组织的位置关系,并将其实时反映在病人术前或术中的影像上,从而实现对手术的引导。该技术在提高手术定位精度,减少手术损伤,降低手术失误率方面等有重要的临床应用价值,也成为计算机辅助治疗领域里的重要研究内容。
     本文以解决脊柱外科手术导航系统的关键技术,实现脊柱外科手术导航系统的建立为研究目的,根据导航模式不同,分为基于X射线透视图像的导航、基于CT图像的三维导航、基于3D/2D配准的微创导航三部分进行了研究。
     在第一部分基于X射线透视图像导航的研究中,本文首先应用改进后维纳滤波以及图像噪声综合抑制方法,对X射线透视图像进行了预处理,提高了图像的清晰度。然后对X射线成像系统的标定算法进行改进,提出一种适用于C型臂X射线透视系统的在线标定技术,同时对影像增强器引起的图像失真进行了校正。该技术解决了图像变形对导航精度的不利影响,减少了术前的准备环节,提高了C型臂X射线机应用灵活性。最后本文应用坐标转换技术建立了基于X射线透视图像的手术导航系统。
     在第二部分基于CT图像的三维手术导航中,本文主要解决了图像三维重建与空间配准速度较慢的问题。首先通过应用基于纹理映射的体绘制方法加快了CT图像三维重建速度,然后提出应用点配准与迭代最近点配准结合的方法进行CT图像空间到病人空间的配准,并对迭代最近点算法进行了改进,通过构造最小外接球树进行最近点寻找的方法,提高了配准精度与效率。基于上述关键技术建立了三维手术导航系统。
     本文的第三部分是围绕着在微创条件下进行脊柱手术导航工作而开展的。微创手术是脊柱外科发展的重要方向,对手术导航也提出了新的要求。本文通过将CT图像(3D)与X射线透视图像(2D)的配准,解决了传统手术导航中的开放式配准与微创手术相矛盾的问题,实现了微创条件下的手术导航。在配准的步骤中,本文提出一种适用于脊柱微创手术导航的3D/2D分步式配准方法。首先应用点特征、面特征进行快速粗配准,对配准误差进行限制,然后采用一种基于图像梯度特征的配准算法进行精配准,这种算法是根据CT图像梯度在成像平面的投影强度构造最优化函数,能获得较稳定的局部极值,减小了X射线图像对配准精度的影响,提高了系统的稳定性。另外,由于该算法只对形成图像边缘的光线进行追踪,因此配准速度得到了大幅提升。
     通过以脊柱标本为模型的导航实验,本文分别对三类导航系统的注册误差,定位误差,准备时间等指标进行了测试,并与国外同类产品进行了对照。结果表明本文建立的手术导航系统达到了临床应用的标准。
     本文最后分别从硬件与软件两个方面对手术导航进行了系统集成,形成了能够应用于临床的脊柱外科手术导航系统。
Spine surgery is considered as a common yet risky surgical treatment. Before the Image-guided surgery (IGS) technology was introduced, the surgeons could only rely on the anatomical information obtained from the preoperative CT images or inoperative X-ray fluoroscopes which can only offer limited help for the surgeons in terms of reconstruction of the 3D image of the patients. The quality of the surgery mainly reckons on the surgeons' experiences. Besides, X-ray Fluoroscopy during the surgery increases the radiation exposure to both the patients and the surgeons. To obtain different views, it necessary to reposition the C-arm X-ray machine, prolongs the operating time and increases the infection risks. IGS technology is aimed to solve these problems. Based on medical image data and with the help of virtual reality technology, IGS uses dimensional position sensor to track the medical instruments and the pathological tissue and to correlate the operative field to the preoperative medical imaging data and leads to the real time guide during the surgery. IGS provides important clinic value in improving surgical positioning precision, lowering surgical trauma and error rate and has become one of the most important research directions in computer-aided therapy field.
     The goal of this dissertation is to implement IGS system for spine surgery by solving the key technologies. Based on imaging modality, we focus on three different image guided systems, which are based on fluoroscopy image, CT image and 3D/2D imaging registration respectively.
     1. X-ray fluoroscopy based IGS
     We increase image definition by restoring fluoroscopy images using a modified Wiener filter and wavelet synthetic filter. Then, we improve the calibration algorithm for the C-arm fluoroscopy image system, propose an "on line" calibration technique and revise the image distortion caused by the image intensifier. This technology eliminates the disadvantage caused by the image distortion, shortens the preparation time before surgery and improves the flexibility of the C-arm X-ray machine. Finally, we develop a system of X-ray fluoroscopy based IGS combined with coordinate transform.
     2. CT image based 3D IGS
     We mainly focus on two problems. First, we use a texture mapping-rendering algorithm to accelerate the 3D images reconstruction. Second, we propose a registration method combing of point matching and surface matching registration method. We also modify the Iterative Closest Point (ICP) algorithm to register the surface of bony structures of CT to patient, which increases the precision and efficiency of the IGS proceeding. Applying above technologies, we develop a system of CT image based IGS.
     3. 3D/2D images registration based mini invasive IGS
     Minimal invasive surgery is the future of spine surgery and brings new challenge to IGS. We present a novel multi-step 3D/2D images registration method. After using point and surface feature based registration method for coarse registration, we use an improved gradient feature based registration method for fine registration. This gradient feature based method provides a feasible way of determining the global solution. Besides, the speed of registration is greatly accelerated since this method only samples the rays passing through the edge of X-ray image.
     Further experiment is performed using a lumbar spine phantom to evaluate our IGS system. We have tested the registration error, location error, preparation time and other indicators. The test result demonstrates that our IGS system has met with the clinical application standard after comparing our data with the similar products abroad.
     Finally, we develop a IGS system for clinical spine surgery after integrating hardware and software.
引文
[1] Andersson GBJ. The epidemiology of spinal disorders [A]. In: Frymoyer JW. Ed. The adult spine: principles and practice [M]. New York: Lippincott -Raven Publishers, 1997, 93-41.
    [2] Rampersaud YR, Simon DA, Foley KT. Accuracy Requirements for Image-Guided Spinal Pedicle Screw Placement [J]. Spine, 2001, 26: 352-359.
    [3] Herring JL, Maurer CR, Dawant BM. Sensitivity analysis for registration of vertebrae in ultrasound and computed tomography images [J]. SPIE, 1998, 3338: 95-106.
    [4] Weinstein JN, Sprat KF, Spengeler D, et al. Spinal pedicle fixation: reliability and validity of roentgenogram based assessment and surgical factors on successful screw placement [J]. Spine, 1998, 13(11): 1013-1018.
    [5] Schlenzka D, Lain T, Lund T. Computer-assisted spine surgery [J]. Eur Spine J, 2000, 9(1): 57-64.
    [6] Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrument of the thoracic spine in idiopathic scoliosis [J]. Spine, 1997, 22(21): 2239-2245.
    [7] Youkilis AS, Quinr DJ, McGillicuddy JE, et al. stereotactic navigation for placement of pedicle screw in the thoracic spine [J]. Neurosurg, 2001, 48(6): 771-781.
    [8] Laine T, Lund T, Ylikoski M, et al. Accuracy of pedicle screw insertion with and without computer assistance: a prospective randomized controlled clinical trial of 46 consecutive patients [A]. In: International Society for the Study of the Lumbar Spine, 26th meeting [C]. Kona: Hawaii, 1999: 21-25.
    [9] Schwarzenbach O, Berleman U, Jost B, et al. Accuracy of computer assisted predicle screw placement. An in vivo computed tomography analysis [J]. Spine, 1997, 22: 452-458.
    [10] Merloz P, Tonetti J, Pitter L, et al. Pedicle screw placement using image guided techniques [J]. Clin Orthop, 1998, 354: 39-48.
    [11] Amiot LP, Putzier M. Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine [J]. Spine, 2000, 25: 606-614.
    [12] Roberts DW, Strohbehn JW, Heach JF, et al. A frameless stereotactic integration of computerized tomographic image and operating microscope [J]. J Neurosurg, 1986; 65: 545-549.
    [13] Peters TM. Image-guided surgery: from X-rays to virtual reality [J]. Comput Methods Biomech Biomed Engin. 2000, 4(1): 27-57.
    [14] Foley KT, Smith MM. Image-guided spine surgery [J]. Neurosurg Clin North Am, 1996, 7(2):171-186.
    [15] Steinmann JC, Herkowitz HN, El-Kommsons H, et al. Spinal pedicle fixation: Confirmation of an image-based technique for screw placement [J]. Spine, 1993, 18: 1856-1861.
    [16] Kalfas IH, Kormos DW, Murphy MA, et al. Application of frameless sterotaxy to pedicle screw fixation of the spine [J]. J Neurosury, 1995, 20(4):497-500.
    [17] Nolte LP, Zamorano LJ, Jiang Z, et al. Image-guided insertion of transpedicular screws: A laboratory set up [J]. Spine, 1995, 20: 497-500.
    [18] Amiot LP, Labelle H, De Guise JA, et al. Computer assisted pedicle fixation: A feasibility study [J]. Spine, 1995, 20: 1208-1212.
    [19] Nolte LP, Slomczykowski MA, Berlemanu U, et al. A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation [J]. Eur Spine J, 2000, 9(Suppl 1): 78-88.
    [20] Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement: technical note [J]. Neurosurg, 2003, 99(3): 78-88.
    [21] Peter MT, Vladimir L, Liqun F, et al. Performance and Robustness of Automatic Fluoroscopic Image Calibration in a New Computer Assisted Surgery System [A]. In: MICCAI 2001. LNCS 2208 [C]. Berlin: Springer-Verlag,2001:1130-1136.
    [22]Kevin TF,Sanjay KG,Jeff RJ,et al.Percutaneous pedicle screw fixation of the lumbar spine[J].Neurosurg Focus,2001,10(4):1-8.
    [23]Antoine JB,Max AV.A survey of medical image registration[J].Medical Image Analysis,1998,2(1):1-36.
    [24]Daniel BR,Torsten R,Ramin S,et al.Intensity-Based 2D-3D Spine Image Registration Incorporating One Fiducial Marker[A].In:MICCAI 2003.LNCS 2878[C].Berlin:Springer-Verlag,2001:287-294.
    [25]Daniel BR,Torsten R,John R,et al.Intensity.-Based 2D-3D Spine Image Registration Incorporating a Single Fiducial Marker[J].Acadomic Radiology,2005,12(1):37-49.
    [26]张风超.医学数字 X 射线图像处理与分析算法研究[D].上海,上海交通大学,2005:
    [27]Peters TM.Spatial filtering to improve tranverse tomography[J].IEEE Trans.Bio Med,1974,21(3):214-219.
    [28]Gonzalez RC,Wintz P.Digital ImageProcessing[M].United States:Addison-Wesley Publishing Company,1977:157.
    [29]张德丰,张葡青.维纳滤波图像恢复的理论分析与实现[J].中山大学学报(自然科学版),2006,45(6):44-47.
    [30]章毓晋.图像工程(上册)图像处理(第2版)[M].北京:清华大学出版社,2006:151.
    [31]David L,Donoho.De-noise by soft-thresholding[J].IEEE Trans.On Information Theory,1995,41(3):613-627.
    [32]Faugeras O.Three-Dimensional Computer Vision:A Geometric Viewpoint [M].Cambridge,MA:MIT Press,1993.
    [33]Brack C,Burghart R,Czpof A,et al.Accurate x-ray navigation in computer-assisted surgery[A].In Proc.Of the 12th Int.Symp.On Computer Assisted Radiology and Surgery[C].Springer,1998:1023-1025.
    [34]Livyatan H.Calibration and Gradient-Based Rigid Registration of Fluoroscopic X-ray to CT for Intra Operative Navigation[D].Israel,The Hebrew University,2003:
    [35]Tsai R.A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf TV cameras an lens[J].IEEE Trans.on Robotics and Automation,1987,3(4):280-293.
    [36]Chiroboli G,Vecchi GP.Comments on "Design of Fiducials for Accurate Registration Using Machine Vision."[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1993,15:200-205.
    [37]Yakimovsky Y,Cunningham R.A system for extracting 3d measurements from a stereo pair of TV cameras[J].Computer Graphics and Image Processing,1978,2:195-210.
    [38]Hofstetter R,Slomczykowski M,Sati M,et al.Fluoroscopy as an Imaging Means for Computer-Assisted Surgical Navigation[J].Computer Aided Surgery,1999,4:65-76.
    [39]张建政,李放.计算机辅助脊柱手术导航及其应用进展[J].中国脊柱脊髓杂志,2004,14(11):694-696.
    [40]张颖,袁文.计算机辅助脊柱外科手术的应用现状及进展[J].脊柱外科杂志,2005,3(1):51-53.
    [41]Hearn D著,蔡士杰等译.计算机图形学[M].北京:电子工业出版社,2002:332.
    [42]Abhilash PD.Medical Augmented Reality System for Image-guided Robotic Surgery:Development and Surgeon Factors Analysis[D].United States,Wayne State University,2004:
    [43]Schwarzenbach O,Berlemann U,Jost B,et al.Accuracy of computer-assisted pedicle screw placement[J].Spine,1997,22:452-458.
    [44]Kamimura M,Ebara S,Itoh H,et al.Accurate pedicle screw insertion under the control of a computer assisted image guiding system:laboratory test and clinical study[J].J Orthop Sci 1999,4:197-206.
    [45]Laine T,Lund T,Ylikoski M,et al.Accuracy of pedicle screw insertion with and without computer assistance:a randomized controlled clinical study in 100 consecutive patients[J].Eur Spine J,2000,9(3):235-240.
    [46]Fishman EK,Ney DR.Interactive two and three dimensional display of CT and MRI data[A].In:IEEE Engineering in Medicine & Biology International Conference[C].New York:IEEE Computer Society Press,1989:528-529.
    [47]Ney DR,Fishman EK.Three dimensional imaging of CT:techniques and applications[A].In:Proceeding of Visualization in Biomedical Computing [C].Washington:IEEE Computer Society Press,1990:498-506.
    [48]石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社.科学出版社,1996:153.
    [49]Lorensen WE,Cline HE.Marching cubes:a high-resoution 3D surface construction algorithm[J].Computer Graphics,1987,21(3):163-169.
    [50]Vining DJ,Gelfand DW,Bechtold RE,et al.Technical feasibility of colon imaging with helical CT and virtual reality[J].AJR,1994,162(Suppl):104.
    [51]A rcelli C,Baja GSD.A width-independent fast thinning algo-rithm[J].IEEE Trans Pattern Anal Machine Intell[J].1985,7(4):463-474.
    [52]陈克敏,赵永国,潘自来.PACS与数字化影像进展[M].上海:上海科学技术出版社,2005:163.
    [53]唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999:28.
    [54]张尤赛,陈福民.基于纹理映射与Phong光照模型的体绘制加速算法[J].中国图像图形学报.2003,8(9):1048-1053.
    [55]王少荣,贾富仓,孙晓鹏等.数字人切片数据的硬件加速体绘制[J].计算机辅助设计与图形学学报.2005,17(9):1997-2002.
    [56]Wen S Jiangping Y.A new texture analysisi approach based on statistics of texture primitive's gray pattern[J].ACTC Eletronic Sinica,2000,28(4):73-75.
    [57]Ebert DS,Morris CJ,Rheingans P,et al.Designing effective transfer functions for volume rendering from photographic volumes[J].IEEE Transactions on Visualization and Computer Graphics,2002,8(2):183-197.
    [58]Elsen PA,Viergever MA.Medical image matching - a review with classification [J]. IEEE Engining Med Biol, 1993(12):26-39.
    [59] Derek LG, Philpp GB. Medical image registration [J]. Phys Med Biol, 2001(46):1-45.
    [60] Antoine JB, Viergever MA. A Survey of Medical Image Registration [J]. Med cal Image Analys, 1998,2(1): 1-37.
    [61] Eggert DW , Lorusso A, Fisher RB. Estimating 3-D rigid body transformations: a comparison of four major algorithms [J]. Machine vision and applications, 1997(9): 272-290.
    [62] Kapoutsis CA, Vavoulidis CP, Pitas I. Morphological iterative closest point algorithm [J]. Image Processing, IEEE Transactions on Imaging Anlysis, 1999, 8(11): 1644-1646.
    [63] Besl P J, Mckay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992 ,14(2): 239-256.
    
    [64] 穆晓兰.手术导航系统中医学图像配准技术的研究[D].上海,复旦大学,2005:
    
    [65] Weik S. Registration of 3-D Partial Surface Models using Luminance and Depth Information [A]. In: Proc 3-D Digital Imaging and Modeling [C]. Canada: IEEE, 1997, 93-100.
    [66] Masuda T, Sakaue K, Yokoya N. Registration and Integration of Multiple Range Images for 3-D Model Construction [A]. In: Proc Computer Society Conference on Computer Vision and Pattern Recognition [C]. Francisco: IEEE, 1996, 879-883.
    [67] Simon DA, Hebert M, Kanade T. Techniques for Fast and Accurate Intra Surgical Registration [J]. Journal of Image Guided Surgery, 1995, 1(1): 17-29.
    [68] Rusinkiewicz S, Levoy M. Efficient Variants of the ICP Algorithm [A]. In: Proc 3-D Digital Imaging and Modeling [C]. Quebec: IEEE, 2001, 145-152.
    [69] Welz E. Smallest enclosing disks(balls and ellipsoids) [J]. Lecture Notes in Computer Scinece New Results and New Trends in Computer Science, 1991, 555: 359-370.
    [70]Tomazevic D,Likar B,Pernus F.3-D/2-D registration by integrating 2-D information in 3-D[J].IEEE Trans on Medical Imaging,2006,25(1):17-27.
    [71]Russakoff DB,Rohlfing T,Adler JR Jr,et al.Intensity-based 2D-3D spine image registration incorporating a single fiducial marker[J].Acad Radiol.2005,12(1):37-50.
    [72]张薇,黄毓瑜,栾胜等.基于灰度的二维/三维图像配准方法及其在骨科导航手术中的实现[J].中国医学影像技术,2007,23(7):1080-1084.
    [73]Tomazevic D,Likar B,Pernus F.3-D/2-D registration by integrating 2-D information in 3-D[J].IEEE Trans on Medical Imaging,2006,25:17-27.
    [74]Wein W,Roper B,Navab N.3D/2D Registration Based on Volume Gradients[A].In:Proceedings of SPIE Medical Imaging 2005:Image Processing[C].California:SPIE,2005,5747:144-150.
    [75]Tomazevic D,Likar B,Pernus F.Rigid 2D/3D registration of intraoperative digital x-ray images and preoperative CT and MR images[A].In:Proceedings of SPIE Medical Imaging 2002:Image Processing[C].Milan:SPIE,2002:507-517.
    [76]Mortensen EN,Morse BS,Barrett WA,et al.Adaptive Boundary Detection Using' Live-Wire' Two-Dimensional Dynamic Programming[A].In:IEEE Proceedings of Computers in Cardiology[C].USA:Durham,1992:635-638.
    [77]Mortensen EN,Barrett WA.Intelligent Scissors for Image Composition[A].In:Proceedings of ACM SIGGRAPH'95[C].USA:Los Angeles,1995:191-198.
    [78]Chodorowski A,Mattsson U,Langille M,et al.Colour Lesion Boundary Detection Using Live Wire[A].In:Proceedings of SPIE Medical Imaging 2005:Image Processing[C].San Diego:SPIE,2005,5747:1589-1596.
    [79]田捷,包尚联,周明全.医学影像处理与分析[M].北京:电子工业出版社,2003,62.
    [80]Mortensen EN,Barrett WA.Intelligent Scissors for Image Composition [A].In Proceedings of ACM SIGGRAPH'95[C].USA:Los Angeles,1995: 191-198.
    [81]Hamann B.Adata reduction scheme for triangulated surfaces [J].computer Aided Geomeitic Design,1994,11(3):197-214.
    [82]Press WH,Flannery BP,Teukolosky SA,et al.Numerical Recipes in C[M],2nd ed.Cambridge,UK:Cambridge University Press,1992:412-419.
    [83]Herring JL,Dawant BM,Maurer CR.Surface-based registration of CT images to physical space for image-guided surgery of the spine:a sensitivity study[J].IEEE Transactions on Medical Imaging,1998,17(5):743-752.
    [84]GB9706.1-1995医用电器设备安全通用要求[S].北京:中国标准出版社,1995:
    [85]Kraats EB,Walsum T,Kendrick L,et al.Accuracy Evaluation of Direct Navigation With an Isocentric 3D Rotational X-Ray System[J].Medical Image Analysis,2006,10:113-124.
    [86]Grutzner PA,Hebecker A,Waelti H,et al.Clinical Study for Registration-Free 3D-Navigation with the SIREMOBIL Iso-C3D Mobile C-Arm[J].Electromedica,2003,71(Suppl.):7-16.
    [87]Rudolph T,Kowal J,Huefner T,et al.Noninvasive CT to Iso-C3D registration for the use in computer assisted pelvic fracture reduction[A].In:Proceedings of the 6th Annual Meeting of Computer Assisted Orthopedic Surgery-International[C].Berlin:Pro Business,2006.459-461.
    [88]Azuma RT.A surrey of augmented reality[J].Teleoperators and virtual environments,1997,4:355-385.
    [89]Raya MA,Marcinek HV,Saez JM,et al.Mixed Reality for Neurosurgery:A Novel Prototype[A].In:Medicine meets Virtual Reality[C]2003,11:11-15.
    [90]Khamene A,Wacker F,Lewin J.An Augmented Reality System for MRI-Guided Needle Biopsies[A].In:Medicine meets Virtual Reality[C],2003,11:151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700